Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
Model Performance and Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.C.; Shah, N.S.; Petito, L.C.; Gunderson, E.P.; Grobman, W.A.; Matthew, J.O.; Khan, S.S. Gestational diabetes and overweight/obesity: Analysis of nulliparous women in the US, 2011–2019. Am. J. Prev. Med. 2021, 61, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Agha, M.; Agha, R. The rising prevalence of obesity: Part A: Impact on public health. Int. J. Surg. Oncol. 2017, 2, e17. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, X.; He, L.; Li, J.; Zhang, S.; Chen, W. Maternal age and the risk of gestational diabetes mellitus: A systematic review and meta-analysis of over 120 million participants. Diabetes Res. Clin. Pract. 2020, 162, 108044. [Google Scholar] [CrossRef] [PubMed]
- Abu-Heija, A.T.; Al-Bash, M.R.; Al-Kalbani, M.A. Effects of maternal age, parity and pre-pregnancy body mass index on the glucose challenge test and gestational diabetes mellitus. J. Taibah Univ. Med. Sci. 2017, 12, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Stecher, L.; Ziebarth, S.; Nehring, I.; Rifas-Shiman, S.L.; Sommer, C.; von Kries, R. Excessive gestational weight gain prior to glucose screening and the risk of gestational diabetes: A meta-analysis. Diabetologia 2015, 58, 2229–2237. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jin, J.; Hu, K.-L.; Wu, Y.; Zhang, D. Prevention of gestational diabetes mellitus and gestational weight gain restriction in overweight/obese pregnant women: A systematic review and network Meta-analysis. Nutrients 2022, 14, 2383. [Google Scholar] [CrossRef] [PubMed]
- Tranidou, A.; Magriplis, E.; Tsakiridis, I.; Pazaras, N.; Apostolopoulou, A.; Chourdakis, M.; Dagklis, T. Effect of Gestational Weight Gain during the First Half of Pregnancy on the Incidence of GDM, Results from a Pregnant Cohort in Northern Greece. Nutrients 2023, 15, 893. [Google Scholar] [CrossRef]
- Billionnet, C.; Mitanchez, D.; Weill, A.; Nizard, J.; Alla, F.; Hartemann, A. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 2017, 60, 636–644. [Google Scholar] [CrossRef]
- Baskind, M.; DiMeglio, L.A.; Cabana, M.D. Diabetes in Pregnancy. In Orthopaedics for the Newborn and Young Child: A Practical Clinical Guide; Springer International Publishing: Cham, Switzerland, 2023; pp. 405–413. [Google Scholar]
- Farahvar, S.; Walfisch, A.; Sheiner, E. Gestational diabetes risk factors and long-term consequences for both mother and offspring: A literature review. Expert Rev. Endocrinol. Metab. 2019, 14, 63–74. [Google Scholar] [CrossRef]
- Tranidou, A.; Dagklis, T.; Tsakiridis, I.; Siargkas, A.; Apostolopoulou, A.; Mamopoulos, A.; Goulis, D.G. Risk of developing metabolic syndrome after gestational diabetes mellitus-a systematic review and meta-analysis. J. Endocrinol. Investig. 2021, 44, 1139–1149. [Google Scholar] [CrossRef]
- Wicklow, B.; Retnakaran, R. Gestational Diabetes Mellitus and Its Implications across the Life Span. Korean Diabetes J. 2023, 47, 1516082861. [Google Scholar] [CrossRef] [PubMed]
- Mennickent, D.; Rodríguez, A.; Farías-Jofré, M.; Araya, J.; Guzmán-Gutiérrez, E. Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review. Artif. Intell. Med. 2022, 132, 102378. [Google Scholar] [CrossRef] [PubMed]
- Meertens, L.J.E.; Scheepers, H.C.J.; van Kuijk, S.M.J.; Roeleveld, N.; Aardenburg, R.; van Dooren, I.M.A.; Langenveld, J.; Zwaan, I.M.; Spaanderman, M.E.A.; van Gelder, M.M.H.J.; et al. External validation and clinical utility of prognostic prediction models for gestational diabetes mellitus: A prospective cohort study. Acta Obstet. Gynecol. Scand. 2020, 99, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.; Simmonds, M.; Bryant, M.; Lawlor, D.A.; Dunne, F.; Tuffnell, D.; Sheldon, T.A. Risk factor screening to identify women requiring oral glucose tolerance testing to diagnose gestational diabetes: A systematic review and meta-analysis and analysis of two pregnancy cohorts. PLoS ONE 2017, 12, e0175288. [Google Scholar] [CrossRef] [PubMed]
- Ioannis, T.; Sonia, G.; Apostolos, M.; Anargyros, K.; Apostolos, A.; Dionysia, F.; Themistoklis, D. Diagnosis and management of gestational diabetes mellitus: An overview of national and international guidelines. Obstet. Gynecol. Surv. 2021, 76, 367–381. [Google Scholar]
- Catalano, P. Trying to understand gestational diabetes. Diabet. Med. 2014, 31, 273–281. [Google Scholar] [CrossRef]
- Bozkurt, L.; Göbl, C.S.; Pfligl, L.; Leitner, K.; Bancher-Todesca, D.; Luger, A.; Baumgartner-Parzer, S.; Pacini, G.; Kautzky-Willer, A. Pathophysiological characteristics and effects of obesity in women with early and late manifestation of gestational diabetes diagnosed by the International Association of Diabetes and Pregnancy Study Groups criteria. J. Clin. Endocrinol. Metab. 2015, 100, 1113–1120. [Google Scholar] [CrossRef]
- Thagaard, I.N.; Krebs, L.; Holm, J.-C.; Lange, T.; Larsen, T.; Christiansen, M. Adiponectin and leptin as first trimester markers for gestational diabetes mellitus: A cohort study. Clin. Chem. Lab. Med. (CCLM) 2017, 55, 1805–1812. [Google Scholar] [CrossRef]
- Kononova, O.; Pristrom, A.; Vasilkova, V.; Mokhort, T. C-reactive protein and gestational diabetes mellitus. Endocr. Abstr. Biosci. 2013, 32, 604. [Google Scholar] [CrossRef]
- Shen, L.; Sahota, D.S.; Chaemsaithong, P.; Tse, W.T.; Chung, M.Y.; Ip, J.K.H.; Leung, T.Y.; Poon, L.C.Y. First trimester screening for gestational diabetes mellitus with maternal factors and biomarkers. Fetal Diagn. Ther. 2022, 49, 256–264. [Google Scholar] [CrossRef]
- Coustan, D.R.; Lowe, L.P.; Metzger, B.E.; Dyer, A.R. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: Paving the way for new diagnostic criteria for gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2010, 202, 654.e1–654.e6. [Google Scholar] [CrossRef] [PubMed]
- Sweeting, A.N.; Wong, J.; Appelblom, H.; Ross, G.P.; Kouru, H.; Williams, P.F.; Sairanen, M. A first trimester prediction model for gestational diabetes utilizing aneuploidy and pre-eclampsia screening markers. J. Matern. Fetal Neonatal Med. 2018, 31, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum-Gavish, K.; Sharabi-Nov, A.; Binyamin, D.; Møller, H.J.; Danon, D.; Rothman, L.; Hadar, E.; Idelson, A.; Vogel, I.; Koren, O.; et al. First trimester biomarkers for prediction of gestational diabetes mellitus. Placenta 2020, 101, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Tocci, V.; Donnici, A.; Giuliano, S.; Sarnelli, P.; Salatino, A.; Greco, M.; Puccio, L.; Chiefari, E.; Foti, D.P.; et al. Maternal Preconception Body Mass Index Overtakes Age as a Risk Factor for Gestational Diabetes Mellitus. J. Clin. Med. 2023, 12, 2830. [Google Scholar] [CrossRef]
- Lamain-de Ruiter, M.; Kwee, A.; Naaktgeboren, C.A.; Franx, A.; Moons, K.G.; Koster, M.P. Prediction models for the risk of gestational diabetes: A systematic review. Diagn. Progn. Res. 2017, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Dłuski, D.F.; Ruszała, M.; Rudziński, G.; Pożarowska, K.; Brzuszkiewicz, K.; Leszczyńska-Gorzelak, B. Evolution of Gestational Diabetes Mellitus across Continents in 21st Century. Int. J. Environ. Res. Public Health 2022, 19, 15804. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Powe, C.E.; Immanuel, J.; Karuranga, S.; et al. IDF diabetes atlas: Estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef]
- Paulo, M.S.; Abdo, N.M.; Bettencourt-Silva, R.; Al-Rifai, R.H. Gestational diabetes mellitus in Europe: A systematic review and meta-analysis of prevalence studies. Front. Endocrinol. 2021, 12, 691033. [Google Scholar] [CrossRef]
- Dong, B.; Yu, H.; Wei, Q.; Zhi, M.; Wu, C.; Zhu, X.; Li, L. The effect of pre-pregnancy body mass index and excessive gestational weight gain on the risk of gestational diabetes in advanced maternal age. Oncotarget 2017, 8, 58364. [Google Scholar] [CrossRef]
- Yong, H.Y.; Shariff, Z.M.; Yusof, B.N.M.; Rejali, Z.; Tee, Y.Y.S.; van der Beek, E.M. Independent and combined effects of age, body mass index and gestational weight gain on the risk of gestational diabetes mellitus. Sci. Rep. 2020, 10, 8486. [Google Scholar] [CrossRef]
- Buerger, O.; Elger, T.; Varthaliti, A.; Syngelaki, A.; Wright, A.; Nicolaides, K.H. First-trimester screening for gestational diabetes mellitus in twin pregnancies. J. Clin. Med. 2021, 10, 3814. [Google Scholar] [CrossRef] [PubMed]
- Chatzakis, C.; Sotiriadis, A.; Demertzidou, E.; Eleftheriades, A.; Dinas, K.; Vlahos, N.; Eleftheriades, M. Prevalence of preeclampsia and uterine arteries resistance in the different phenotypes of gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2023, 195, 110222. [Google Scholar] [CrossRef] [PubMed]
- Östlund, I.; Haglund, B.; Hanson, U. Gestational diabetes and preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 113, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Talasaz, Z.H.; Sadeghi, R.; Askari, F.; Dadgar, S.; Vatanchi, A. First trimesters Pregnancy-Associated Plasma Protein-A levels value to Predict Gestational diabetes Mellitus: A systematic review and meta-analysis of the literature. Taiwan. J. Obstet. Gynecol. 2018, 57, 181–189. [Google Scholar] [CrossRef]
- Ben-Haroush, A.; Yogev, Y.; Hod, M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet. Med. 2004, 21, 103–113. [Google Scholar] [CrossRef]
- Xiong, X.; Saunders, L.D.; Wang, F.L.; Demianczuk, N.N. Gestational diabetes mellitus: Prevalence, risk factors, maternal and infant outcomes. Int. J. Gynecol. Obstet. 2001, 75, 221–228. [Google Scholar] [CrossRef]
Maternal Characteristics | GDM (N = 474) | Non-GDM (N = 4443) | p Value |
---|---|---|---|
MA (years) 25%, 50%, 75% | 33.5 30, 33.5, 36.9 | 31.8 28.4, 31.8, 35 | <0.0001 |
MA > 35 (n%) | 183 (38.6) | 1138 (25.6) | <0.0001 |
BMI pre (kg/m2) | 25 22.2, 25, 30.5 | 22.7 20.7, 22.7, 25.7 | <0.0001 |
Conception via ART (n%) | 44 (9.3) | 209 (4.7) | <0.0001 |
Smoking during pregnancy (n%) | 67 (14.1) | 481 (10.8) | 0.03 |
Chronic Hypertension (n%) | 5 (1.05) | 12 (0.27) | 0.02 |
Thyroid disease (n%) | 55 (11.6) | 356 (8.01) | 0.01 |
SLE/APS (n%) | 3 (0.63) | 23 (0.51) | 0.73 |
Obstetric history | |||
Preeclampsia (n%) | 28 (5.9) | 136 (3.06) | 0.003 |
SGA (n%) | 2 (0.42) | 34 (0.76) | 0.57 |
PCS (n%) | 105 (22.2) | 719 (16.2) | 0.001 |
Parity (n%) | 202 (42.6) | 1807 (40.7) | 0.43 |
Measured variables | |||
fβ-hCG MoM | 0.46, 0.9, 1.27 | 0.65, 0.97, 1.47 | 0.11 |
PAPP-A MoM | 0.9, 1.07, 1.26 | 0.94, 1.09, 1.26 | 0.04 |
UtA-PI z-score | −0.50, 0.20, 0.88 | −0.24, 0.28, 0.88 | 0.03 |
Multivariate Regression Analysis, aOR, 95% CI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 1 | p Value | Model 2 | p Value | Model 3 | p Value | Model 4 | p Value | Model 5 | p Value | |
MA (years) | 1.08 (1.05, 1.09) | <0.0001 | 1.07 (1.04, 1.09) | <0.0001 | 1.07 (1.05, 1.10) | <0.0001 | 1.08 (1.06, 1.10) | <0.0001 | 1.07 (1.05, 1.09) | <0.0001 |
BMI pre | 1.10 (1.08, 1.12) | <0.001 | 1.10 (1.08, 1.12) | <0.0001 | 1.10 (1.08, 1.12) | <0.0001 | 1.10 (1.08, 1.12) | <0.0001 | ||
Conception ART | 1.44 (0.98, 2.07) | 0.052 | 1.36 (0.91, 1.10) | 0.11 | ||||||
Smoking during pregnancy | 1.23 (0.92, 1.63) | 0.15 | 1.27 (0.94, 1.70) | 0.10 | ||||||
Thyroid disease | 1.25 (0.90, 1.69) | 0.16 | 1.25 (0.90, 1.70) | 0.15 | ||||||
Chronic hypertension | 1.64 (0.49, 4.75) | 0.38 | 1.32 (0.40, 3.91) | 0.62 | ||||||
SLE/APS | 1.20 (0.28, 3.54) | 0.76 | 1.14 (0.27, 3.40) | 0.83 | ||||||
Preeclampsia History | 1.80 (1.12, 2.81) | 0.01 | 1.78 (1.11, 2.80) | 0.01 | ||||||
SGA History | 0.49 (0.08, 1.68) | 0.33 | 0.51 (0.08, 1.78) | 0.37 | ||||||
PCS History | 1.24 (0.91, 1.67) | 0.16 | 1.21 (0.89, 1.64) | 0.21 | ||||||
Parity | 0.72 (0.56, 0.92) | 0.009 | 0.73 (0.57, 0.85) | 0.01 | ||||||
fβ-hCG MoM | 0.95 (0.83, 1.07) | 0.41 | 0.97 (0.86, 1.09) | 0.63 | ||||||
PAPP-A MoM | 0.83 (0.70, 0.98) | 0.03 | 0.86 (0.72, 1.01) | 0.07 | ||||||
UtA-PI z-score | 0.89 (0.80, 0.98) | 0.02 | 0.94 (0.85, 1.04) | 0.22 |
Model Comparison—Difference of AUROCs (95% CI for the Difference) | |||||||
---|---|---|---|---|---|---|---|
Screening Model for GDM | AUROC (95% CI) | SE | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
Model 1 | 0.672 (0.65–0.70) | 0.0141 | - | −0.0005 (−0.006, 0.004) | −0.003 (−0.01, 0.006) | 0.07 (0.04, 0.09) * | −0.006 (−0.02, 0.004) |
Model 2 | 0.672 (0.65–0.70) | 0.0141 | - | - | −0.003 (−0.01, 0.007) | 0.07 (0.04, 0.09) * | −0.006 (−0.02, 0.004) |
Model 3 | 0.675 (0.65–0.70) | 0.0141 | - | - | - | 0.07 (0.04, 0.09) * | −0.003 (−0.01, 0.004) |
Model 4 | 0.606 (0.58–0.63) | 0.0143 | - | - | - | - | −0.07 (−0.10, −0.05) * |
Model 5 | 0.678 (0.65–0.70) | 0.0140 | - | - | - | - | - |
Detection Rate | Fixed False Positive Rate | |||
---|---|---|---|---|
5% | 10% | 15% | 20% | |
Model 1 | 12.26 (5.45, 21.18) | 23.79 (14.98, 34.35) | 33.04 (24.55, 43.69) | 39.1 (29.57, 48.70) |
Model 2 | 11.45 (5.38, 22.01) | 24.38 (15.39, 34.5) | 32.97 (23.61, 44.5) | 39.5 (29.91, 49.81) |
Model 3 | 11.32 (6.03, 20.84) | 22.01 (12.64, 32.07) | 33.83 (24.53, 43.69) | 41.82 (32.72, 51.21) |
Model 4 | 10.65 (4.09, 21.36) | 17.58 (9.84, 27.5) | 23.54 (14.13, 35.11) | 31.71 (20.77, 42.77) |
Model 5 | 12.24 (7.04, 23.46) | 20.19 (11.1, 31.51) | 30.68 (21.99,41.67) | 41.12 (33.24, 50.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tranidou, A.; Tsakiridis, I.; Apostolopoulou, A.; Xenidis, T.; Pazaras, N.; Mamopoulos, A.; Athanasiadis, A.; Chourdakis, M.; Dagklis, T. Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers. Nutrients 2024, 16, 120. https://doi.org/10.3390/nu16010120
Tranidou A, Tsakiridis I, Apostolopoulou A, Xenidis T, Pazaras N, Mamopoulos A, Athanasiadis A, Chourdakis M, Dagklis T. Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers. Nutrients. 2024; 16(1):120. https://doi.org/10.3390/nu16010120
Chicago/Turabian StyleTranidou, Antigoni, Ioannis Tsakiridis, Aikaterini Apostolopoulou, Theodoros Xenidis, Nikolaos Pazaras, Apostolos Mamopoulos, Apostolos Athanasiadis, Michail Chourdakis, and Themistoklis Dagklis. 2024. "Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers" Nutrients 16, no. 1: 120. https://doi.org/10.3390/nu16010120
APA StyleTranidou, A., Tsakiridis, I., Apostolopoulou, A., Xenidis, T., Pazaras, N., Mamopoulos, A., Athanasiadis, A., Chourdakis, M., & Dagklis, T. (2024). Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers. Nutrients, 16(1), 120. https://doi.org/10.3390/nu16010120