Associations of Dietary Diversity Trajectories with Frailty among Chinese Older Adults: A Latent Class Trajectory Analysis Based on a CLHLS Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Frailty Index
2.3. Dietary Variety Assessment
2.4. Covariates
2.5. Missing Data
2.6. Statistical Analysis
3. Result
3.1. Estimated DVS Trajectory Modeling
3.2. Baseline Characteristics of Trajectory Subpopulation
3.3. Association of DVS Trajectories with Frailty
3.4. Subgroup Analysis
3.5. Interaction Analysis
3.6. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- O’Caoimh, R.; Sezgin, D.; O’Donovan, M.R.; Molloy, D.W.; Clegg, A.; Rockwood, K.; Liew, A. Prevalence of frailty in 62 countries across the world: A systematic review and meta-analysis of population-level studies. Age Ageing 2021, 50, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Ida, S.; Kaneko, R.; Imataka, K.; Murata, K. Relationship between frailty and mortality, hospitalization, and cardiovascular diseases in diabetes: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2019, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Yu, C.; Guo, Y.; Bian, Z.; Sun, Z.; Yang, L.; Chen, Y.; Du, H.; Li, Z.; Lei, Y.; et al. Frailty index and all-cause and cause-specific mortality in Chinese adults: A prospective cohort study. Lancet Public Health 2020, 5, e650–e660. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.; El Assar, M.; Rodriguez-Manas, L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol. Aspects Med. 2016, 50, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Arauna, D.; Cerda, A.; Garcia-Garcia, J.F.; Wehinger, S.; Castro, F.; Mendez, D.; Alarcon, M.; Fuentes, E.; Palomo, I. Polypharmacy Is Associated with Frailty, Nutritional Risk and Chronic Disease in Chilean Older Adults: Remarks from PIEI-ES Study. Clin. Interv. Aging 2020, 15, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Liperoti, R.; Vetrano, D.L.; Palmer, K.; Targowski, T.; Cipriani, M.C.; Lo Monaco, M.R.; Giovannini, S.; Acampora, N.; Villani, E.R.; Bernabei, R.; et al. Association between frailty and ischemic heart disease: A systematic review and meta-analysis. BMC Geriatr. 2021, 21, 357. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Westbury, L.; Cooper, C. Social isolation and loneliness as risk factors for the progression of frailty: The English Longitudinal Study of Ageing. Age Ageing 2018, 47, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Kehler, D.S.; Theou, O. The impact of physical activity and sedentary behaviors on frailty levels. Mech. Ageing Dev. 2019, 180, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cao, X.; Li, X.; Zhang, J.; Ma, C.; Zhang, N.; Lu, Q.; Crimmins, E.M.; Gill, T.M.; Chen, X.; et al. Association of Unhealthy Lifestyle and Childhood Adversity With Acceleration of Aging Among UK Biobank Participants. JAMA Netw. Open 2022, 5, e2230690. [Google Scholar] [CrossRef] [PubMed]
- Otaki, N.; Yano, M.; Yokoro, M.; Tanino, N.; Fukuo, K.; Raymo, J. Relationship Between Dietary Variety and Frailty in Older Japanese Women During the Period of Restriction on Outings due to COVID-19. J. Gerontol. Ser. B 2021, 76, e256–e262. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, M.; Motokawa, K.; Mikami, Y.; Yamamoto, K.; Shirobe, M.; Edahiro, A.; Iwasaki, M.; Ohara, Y.; Watanabe, Y.; Kawai, H.; et al. Low Dietary Variety and Diabetes Mellitus Are Associated with Frailty among Community-Dwelling Older Japanese Adults: A Cross-Sectional Study. Nutrients 2021, 13, 641. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, Y.; Makizako, H.; Nakai, Y.; Tomioka, K.; Taniguchi, Y.; Kimura, M.; Kanouchi, H.; Takenaka, T.; Kubozono, T.; Ohishi, M. The Association between Dietary Variety and Physical Frailty in Community-Dwelling Older Adults. Healthcare 2021, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Yokoro, M.; Otaki, N.; Yano, M.; Tani, M.; Tanino, N.; Fukuo, K. Associations between Dietary Variety and Frailty in Community-Dwelling Older People Who Live Alone: Gender Differences. J. Frailty Aging 2023, 12, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Yokoro, M.; Otaki, N.; Yano, M.; Imamura, T.; Tanino, N.; Fukuo, K. Low Dietary Variety Is Associated with Incident Frailty in Older Adults during the Coronavirus Disease 2019 Pandemic: A Prospective Cohort Study in Japan. Nutrients 2023, 15, 1145. [Google Scholar] [CrossRef]
- Xu, X.; Inglis, S.C.; Parker, D. Sex differences in dietary consumption and its association with frailty among middle-aged and older Australians: A 10-year longitudinal survey. BMC Geriatr. 2021, 21, 217. [Google Scholar] [CrossRef] [PubMed]
- Aihemaitijiang, S.; Zhang, L.; Ye, C.; Halimulati, M.; Huang, X.; Wang, R.; Zhang, Z. Long-Term High Dietary Diversity Maintains Good Physical Function in Chinese Elderly: A Cohort Study Based on CLHLS from 2011 to 2018. Nutrients 2022, 14, 1730. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-M.; Zhong, W.-F.; Li, Z.-H.; Chen, P.-L.; Zhang, Y.-J.; Ren, J.-J.; Liu, D.; Shen, Q.-Q.; Yang, P.; Song, W.-Q.; et al. Dietary diversity and frailty among older Chinese people: Evidence from the Chinese Longitudinal Healthy Longevity Study. Am. J. Clin. Nutr. 2023, 117, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Lennon, H.; Kelly, S.; Sperrin, M.; Buchan, I.; Cross, A.J.; Leitzmann, M.; Cook, M.B.; Renehan, A.G. Framework to construct and interpret latent class trajectory modelling. BMJ Open 2018, 8, e020683. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Contrand, B.; Dupuy, M.; Ramiz, L.; Sztal-Kutas, C.; Lagarde, E. Mental and physical health among the French population before and during the first and second COVID-19 lockdowns: Latent class trajectory analyses using longitudinal data. J. Affect. Disord. 2022, 309, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Feng, Q.; Hesketh, T.; Christensen, K.; Vaupel, J.W. Survival, disabilities in activities of daily living, and physical and cognitive functioning among the oldest-old in China: A cohort study. Lancet 2017, 389, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Dupre, M.E.; Sautter, J.; Zhu, H.; Liu, Y.; Yi, Z. Frailty and Mortality Among Chinese at Advanced Ages. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2009, 64B, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Kulminski, A.; Yashin, A.; Ukraintseva, S.; Akushevich, I.; Arbeev, K.; Land, K.; Manton, K. Accumulation of health disorders as a systemic measure of aging: Findings from the NLTCS data. Mech. Ageing Dev. 2006, 127, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Mitnitski, A.; Song, X.; Skoog, I.; Broe, G.A.; Cox, J.L.; Grunfeld, E.; Rockwood, K. Relative fitness and frailty of elderly men and women in developed countries and their relationship with mortality. J. Am. Geriatr. Soc. 2005, 53, 2184–2189. [Google Scholar] [CrossRef] [PubMed]
- Goggins, W.B.; Woo, J.; Sham, A.; Ho, S.C. Frailty index as a measure of biological age in a Chinese population. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1046–1051. [Google Scholar] [CrossRef]
- Song, Y.; Deng, Y.; Li, J.; Hao, B.; Cai, Y.; Chen, J.; Shi, H.; Xu, W. Associations of falls and severe falls with blood pressure and frailty among Chinese community-dwelling oldest olds: The Chinese Longitudinal Health and Longevity Study. Aging 2021, 13, 16527–16540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Q.; Hao, W.; Zhu, D. Long-Term Food Variety and Dietary Patterns Are Associated with Frailty among Chinese Older Adults: A Cohort Study Based on CLHLS from 2014 to 2018. Nutrients 2022, 14, 4279. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.-B.; Gao, X.; Yin, Z.-X.; Chen, H.-S.; Luo, J.-S.; Brasher, M.S.; Kraus, V.B.; Li, T.-T.; Zeng, Y.; Shi, X.-M. Revisiting the association of blood pressure with mortality in oldest old people in China: Community based, longitudinal prospective study. BMJ 2018, 361, k2158. [Google Scholar] [CrossRef]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; Wiley & Sons: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Ding, P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, Y.; Gao, Q.; Yuan, H.; Sun, L.; Xi, H.; Wu, W. Prevalence of Frailty among Chinese Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. Int. J. Public Health 2023, 68, 1605964. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Gambassi, G.; van Kan, G.A.; Vellas, B. The frailty phenotype and the frailty index: Different instruments for different purposes. Age Ageing 2014, 43, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Colizzi, M.; Lasalvia, A.; Ruggeri, M. Prevention and early intervention in youth mental health: Is it time for a multidisciplinary and trans-diagnostic model for care? Int. J. Ment. Health Syst. 2020, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.B.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Tiihonen, K.; Ouwehand, A.C.; Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing Res. Rev. 2010, 9, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Schuette, L.K.; Song, W.O.; Hoerr, S.L. Quantitative use of the Food Guide Pyramid to evaluate dietary intake of college students. J. Am. Diet. Assoc. 1996, 96, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Azadbakht, L.; Esmaillzadeh, A.; Azizi, F. Dietary diversity score in adolescents—A good indicator of the nutritional adequacy of diets: Tehran lipid and glucose study. Asia Pac. J. Clin. Nutr. 2004, 13, 56–60. [Google Scholar]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef] [PubMed]
- Morcos, S.R.; El-Shobaki, F.A.; El-Hawary, Z.; Saleh, N. Effect of vitamin C and carotene on the absorption of calcium from the intestine. Z. Ernährungswissenschaft 1976, 15, 387–390. [Google Scholar] [CrossRef]
- Gasmi, A.; Bjørklund, G.; Peana, M.; Mujawdiya, P.K.; Pivina, L.; Ongenae, A.; Piscopo, S.; Severin, B. Phosphocalcic metabolism and the role of vitamin D, vitamin K2, and nattokinase supplementation. Crit. Rev. Food Sci. Nutr. 2022, 62, 7062–7071. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ma, C.; Zheng, Z.; He, L.; Hao, M.; Chen, X.; Crimmins, E.M.; Gill, T.M.; Levine, M.E.; Liu, Z. Contribution of life course circumstances to the acceleration of phenotypic and functional aging: A retrospective study. eClinicalMedicine 2022, 51, 101548. [Google Scholar] [CrossRef] [PubMed]
- Tarasuk, V.S.; Brooker, A.S. Interpreting epidemiologic studies of diet-disease relationships. J. Nutr. 1997, 127, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Yu, E.; Willett, W.C.; Hu, F.B. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 2015, 6, 5–18. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall n = 2017 | Moderate-Slow Decline-Slow Growth n = 810 | Moderate-Slow Growth-Accelerated Decline n = 1207 | p-Value a |
---|---|---|---|---|
Age, M (P25, P75) | 74 (69, 80) | 75 (70, 80) | 73 (69, 80) | <0.001 |
Sex, n (%) | ||||
Male | 969 (48.04) | 317 (39.14) | 652 (54.02) | <0.001 |
Female | 1048 (51.96) | 493 (60.86) | 555 (45.98) | |
Ethnicity, n (%) | ||||
Han | 1894 (93.9) | 740 (91.36) | 1154 (95.61) | <0.001 |
Hui | 5 (0.25) | 1 (0.12) | 4 (0.33) | |
Zhuang | 74 (3.67) | 47 (5.8) | 27 (2.24) | |
Yao | 11 (0.55) | 5 (0.62) | 6 (0.5) | |
Man | 6 (0.3) | 2 (0.25) | 4 (0.33) | |
Others | 27 (1.34) | 15 (1.85) | 12 (0.99) | |
Place of birth, n (%) | ||||
Urban | 155 (7.68) | 42 (5.19) | 113 (9.36) | <0.001 |
Rural | 1860 (92.22) | 767 (94.69) | 1093 (90.56) | |
Missing | 2 (0.1) | 1 (0.12) | 1 (0.08) | |
Only child, n (%) | ||||
Yes | 150 (7.44) | 61 (7.53) | 89 (7.37) | 0.895 |
No | 1867 (92.56) | 749 (92.47) | 1118 (92.63) | |
Hungry in Childhood, n (%) | ||||
Yes | 1454 (72.09) | 614 (75.8) | 840 (69.59) | <0.001 |
No | 515 (25.53) | 171 (21.11) | 344 (28.5) | |
Missing | 48 (2.38) | 25 (3.09) | 23 (1.91) | |
Illiteracy, n (%) | ||||
Yes | 991 (49.13) | 478 (59.01) | 513 (42.5) | <0.001 |
No | 1026 (50.87) | 332 (40.99) | 694 (57.5) | |
Economic status, n (%) | ||||
Very rich | 22 (1.09) | 5 (0.62) | 17 (1.41) | <0.001 |
Rich | 217 (10.76) | 54 (6.67) | 163 (13.5) | |
Moderate | 1469 (72.83) | 581 (71.73) | 888 (73.57) | |
Poor | 270 (13.39) | 142 (17.53) | 128 (10.6) | |
Very poor | 37 (1.83) | 27 (3.33) | 10 (0.83) | |
Missing | 2 (0.1) | 1 (0.12) | 1 (0.08) | |
Current marital status, n (%) | ||||
Married and living with spouse | 1172 (58.11) | 411 (50.74) | 761 (63.05) | <0.001 |
Separated | 61 (3.02) | 26 (3.21) | 35 (2.9) | |
Divorced | 5 (0.25) | 2 (0.25) | 3 (0.25) | |
Widowed | 758 (37.58) | 361 (44.57) | 397 (32.89) | |
Never married | 21 (1.04) | 10 (1.23) | 11 (0.91) | |
Co-residence, n (%) | ||||
With household member | 1673 (82.94) | 638 (78.77) | 1035 (85.75) | <0.001 |
Alone | 330 (16.36) | 169 (20.86) | 161 (13.34) | |
In an institution | 14 (0.69) | 3 (0.37) | 11 (0.91) | |
Smoke at present, n (%) | ||||
Yes | 470 (23.3) | 174 (21.48) | 296 (24.52) | 0.113 |
No | 1547 (76.7) | 636 (78.52) | 911 (75.48) | |
Smoke in the past, n (%) | ||||
Yes | 699 (34.66) | 227 (28.02) | 472 (39.11) | <0.001 |
No | 1314 (65.15) | 581 (71.73) | 733 (60.73) | |
Missing | 4 (0.2) | 2 (0.25) | 2 (0.17) | |
Drink at present, n (%) | ||||
Yes | 455 (22.56) | 155 (19.14) | 300 (24.86) | 0.003 |
No | 1562 (77.44) | 655 (80.86) | 907 (75.14) | |
Drink in the past, n (%) | ||||
Yes | 621 (30.79) | 203 (25.06) | 418 (34.63) | <0.001 |
No | 1392 (69.01) | 605 (74.69) | 787 (65.2) | |
Missing | 4 (0.2) | 2 (0.25) | 2 (0.17) | |
Exercise at present, n (%) | ||||
Yes | 732 (36.29) | 237 (29.26) | 495 (41.01) | <0.001 |
No | 1285 (63.71) | 573 (70.74) | 712 (58.99) | |
Exercise in the past, n (%) | ||||
Yes | 556 (27.57) | 183 (22.59) | 373 (30.9) | <0.001 |
No | 1455 (72.14) | 624 (77.04) | 831 (68.85) | |
Missing | 6 (0.3) | 3 (0.37) | 3 (0.25) |
Moderate-Slow Decline-Slow Growth | Moderate-Slow Growth-Accelerated Decline | |
---|---|---|
Subjects, n | 810 | 1207 |
Frailty cases, n | 334 | 393 |
OR (95% CI) | ||
Model 1 | 1.296 (1.054–1.594) | Reference |
Model 2 | 1.323 (1.073–1.632) | Reference |
Model 3 | 1.326 (1.075–1.636) | Reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Wang, Y.; Jia, X.; Fan, J.; Wang, N.; Yang, Y.; Shi, X. Associations of Dietary Diversity Trajectories with Frailty among Chinese Older Adults: A Latent Class Trajectory Analysis Based on a CLHLS Cohort. Nutrients 2024, 16, 1445. https://doi.org/10.3390/nu16101445
Zhao C, Wang Y, Jia X, Fan J, Wang N, Yang Y, Shi X. Associations of Dietary Diversity Trajectories with Frailty among Chinese Older Adults: A Latent Class Trajectory Analysis Based on a CLHLS Cohort. Nutrients. 2024; 16(10):1445. https://doi.org/10.3390/nu16101445
Chicago/Turabian StyleZhao, Chenyu, Yuping Wang, Xiaocan Jia, Jingwen Fan, Nana Wang, Yongli Yang, and Xuezhong Shi. 2024. "Associations of Dietary Diversity Trajectories with Frailty among Chinese Older Adults: A Latent Class Trajectory Analysis Based on a CLHLS Cohort" Nutrients 16, no. 10: 1445. https://doi.org/10.3390/nu16101445
APA StyleZhao, C., Wang, Y., Jia, X., Fan, J., Wang, N., Yang, Y., & Shi, X. (2024). Associations of Dietary Diversity Trajectories with Frailty among Chinese Older Adults: A Latent Class Trajectory Analysis Based on a CLHLS Cohort. Nutrients, 16(10), 1445. https://doi.org/10.3390/nu16101445