Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis—Pathogenesis, Implications and Therapeutic Opportunities
Abstract
:1. Introduction
2. Prevalence of Sarcopenia in Cirrhosis
3. Correlation between Sarcopenia and Portal Hypertension
4. Clinical Impact of Sarcopenia in Cirrhosis
5. Pathophysiology of Portal Hypertension
5.1. Causes of Increased Intrahepatic Vascular Resistance
5.2. Causes of Increased Portal Blood Flow
6. Complications of Portal Hypertension and Their Role in Malnutrition and Sarcopenia (see Figure 2)
6.1. Portosystemic Collaterals
6.2. Muscle Impacts of Shunting of Ammonia-Rich Blood to the Systemic Circulation via Collaterals
6.3. Impact of Systemic Inflammation on Muscle and Nutritional Parameters
6.4. Impact of Portal Hypertensive Enteropathy
6.5. Disrupted Gastrointestinal Motility
6.6. Ascites
7. Treatment of Portal Hypertension
7.1. Treatment of Underlying Aetiology of Liver Disease
7.2. Beta-Blockers
7.3. TIPS
7.4. Terlipressin
7.5. Statins
7.6. Exercise
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Ripoll, C.; Groszmann, R.; Garcia-Tsao, G.; Grace, N.; Burroughs, A.; Planas, R.; Escorsell, A.; Garcia-Pagan, J.C.; Makuch, R.; Patch, D. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 2007, 133, 481–488. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S.; Merli, M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016, 65, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Mazeaud, S.; Zupo, R.; Couret, A.; Panza, F.; Sardone, R.; Castellana, F. Prevalence of Sarcopenia in Liver Cirrhosis: A Systematic Review and Meta-Analysis. Clin. Transl. Gastroenterol. 2022, 14, e00584. [Google Scholar] [CrossRef] [PubMed]
- Sam, J.; Nguyen, G.C. Protein–calorie malnutrition as a prognostic indicator of mortality among patients hospitalized with cirrhosis and portal hypertension. Liver Int. 2009, 29, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S. Treatment to improve nutrition and functional capacity evaluation in liver transplant candidates. Curr. Treat. Options Gastroenterol. 2014, 12, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Maharshi, S.; Sharma, B.C.; Srivastava, S. Malnutrition in cirrhosis increases morbidity and mortality. J. Gastroenterol. Hepatol. 2015, 30, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Pikul, J.; Sharpe, M.D.; Lowndes, R.; Ghent, C.N. Degree of preoperative malnutrition is predictive of postoperative morbidity and mortality in liver transplant recipients. Transplantation 1994, 57, 469–472. [Google Scholar] [CrossRef]
- Ebadi, M.; Bhanji, R.A.; Mazurak, V.C.; Montano-Loza, A.J. Sarcopenia in cirrhosis: From pathogenesis to interventions. J. Gastroenterol. 2019, 54, 845–859. [Google Scholar] [CrossRef]
- Dasarathy, S. Myostatin and beyond in cirrhosis: All roads lead to sarcopenia. J. Cachexia Sarcopenia Muscle 2017, 8, 864. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 172–193. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2018, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Tantai, X.; Liu, Y.; Yeo, Y.H.; Praktiknjo, M.; Mauro, E.; Hamaguchi, Y.; Engelmann, C.; Zhang, P.; Jeong, J.Y.; Van Vugt, J.L.A. Effect of sarcopenia on survival in patients with cirrhosis: A meta-analysis. J. Hepatol. 2022, 76, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Carey, E.J.; Lai, J.C.; Wang, C.W.; Dasarathy, S.; Lobach, I.; Montano-Loza, A.J.; Dunn, M.A. A Multicenter Study to Define Sarcopenia in Patients with End-Stage Liver Disease. Liver Transplant. 2017, 23, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.; Ney, M.; Irwin, I.; Ma, M.M.; Gramlich, L.; Bain, V.G.; Esfandiari, N.; Baracos, V.; Montano-Loza, A.J.; Myers, R.P. Severe muscle depletion in patients on the liver transplant wait list: Its prevalence and independent prognostic value. Liver Transplant. 2012, 18, 1209–1216. [Google Scholar] [CrossRef]
- Kumar, V.; Benjamin, J.; Shasthry, V.; Bharathy, K.G.S.; Sinha, P.K.; Kumar, G.; Pamecha, V. Sarcopenia in cirrhosis: Fallout on liver transplantation. J. Clin. Exp. Hepatol. 2020, 10, 467–476. [Google Scholar] [CrossRef]
- Sinclair, M. Controversies in Diagnosing Sarcopenia in Cirrhosis—Moving from Research to Clinical Practice. Nutrients 2019, 11, 2454. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Armstrong, M.J. Sarcopenia in cirrhosis: A practical overview. Clin. Med. 2020, 20, 489. [Google Scholar] [CrossRef]
- Fu, H.; Wang, L.; Zhang, W.; Lu, J.; Yang, M. Diagnostic test accuracy of ultrasound for sarcopenia diagnosis: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 57–70. [Google Scholar] [CrossRef]
- Lai, J.C.; Tandon, P.; Bernal, W.; Tapper, E.B.; Ekong, U.; Dasarathy, S.; Carey, E.J. Malnutrition, frailty, and sarcopenia in patients with cirrhosis: 2021 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1611. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; Shimizu, M. Reduced handgrip strength is predictive of poor survival among patients with liver cirrhosis: A sex-stratified analysis. Hepatol. Res. 2019, 49, 1414–1426. [Google Scholar] [CrossRef] [PubMed]
- Paternostro, R.; Bardach, C.; Hofer, B.S.; Scheiner, B.; Schwabl, P.; Asenbaum, U.; Ba-Ssalamah, A.; Scharitzer, M.; Bucscis, T.; Simbrunner, B. Prognostic impact of sarcopenia in cirrhotic patients stratified by different severity of portal hypertension. Liver Int. 2021, 41, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Jeong, W.K.; Baik, S.K.; Cha, S.H.; Kim, M.Y. Impact of sarcopenia on prognostic value of cirrhosis: Going beyond the hepatic venous pressure gradient and MELD score. J. Cachexia Sarcopenia Muscle 2018, 9, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.G.; Brabandt, B.; Stirnimann, G.; Maurer, M.H.; Berzigotti, A. Adipopenia correlates with higher portal pressure in patients with cirrhosis. Liver Int. 2019, 39, 1672–1681. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.C. Nutrition and muscle in cirrhosis. J. Clin. Exp. Hepatol. 2017, 7, 340–357. [Google Scholar] [CrossRef]
- Chapman, B.; Sinclair, M.; Gow, P.J.; Testro, A.G. Malnutrition in cirrhosis: More food for thought. World J. Hepatol. 2020, 12, 883. [Google Scholar] [CrossRef]
- Dajti, E.; Renzulli, M.; Ravaioli, F.; Marasco, G.; Vara, G.; Brandi, N.; Rossini, B.; Colecchia, L.; Alemanni, L.V.; Ferrarese, A. The interplay between sarcopenia and portal hypertension predicts ascites and mortality in cirrhosis. Dig. Liver Dis. 2023, 55, 637–643. [Google Scholar] [CrossRef]
- Topan, M.-M.; Sporea, I.; Dănilă, M.; Popescu, A.; Ghiuchici, A.-M.; Lupuşoru, R.; Şirli, R. Impact of sarcopenia on survival and clinical outcomes in patients with liver cirrhosis. Front. Nutr. 2021, 8, 766451. [Google Scholar] [CrossRef]
- Merli, M.; Giusto, M.; Lucidi, C.; Giannelli, V.; Pentassuglio, I.; Di Gregorio, V.; Lattanzi, B.; Riggio, O. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: Results of a prospective study. Metab. Brain Dis. 2013, 28, 281–284. [Google Scholar] [CrossRef]
- Chang, K.-V.; Chen, J.-D.; Wu, W.-T.; Huang, K.-C.; Lin, H.-Y.; Han, D.-S. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J. Formos. Med. Assoc. 2019, 118, 833–842. [Google Scholar] [CrossRef]
- Zeng, X.; Shi, Z.W.; Yu, J.J.; Wang, L.F.; Luo, Y.Y.; Jin, S.M.; Zhang, L.Y.; Tan, W.; Shi, P.M.; Yu, H. Sarcopenia as a prognostic predictor of liver cirrhosis: A multicentre study in China. J. Cachexia Sarcopenia Muscle 2021, 12, 1948–1958. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Ishigami, M.; Ito, T.; Ishizu, Y.; Kuzuya, T.; Honda, T.; Ishikawa, T.; Fujishiro, M. Sarcopenia impairs health-related quality of life in cirrhotic patients. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J.; Meza-Junco, J.; Prado, C.M.; Lieffers, J.R.; Baracos, V.E.; Bain, V.G.; Sawyer, M.B. Muscle wasting is associated with mortality in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2012, 10, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.; Riggio, O.; Dally, L. Does malnutrition affect survival in cirrhosis? Hepatology 1996, 23, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Kim, D.J. Sarcopenia as a prognostic indicator of liver cirrhosis. J. Cachexia Sarcopenia Muscle 2022, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Kaido, T.; Ogawa, K.; Fujimoto, Y.; Ogura, Y.; Hata, K.; Ito, T.; Tomiyama, K.; Yagi, S.; Mori, A.; Uemoto, S. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am. J. Transplant. 2013, 13, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, F.; Dickson, E.R.; Pasha, T.; Kasparova, P.; Therneau, T.; Malinchoc, M.; DiCecco, S.; Francisco-Ziller, N.; Charlton, M. Impact of nutritional status on outcomes after liver transplantation1. Transplantation 2000, 70, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Bhanji, R.A.; Takahashi, N.; Moynagh, M.R.; Narayanan, P.; Angirekula, M.; Mara, K.C.; Dierkhising, R.A.; Watt, K.D. The evolution and impact of sarcopenia pre-and post-liver transplantation. Aliment. Pharmacol. Ther. 2019, 49, 807–813. [Google Scholar] [CrossRef]
- Krell, R.W.; Kaul, D.R.; Martin, A.R.; Englesbe, M.J.; Sonnenday, C.J.; Cai, S.; Malani, P.N. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transplant. 2013, 19, 1396–1402. [Google Scholar] [CrossRef]
- van Vugt, J.L.; Buettner, S.; Alferink, L.J.; Bossche, N.; de Bruin, R.W.; Darwish Murad, S.; Polak, W.G.; Metselaar, H.J.; IJzermans, J.N. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation—A retrospective study. Transpl. Int. 2018, 31, 165–174. [Google Scholar] [CrossRef]
- Schuppan, D.; Afdhal, N.H. Liver cirrhosis. Lancet 2008, 371, 838–851. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Baik, S.K.; Lee, S.S. Hemodynamic alterations in cirrhosis and portal hypertension. Korean J. Hepatol. 2010, 16, 347. [Google Scholar] [CrossRef]
- Wilkinson, A.L.; Qurashi, M.; Shetty, S. The role of sinusoidal endothelial cells in the axis of inflammation and cancer within the liver. Front. Physiol. 2020, 11, 990. [Google Scholar] [CrossRef] [PubMed]
- García-Pagán, J.-C.; Gracia-Sancho, J.; Bosch, J. Functional aspects on the pathophysiology of portal hypertension in cirrhosis. J. Hepatol. 2012, 57, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, C.; Clària, J.; Szabo, G.; Bosch, J.; Bernardi, M. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J. Hepatol. 2021, 75, S49–S66. [Google Scholar] [CrossRef] [PubMed]
- Martell, M.; Coll, M.; Ezkurdia, N.; Raurell, I.; Genescà, J. Physiopathology of splanchnic vasodilation in portal hypertension. World J. Hepatol. 2010, 2, 208. [Google Scholar] [CrossRef]
- Bolognesi, M.; Di Pascoli, M.; Verardo, A.; Gatta, A. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J. Gastroenterol. 2014, 20, 2555. [Google Scholar] [CrossRef]
- Bandali, M.F.; Mirakhur, A. Portosystemic collateral pathways and interventions in portal hypertension. Gastrointest. Interv. 2018, 7, 21–28. [Google Scholar] [CrossRef]
- Bosch, J.; Abraldes, J.G.; Fernández, M.; García-Pagán, J.C. Hepatic endothelial dysfunction and abnormal angiogenesis: New targets in the treatment of portal hypertension. J. Hepatol. 2010, 53, 558–567. [Google Scholar] [CrossRef]
- Butterworth, R.F. Glutamate transporter and receptor function in disorders of ammonia metabolism. Ment. Retard. Dev. Disabil. Res. Rev. 2001, 7, 276–279. [Google Scholar] [CrossRef]
- Stern, R.A.; Mozdziak, P.E. Differential ammonia metabolism and toxicity between avian and mammalian species, and effect of ammonia on skeletal muscle: A comparative review. J. Anim. Physiol. Anim. Nutr. 2019, 103, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Jindal, A.; Jagdish, R.K. Sarcopenia: Ammonia metabolism and hepatic encephalopathy. Clin. Mol. Hepatol. 2019, 25, 270. [Google Scholar] [CrossRef] [PubMed]
- Davuluri, G.; Krokowski, D.; Guan, B.-J.; Kumar, A.; Thapaliya, S.; Singh, D.; Hatzoglou, M.; Dasarathy, S. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J. Hepatol. 2016, 65, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S.; Hatzoglou, M. Hyperammonemia and proteostasis in cirrhosis. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 30. [Google Scholar] [CrossRef]
- Dam, G.; Sørensen, M.; Buhl, M.; Sandahl, T.D.; Møller, N.; Ott, P.; Vilstrup, H. Muscle metabolism and whole blood amino acid profile in patients with liver disease. Scand. J. Clin. Lab. Investig. 2015, 75, 674–680. [Google Scholar]
- Bunchorntavakul, C.; Reddy, K.R. malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, M.; Quero, J.C.; De Bruijn, I.; Hartmann, I.J.; Essink-bot, M.l.; Hop, W.C.; Schalm, S.W. Subclinical hepatic encephalopathy impairs daily functioning. Hepatology 1998, 28, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Wiest, R.; Lawson, M.; Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 2014, 60, 197–209. [Google Scholar] [CrossRef]
- Wiest, R.; Garcia-Tsao, G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005, 41, 422–433. [Google Scholar] [CrossRef]
- Albillos, A.; de la Hera, A.; González, M.; Moya, J.L.; Calleja, J.L.; Monserrat, J.; Ruiz-del-Arbol, L.; Alvarez-Mon, M. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 2003, 37, 208–217. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Tsamandas, A.C.; Tsiaoussis, G.I.; Karatza, E.; Zisimopoulos, D.; Maroulis, I.; Kontogeorgou, E.; Georgiou, C.D.; Scopa, C.D.; Thomopoulos, K.C. Intestinal mucosal proliferation, apoptosis and oxidative stress in patients with liver cirrhosis. Ann. Hepatol. 2015, 12, 301–307. [Google Scholar] [CrossRef]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Simbrunner, B.; Jachs, M.; Hartl, L.; Bauer, D.; Paternostro, R.; Schwabl, P.; Scheiner, B.; Stättermayer, A.F.; Pinter, M. Systemic inflammation increases across distinct stages of advanced chronic liver disease and correlates with decompensation and mortality. J. Hepatol. 2021, 74, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Dirchwolf, M.; Podhorzer, A.; Marino, M.; Shulman, C.; Cartier, M.; Zunino, M.; Paz, S.; Muñoz, A.; Bocassi, A.; Gimenez, J.; et al. Immune dysfunction in cirrhosis: Distinct cytokines phenotypes according to cirrhosis severity. Cytokine 2016, 77, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Girón-González, J.A.; Martínez-Sierra, C.; Rodriguez-Ramos, C.; Macías, M.A.; Rendón, P.; Díaz, F.; Fernández-Gutiérrez, C.; Martín-Herrera, L. Implication of inflammation-related cytokines in the natural history of liver cirrhosis. Liver Int. 2004, 24, 437–445. [Google Scholar] [CrossRef]
- Salgüero, S.; Medrano, L.M.; González-García, J.; Berenguer, J.; Montes, M.L.; Diéz, C.; Garcia-Broncano, P.; Llop-Herrera, E.; Pérez-Latorre, L.; Bellóno, J.M. Plasma IP-10 and IL-6 are linked to Child-Pugh B cirrhosis in patients with advanced HCV-related cirrhosis: A cross-sectional study. Sci. Rep. 2020, 10, 10384. [Google Scholar] [CrossRef] [PubMed]
- Pijls, K.E.; Jonkers, D.M.; Elamin, E.E.; Masclee, A.A.; Koek, G.H. Intestinal epithelial barrier function in liver cirrhosis: An extensive review of the literature. Liver Int. 2013, 33, 1457–1469. [Google Scholar] [CrossRef]
- Gerova, V.; Svinarov, D.; Nakov, R.; Stoynov, S.; Tankova, L.; Nakov, V. Intestinal barrier dysfunction in liver cirrhosis assessed by iohexol test. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 315–322. [Google Scholar]
- Straub, R.; Cutolo, M.; Buttgereit, F.; Pongratz, G. Energy regulation and neuroendocrine–immune control in chronic inflammatory diseases. J. Intern. Med. 2010, 267, 543–560. [Google Scholar] [CrossRef]
- Argilés, J.M.; Campos, N.; Lopez-Pedrosa, J.M.; Rueda, R.; Rodriguez-Mañas, L. Skeletal muscle regulates metabolism via interorgan crosstalk: Roles in health and disease. J. Am. Med. Dir. Assoc. 2016, 17, 789–796. [Google Scholar] [CrossRef]
- Glass, C.; Hipskind, P.; Tsien, C.; Malin, S.K.; Kasumov, T.; Shah, S.N.; Kirwan, J.P.; Dasarathy, S. Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: A prospective controlled study. J. Appl. Physiol. 2013, 114, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Plata-Salaman, C. Cytokines and feeding. Int. J. Obes. 2001, 25, S48–S52. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Kelesidis, I.; Chou, S.; Mantzoros, C.S. Narrative review: The role of leptin in human physiology: Emerging clinical applications. Ann. Intern. Med. 2010, 152, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Gutierrez, G.E.; Martínez-Gómez, L.E.; Martínez-Armenta, C.; Pineda, C.; Martínez-Nava, G.A.; Lopez-Reyes, A. Molecular mechanisms of inflammation in sarcopenia: Diagnosis and therapeutic update. Cells 2022, 11, 2359. [Google Scholar] [CrossRef] [PubMed]
- Boirie, Y. Physiopathological mechanism of sarcopenia. JNHA-J. Nutr. Health Aging 2009, 13, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.-J.; Yu, L.-J. Oxidative stress, molecular inflammation and sarcopenia. Int. J. Mol. Sci. 2010, 11, 1509–1526. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Jackson, T.; Sapey, E.; Lord, J.M. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res. Rev. 2017, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; Pluijm, S.M.; Deeg, D.J.; Visser, M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am. J. Med. 2006, 119, 526.e9–526.e17. [Google Scholar] [CrossRef]
- Rong, Y.-D.; Bian, A.-L.; Hu, H.-Y.; Ma, Y.; Zhou, X.-Z. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018, 18, 308. [Google Scholar] [CrossRef]
- Mehta, M.; Louissaint, J.; Parikh, N.S.; Long, M.T.; Tapper, E.B. Cognitive function, sarcopenia, and inflammation are strongly associated with frailty: A Framingham cohort study. Am. J. Med. 2021, 134, 1530–1538. [Google Scholar] [CrossRef]
- Kamper, R.S.; Alcazar, J.; Andersen, L.L.; Haddock, B.; Jørgensen, N.R.; Hovind, P.; Suetta, C. Associations between inflammatory markers, body composition, and physical function: The Copenhagen Sarcopenia Study. J. Cachexia Sarcopenia Muscle 2021, 12, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Primignani, M.; Carpinelli, L.; Preatoni, P.; Battaglia, G.; Carta, A.; Prada, A.; Cestari, R.; Angeli, P.; Gatta, A.; Rossi, A. Natural history of portal hypertensive gastropathy in patients with liver cirrhosis. Gastroenterology 2000, 119, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Bhutto, A.R.; Butt, N.; Munir, S.; Dhillo, A.K. Frequency of portal hypertensive gastropathy and its relationship with biochemical, haematological and endoscopic features in cirrhosis. J. Coll. Physicians Surg. Pak. 2011, 21, 723–726. [Google Scholar] [PubMed]
- Gupta, R.; Saraswat, V.; Kumar, M.; Naik, S.; Pandey, R. Frequency and factors influencing portal hypertensive gastropathy and duodenopathy in cirrhotic portal hypertension. J. Gastroenterol. Hepatol. 1996, 11, 728–733. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.D.; Rega, M.; Masone, S.; Persico, F.; Siciliano, S.; Patrone, F.; Matantuono, L.; Persico, G. Mucosal abnormalities of the small bowel in patients with cirrhosis and portal hypertension: A capsule endoscopy study. Gastrointest. Endosc. 2005, 62, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Misra, V.; Misra, S.P.; Dwivedi, M.; Gupta, S.C. Histomorphometric study of portal hypertensive enteropathy. Am. J. Clin. Pathol. 1997, 108, 652–657. [Google Scholar] [CrossRef]
- Simadibrata, M.; Yuwono, V.; Ten Kate, F.; Tytgat, G.; Daldiyono, D.; Lesmana, L.; Ariawan, I. Portal Hypertensive Enteropathy in Liver Cirrhosis. Indones. J. Gastroenterol. Hepatol. Dig. Endosc. 2006, 7, 61–66. [Google Scholar]
- Nagral, A.; Joshi, A.; Bhatia, S.; Abraham, P.; Mistry, F.; Vora, I. Congestive jejunopathy in portal hypertension. Gut 1993, 34, 694–697. [Google Scholar] [CrossRef]
- Rockey, D.C. An update: Portal hypertensive gastropathy and colopathy. Clin. Liver Dis. 2019, 23, 643–658. [Google Scholar] [CrossRef]
- Urrunaga, N.H.; Rockey, D.C. Portal hypertensive gastropathy and colopathy. Clin. Liver Dis. 2014, 18, 389–406. [Google Scholar] [CrossRef]
- Fukui, H.; Wiest, R. Changes of intestinal functions in liver cirrhosis. Inflamm. Intest. Dis. 2016, 1, 24–40. [Google Scholar] [CrossRef]
- Ghufran, A. Nutrition in Chronic Liver Disease: A Point-of-Care Review. Nutr. Clin. Pract. 2020, 35, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Llibre-Nieto, G.; Lira, A.; Vergara, M.; Solé, C.; Casas, M.; Puig-Diví, V.; Solé, G.; Humanes, A.; Grau, L.; Barradas, J.M. Micronutrient deficiencies in patients with decompensated liver cirrhosis. Nutrients 2021, 13, 1249. [Google Scholar] [CrossRef]
- Davčev, P.; Vanovski, B.; Sestakov, D.; Tadžer, I. Protein-losing enteropathy in patients with liver cirrhosis. Digestion 1969, 2, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Dahlqvist, G.E.; Jamar, F.; Zech, F.; Geubel, A.P. In-111 transferrin scintigraphy in cirrhosis with hypoalbuminemia: Evidence for protein-losing enteropathy in a small group of selected cases. Scand. J. Gastroenterol. 2012, 47, 1247–1252. [Google Scholar] [CrossRef]
- Georgopoulos, P.; Mowat, C.; McMillan, D.C.; Kingstone, K.; Ghosh, S.; Stanley, A.J. Is portal hypertension associated with protein-losing enteropathy? J. Gastroenterol. Hepatol. 2005, 20, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Juneja, P.; Tripathi, D.M.; Kaur, S. Revisiting the gut-liver axis: Gut lymphatic system in liver cirrhosis and portal hypertension. Am. J. Physiol.-Gastrointest. Liver Physiol. 2022, 322, G473–G479. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, T.; Anand, U.; Priyadarshi, R.N. Intestinal Lymphangiectasia Associated with Refractory Ascites in a Cirrhosis Patient. Cureus 2021, 13, e12567. [Google Scholar] [CrossRef]
- Lee, H.L.; Han, D.S.; Kim, J.B.; Jeon, Y.C.; Sohn, J.H.; Hahm, J.S. Successful treatment of protein-losing enteropathy induced by intestinal lymphangiectasia in a liver cirrhosis patient with octreotide: A case report. J. Korean Med. Sci. 2004, 19, 466–469. [Google Scholar] [CrossRef]
- Dümcke, C.W.; Møller, S. Autonomic dysfunction in cirrhosis and portal hypertension. Scand. J. Clin. Lab. Investig. 2008, 68, 437–447. [Google Scholar] [CrossRef]
- Verne, G.N.; Soldevia-Pico, C.; Robinson, M.E.; Spicer, K.M.; Reuben, A. Autonomic dysfunction and gastroparesis in cirrhosis. J. Clin. Gastroenterol. 2004, 38, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Gumurdulu, Y.; Yapar, Z.; Canataroglu, A.; Serin, E.; Gumurdulu, D.; Kibar, M.; Çolakoglu, S. Gastric emptying time and the effect of cisapride in cirrhotic patients with autonomic neuropathy. J. Clin. Gastroenterol. 2003, 36, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, M.E.; Osman, M.A.; Mahmoud, R.A.; Mohamed, L.K.; Seif-Elnasr, K.I.; Eskander, A.E. Measuring of gastric emptying in Egyptian pediatric patients with portal hypertension by using real-time ultrasound. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2012, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Chesta, J.; Defilippi, C.; Defilippi, C. Abnormalities in proximal small bowel motility in patients with cirrhosis. Hepatology 1993, 17, 828–832. [Google Scholar] [PubMed]
- Gunnarsdottir, S.A.; Sadik, R.; Shev, S.; Simrén, M.; Sjövall, H.; Stotzer, P.-O.; Abrahamsson, H.; Olsson, R.; Björnsson, E.S. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. Am. J. Gastroenterol. 2003, 98, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Madrid, A.M.; Cumsille, F.; Defilippi, C. Altered small bowel motility in patients with liver cirrhosis depends on severity of liver disease. Dig. Dis. Sci. 1997, 42, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Galati, J.; Holdeman, K.; Bottjen, P.; Quigley, E.M. Gastric emptying and orocecal transit in portal hypertension and end-stage chronic liver disease. Liver Transplant. Surg. 1997, 3, 34–38. [Google Scholar] [CrossRef]
- Ramachandran, A.; Balasubramanian, K.A. Intestinal dysfunction in liver cirrhosis: Its role in spontaneous bacterial peritonitis. J. Gastroenterol. Hepatol. 2001, 16, 607–612. [Google Scholar] [CrossRef]
- Roland, B.C.; Garcia-Tsao, G.; Ciarleglio, M.M.; Deng, Y.; Sheth, A. Decompensated cirrhotics have slower intestinal transit times as compared with compensated cirrhotics and healthy controls. J. Clin. Gastroenterol. 2013, 47, 888–893. [Google Scholar] [CrossRef]
- Karlsen, S.; Fynne, L.; Grønbæk, H.; Krogh, K. Small intestinal transit in patients with liver cirrhosis and portal hypertension: A descriptive study. BMC Gastroenterol. 2012, 12, 176. [Google Scholar] [CrossRef]
- Madsen, J.L.; Brinch, K.; Hansen, E.F.; Fuglsang, S. Gastrointestinal motor function in patients with portal hypertension. Scand. J. Gastroenterol. 2000, 35, 490–493. [Google Scholar] [PubMed]
- Keller, J.; Layer, P. The pathophysiology of malabsorption. Viszeralmedizin 2014, 30, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Sadik, R.; Abrahamsson, H.; Björnsson, E.; Gunnarsdottir, A.; Stotzer, P.O. Etiology of portal hypertension may influence gastrointestinal transit. Scand. J. Gastroenterol. 2003, 38, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Mittimanj, K.; Shah, N.J.; Siriki, R.; Rahaman, K.; Brown, R.J. Prevalence of small bowel bacterial over growth (SIBO) in decompensated cirrhosis with portal hypertension: A clinical pilot study. J. Clin. Exp. Hepatol. 2013, 3, S83–S84. [Google Scholar]
- Dukowicz, A.C.; Lacy, B.E.; Levine, G.M. Small intestinal bacterial overgrowth: A comprehensive review. Gastroenterol. Hepatol. 2007, 3, 112. [Google Scholar]
- Fan, X.; Sellin, J. Small intestinal bacterial overgrowth, bile acid malabsorption and gluten intolerance as possible causes of chronic watery diarrhoea. Aliment. Pharmacol. Ther. 2009, 29, 1069–1077. [Google Scholar] [CrossRef]
- Moore, C.M.; Van Thiel, D.H. Cirrhotic ascites review: Pathophysiology, diagnosis and management. World J. Hepatol. 2013, 5, 251. [Google Scholar] [CrossRef]
- Aqel, B.A.; Scolapio, J.S.; Dickson, R.C.; Burton, D.D.; Bouras, E.P. Contribution of ascites to impaired gastric function and nutritional intake in patients with cirrhosis and ascites. Clin. Gastroenterol. Hepatol. 2005, 3, 1095–1100. [Google Scholar] [CrossRef]
- Sorrentino, P.; Castaldo, G.; Tarantino, L.; Bracigliano, A.; Perrella, A.; Perrella, O.; Fiorentino, F.; Vecchione, R.; D’Angelo, S. Preservation of nutritional-status in patients with refractory ascites due to hepatic cirrhosis who are undergoing repeated paracentesis. J. Gastroenterol. Hepatol. 2012, 27, 813–822. [Google Scholar] [CrossRef]
- Dolz, C.; Raurich, J.M.; Ibanez, J.; Obrador, A.; Marse, P.; Gaya, J. Ascites increases the resting energy expenditure in liver cirrhosis. Gastroenterology 1991, 100, 738–744. [Google Scholar] [CrossRef]
- Knudsen, A.W.; Krag, A.; Nordgaard-Lassen, I.; Frandsen, E.; Tofteng, F.; Mortensen, C.; Becker, U. Effect of paracentesis on metabolic activity in patients with advanced cirrhosis and ascites. Scand. J. Gastroenterol. 2016, 51, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, M.; Grossmann, M.; Hoermann, R.; Angus, P.W.; Gow, P.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J. Hepatol. 2016, 65, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Yurci, A.; Yucesoy, M.; Unluhizarci, K.; Torun, E.; Gursoy, S.; Baskol, M.; Guven, K.; Ozbakir, O. Effects of testosterone gel treatment in hypogonadal men with liver cirrhosis. Clin. Res. Hepatol. Gastroenterol. 2011, 35, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Marchesini, G.; Bianchi, G.; Merli, M.; Amodio, P.; Panella, C.; Loguercio, C.; Fanelli, F.R.; Abbiati, R.; Group, I.B.S. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: A double-blind, randomized trial. Gastroenterology 2003, 124, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Margáin, A.; Macías-Rodríguez, R.; Ríos-Torres, S.; Román-Calleja, B.; Méndez-Guerrero, O.; Rodríguez-Córdova, P.; Torre, A. Effect of a high-protein, high-fiber diet plus supplementation with branched-chain amino acids on the nutritional status of patients with cirrhosis. Rev. Gastroenterol. México 2018, 83, 9–15. [Google Scholar] [CrossRef]
- Lens, S.; Alvarado-Tapias, E.; Mariño, Z.; Londoño, M.-C.; LLop, E.; Martinez, J.; Fortea, J.I.; Ibañez, L.; Ariza, X.; Baiges, A. Effects of all-oral anti-viral therapy on HVPG and systemic hemodynamics in patients with hepatitis C virus-associated cirrhosis. Gastroenterology 2017, 153, 1273–1283.e1. [Google Scholar] [CrossRef] [PubMed]
- Lens, S.; Rincón, D.; García-Retortillo, M.; Albillos, A.; Calleja, J.L.; Bañares, R.; Abraldes, J.G.; Bosch, J.; Sanchez-Tapias, J.M.; Forns, X. Association between severe portal hypertension and risk of liver decompensation in patients with hepatitis C, regardless of response to antiviral therapy. Clin. Gastroenterol. Hepatol. 2015, 13, 1846–1853.e1. [Google Scholar] [CrossRef]
- Manolakopoulos, S.; Triantos, C.; Theodoropoulos, J.; Vlachogiannakos, J.; Kougioumtzan, A.; Papatheodoridis, G.; Tzourmakliotis, D.; Karamanolis, D.; Burroughs, A.K.; Archimandritis, A. Antiviral therapy reduces portal pressure in patients with cirrhosis due to HBeAg-negative chronic hepatitis B and significant portal hypertension. J. Hepatol. 2009, 51, 468–474. [Google Scholar] [CrossRef]
- Vorobioff, J.; Groszmann, R.J.; Picabea, E.; Gamen, M.; Villavicencio, R.; Bordato, J.; Morel, I.; Audano, M.; Tanno, H.; Lerner, E. Prognostic value of hepatic venous pressure gradient measurements in alcoholic cirrhosis: A 10-year prospective study. Gastroenterology 1996, 111, 701–709. [Google Scholar] [CrossRef]
- Klein, C.; Kalk, J.; Müting, D.; Klein, C. The effect of alcohol on portal vein hemodynamics in nutritional-toxic liver cirrhosis. Dtsch. Med. Wochenschr. 1993, 118, 89–93. [Google Scholar] [CrossRef]
- Loffredo, L.; Pastori, D.; Farcomeni, A.; Violi, F. Effects of anticoagulants in patients with cirrhosis and portal vein thrombosis: A systematic review and meta-analysis. Gastroenterology 2017, 153, 480–487.e1. [Google Scholar] [CrossRef] [PubMed]
- Villa, E.; Cammà, C.; Marietta, M.; Luongo, M.; Critelli, R.; Colopi, S.; Tata, C.; Zecchini, R.; Gitto, S.; Petta, S. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 2012, 143, 1253–1260.e4. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.; Garcia-Tsao, G.; Tapper, E.B. Nonselective Beta-Blockers in Portal Hypertension: Why, When, and How? Clin. Liver Dis. 2022, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.G.; Mendoza, Y.P.; Bosch, J. Beta-blockers in cirrhosis: Evidence-based indications and limitations. JHEP Rep. 2020, 2, 100063. [Google Scholar] [CrossRef] [PubMed]
- Senzolo, M.; Fries, W.; Buda, A.; Pizzuti, D.; Nadal, E.; Sturniolo, G.; Burroughs, A.; D’incà, R. Oral propranolol decreases intestinal permeability in patients with cirrhosis: Another protective mechanism against bleeding? Am. J. Gastroenterol. 2009, 104, 3115–3116. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, P.; Garcia-Martinez, I.; Francés, R.; Gonzalez-Navajas, J.M.; Mauri, M.; Alfayate, R.; Almenara, S.; Miralles, C.; Palazon, J.M.; Carnicer, F. Treatment with non-selective beta-blockers affects the systemic inflammatory response to bacterial DNA in patients with cirrhosis. Liver Int. 2018, 38, 2219–2227. [Google Scholar] [CrossRef]
- Stewart Coats, A.J.; Ho, G.F.; Prabhash, K.; von Haehling, S.; Tilson, J.; Brown, R.; Beadle, J.; Anker, S.D.; on behalf of the ACT-ONE Study Group. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: A randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J. Cachexia Sarcopenia Muscle 2016, 7, 355–365. [Google Scholar] [CrossRef]
- Clark, A.L.; Coats, A.J.; Krum, H.; Katus, H.A.; Mohacsi, P.; Salekin, D.; Schultz, M.K.; Packer, M.; Anker, S.D. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure: Results from the COPERNICUS trial. J. Cachexia Sarcopenia Muscle 2017, 8, 549–556. [Google Scholar] [CrossRef]
- Li, T.-H.; Liu, C.-W.; Huang, C.-C.; Tsai, Y.-L.; Huang, S.-F.; Yang, Y.-Y.; Tsai, C.-Y.; Hou, M.-C.; Lin, H.-C. Non-Selective Beta-Blockers Decrease Infection, Acute Kidney Injury Episodes, and Ameliorate Sarcopenic Changes in Patients with Cirrhosis: A Propensity-Score Matching Tertiary-Center Cohort Study. J. Clin. Med. 2021, 10, 2244. [Google Scholar] [CrossRef]
- Colombato, L. The role of transjugular intrahepatic portosystemic shunt (TIPS) in the management of portal hypertension. J. Clin. Gastroenterol. 2007, 41, S344–S351. [Google Scholar] [CrossRef]
- Allaire, M.; Walter, A.; Sutter, O.; Nahon, P.; Ganne-Carrié, N.; Amathieu, R.; Nault, J.-C. TIPS for management of portal-hypertension-related complications in patients with cirrhosis. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 249–263. [Google Scholar] [CrossRef]
- Allard, J.P.; Chau, J.; Sandokji, K.; Blendis, L.M.; Wong, F. Effects of ascites resolution after successful TIPS on nutrition in cirrhotic patients with refractory ascites. Am. J. Gastroenterol. 2001, 96, 2442–2447. [Google Scholar] [CrossRef] [PubMed]
- Pang, N.; Zhao, C.; Li, J.; Li, L.; Yang, X.; Yang, M.; Wu, Z.; Feng, D. Body mass index changes after transjugular intrahepatic portosystemic shunt in individuals with cirrhosis. Nutrition 2021, 84, 111095. [Google Scholar] [CrossRef] [PubMed]
- Aspite, S.; Schepis, F.; Roccarina, D.; Gitto, S.; Citone, M.; Di Bonaventura, C.; Bianchini, M.; Arena, U.; Vannucchi, A.M.; Guglielmelli, P. Portosystemic shunt is an effective treatment for complications of portal hypertension in hepatic myeloid metaplasia and improves nutritional status. Liver Int. 2022, 42, 419–424. [Google Scholar] [CrossRef]
- Stanley, A.J.; Gilmour, H.M.; Ghosh, S.; Ferguson, A.; McGilchrist, A.J. Transjugular intrahepatic portosystemic shunt as a treatment for protein-losing enteropathy caused by portal hypertension. Gastroenterology 1996, 111, 1679–1682. [Google Scholar] [CrossRef] [PubMed]
- Artru, F.; Miquet, X.; Azahaf, M.; Labreuche, J.; Ntandja Wandji, L.C.; Sergent, G.; Nobécourt, A.; Toumelin, P.; Lassailly, G.; Dharancy, S. Consequences of TIPSS placement on the body composition of patients with cirrhosis and severe portal hypertension: A large retrospective CT-based surveillance. Aliment. Pharmacol. Ther. 2020, 52, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, J.; Yang, C.; Chen, M.; Shi, Q.; Zhou, C.; Huang, S.; Chen, Y.; Wang, Y.; Li, T. Sarcopenia in patients with cirrhosis after transjugular intrahepatic portosystemic shunt placement. Radiology 2022, 303, 711–719. [Google Scholar] [CrossRef]
- Tsien, C.; Shah, S.N.; McCullough, A.J.; Dasarathy, S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur. J. Gastroenterol. Hepatol. 2013, 25, 85–93. [Google Scholar] [CrossRef]
- Hey, P.; Chapman, B.; Wong, D.; Gow, P.; Testro, A.; Terbah, R.; Sinclair, M. Transjugular intrahepatic portosystemic shunt insertion improves muscle mass but not muscle function or frailty measures. Eur. J. Gastroenterol. Hepatol. 2023, 35, 997–1003. [Google Scholar] [CrossRef]
- Møller, S.; Hansen, E.F.; Becker, U.; Brinch, K.; Henriksen, J.H.; Bendtsen, F. Central and systemic haemodynamic effects of terlipressin in portal hypertensive patients. Liver 2000, 20, 51–59. [Google Scholar] [CrossRef]
- Kiszka-Kanowitz, M.; Henriksen, J.H.; Hansen, E.F.; Møller, S.; Bendtsen, F. Effect of terlipressin on blood volume distribution in patients with cirrhosis. Scand. J. Gastroenterol. 2004, 39, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Escorsell, À.; Bandi, J.C.; Moitinho, E.; Feu, F.; García-Pagán, J.C.; Bosch, J.; Rodés, J. Time profile of the haemodynamic effects of terlipressin in portal hypertension. J. Hepatol. 1997, 26, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Gow, P.J.; Ardalan, Z.S.; Vasudevan, A.; Testro, A.G.; Ye, B.; Angus, P.W. Outpatient terlipressin infusion for the treatment of refractory ascites. Am. J. Gastroenterol. 2016, 111, 1041–1042. [Google Scholar] [CrossRef] [PubMed]
- Gow, P.J.; Sinclair, M.; Thwaites, P.A.; Angus, P.W.; Chapman, B.; Terbah, R.; Testro, A.G. Safety and efficacy of outpatient continuous terlipressin infusion for the treatment of portal hypertensive complications in cirrhosis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Fischer, J.H.; Yeramian, P.; Gavis, E.A.; Fagan, A.; Angeli, P.; Garcia-Tsao, G.; Adams, J.M.; Markham, P. Safety, Tolerability, Pharmacokinetics, and Efficacy of Terlipressin Delivered by Continuous Intravenous Infusion in Patients with Cirrhosis and Refractory Ascites. GastroHep 2022, 2022, 506547. [Google Scholar] [CrossRef]
- Chapman, B.; Yu, C.; Widdop, J.; Collins, K.; Sinclair, M.; Majumdar, A.; Terbah, R.; Gow, P.; Testro, A. Long-term safety and efficacy of continuous terlipressin infusion for portal hypertensive complications. J. Gastroenterol. Hepatol. 2023, 38, 48. [Google Scholar] [CrossRef]
- Lai, J.C.; Dodge, J.L.; Kappus, M.R.; Dunn, M.A.; Volk, M.L.; Duarte-Rojo, A.; Ganger, D.R.; Rahimi, R.S.; McCulloch, C.E.; Haugen, C.E. Changes in frailty are associated with waitlist mortality in patients with cirrhosis. J. Hepatol. 2020, 73, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Chapman, B.; Goh, S.K.; Parker, F.; Romero, S.; Sinclair, M.; Gow, P.; Ma, R.; Angus, P.; Jones, R.; Luke, J. Malnutrition and low muscle strength are independent predictors of clinical outcomes and healthcare costs after liver transplant. Clin. Nutr. ESPEN 2022, 48, 210–219. [Google Scholar] [CrossRef]
- Chapman, B.; Gow, P.; Sinclair, M.; Hanrahan, T.; Angus, P.; McClure, T.; Mills, C.; Terbah, R.; Testro, A. Continuous terlipressin infusion is associated with improved diet intake and muscle strength in patients awaiting liver transplant. JHEP Rep. 2019, 1, 107–113. [Google Scholar] [CrossRef]
- Kockerling, D.; Nathwani, R.; Forlano, R.; Manousou, P.; Mullish, B.H.; Dhar, A. Current and future pharmacological therapies for managing cirrhosis and its complications. World J. Gastroenterol. 2019, 25, 888. [Google Scholar] [CrossRef]
- Zafra, C.; Abraldes, J.G.; Turnes, J.; Berzigotti, A.; Fernández, M.; García-Pagán, J.C.; Rodés, J.; Bosch, J. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 2004, 126, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Pose, E.; Trebicka, J.; Mookerjee, R.P.; Angeli, P.; Ginès, P. Statins: Old drugs as new therapy for liver diseases? J. Hepatol. 2019, 70, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Nishibori, M.; Takahashi, H.K.; Mori, S. The regulation of ICAM-1 and LFA-1 interaction by autacoids and statins: A novel strategy for controlling inflammation and immune responses. J. Pharmacol. Sci. 2003, 92, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Abraldes, J.G.; Albillos, A.; Bañares, R.; Turnes, J.; González, R.; García-Pagán, J.C.; Bosch, J. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: A randomized controlled trial. Gastroenterology 2009, 136, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Pollo-Flores, P.; Soldan, M.; Santos, U.C.; Kunz, D.G.; Mattos, D.E.; da Silva, A.C.; Marchiori, R.C.; da Motta Rezende, G.F. Three months of simvastatin therapy vs. placebo for severe portal hypertension in cirrhosis: A randomized controlled trial. Dig. Liver Dis. 2015, 47, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Bishnu, S.; Ahammed, S.; Sarkar, A.; Hembram, J.; Chatterjee, S.; Das, K.; Dhali, G.K.; Chowdhury, A.; Das, K. Effects of atorvastatin on portal hemodynamics and clinical outcomes in patients with cirrhosis with portal hypertension: A proof-of-concept study. Eur. J. Gastroenterol. Hepatol. 2018, 30, 54–59. [Google Scholar] [CrossRef]
- Mohanty, A.; Tate, J.P.; Garcia-Tsao, G. Statins are associated with a decreased risk of decompensation and death in veterans with hepatitis C–related compensated cirrhosis. Gastroenterology 2016, 150, 430–440.e1. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Lee, C.-L.; Yang, S.-S.; Fu, S.-C.; Chen, Y.-Y.; Wang, T.-C.; Hu, J.-T.; Chen, D.-S. Statins reduce the risk of cirrhosis and its decompensation in chronic hepatitis B patients: A nationwide cohort study. Off. J. Am. Coll. Gastroenterol. 2016, 111, 976–985. [Google Scholar] [CrossRef]
- Kim, R.G.; Loomba, R.; Prokop, L.J.; Singh, S. Statin use and risk of cirrhosis and related complications in patients with chronic liver diseases: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2017, 15, 1521–1530.e8. [Google Scholar] [CrossRef]
- de Labra, C.; Guimaraes-Pinheiro, C.; Maseda, A.; Lorenzo, T.; Millán-Calenti, J.C. Effects of physical exercise interventions in frail older adults: A systematic review of randomized controlled trials. BMC Geriatr. 2015, 15, 154. [Google Scholar] [CrossRef]
- Macías-Rodríguez, R.U.; Ilarraza-Lomelí, H.; Ruiz-Margáin, A.; Ponce-de-León-Rosales, S.; Vargas-Vorácková, F.; García-Flores, O.; Torre, A.; Duarte-Rojo, A. Changes in hepatic venous pressure gradient induced by physical exercise in cirrhosis: Results of a pilot randomized open clinical trial. Clin. Transl. Gastroenterol. 2016, 7, e180. [Google Scholar] [CrossRef] [PubMed]
- Berzigotti, A.; Albillos, A.; Villanueva, C.; Genescá, J.; Ardevol, A.; Augustín, S.; Calleja, J.L.; Bañares, R.; García-Pagán, J.C.; Mesonero, F. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: The SportDiet study. Hepatology 2017, 65, 1293–1305. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terbah, R.; Testro, A.; Gow, P.; Majumdar, A.; Sinclair, M. Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis—Pathogenesis, Implications and Therapeutic Opportunities. Nutrients 2024, 16, 35. https://doi.org/10.3390/nu16010035
Terbah R, Testro A, Gow P, Majumdar A, Sinclair M. Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis—Pathogenesis, Implications and Therapeutic Opportunities. Nutrients. 2024; 16(1):35. https://doi.org/10.3390/nu16010035
Chicago/Turabian StyleTerbah, Ryma, Adam Testro, Paul Gow, Avik Majumdar, and Marie Sinclair. 2024. "Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis—Pathogenesis, Implications and Therapeutic Opportunities" Nutrients 16, no. 1: 35. https://doi.org/10.3390/nu16010035
APA StyleTerbah, R., Testro, A., Gow, P., Majumdar, A., & Sinclair, M. (2024). Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis—Pathogenesis, Implications and Therapeutic Opportunities. Nutrients, 16(1), 35. https://doi.org/10.3390/nu16010035