Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Nutritional Support
2.3. Nutritional Evaluation
2.4. Cytokine Measurement
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Groups
3.2. Clinical Associations between Circulating Cytokine Levels and Heart Failure (HF)
3.3. Relevant Correlations between Circulating Cytokine Levels and Heart Failure (HF)
3.4. Clinical Changes in Circulating Cytokines after Nutritional Interventions in Patients with HF
3.5. Clinical Association between HF-Related Outcomes and Circulating Interleukins
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iyngkaran, P.; Majoni, W.; Cass, A.; Sanders, P.; Ronco, C.; Brady, S.; Kangaharan, N.; Ilton, M.; Hare, D.; Thomas, M. Northern Territory perspectives on heart failure with comorbidities—Understanding trial validity and exploring collaborative opportunities to broaden the evidence base. Heart Lung Circ. 2015, 24, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Mentz, R.J.; Felker, G.M. Noncardiac comorbidities and acute heart failure patients. Heart Fail. Clin. 2013, 9, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Chaudhry, S.I.; Desai, M.M.; Krumholz, H.M. Trends in comorbidity, disability, and polypharmacy in heart failure. Am. J. Med. 2011, 124, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Sandesara, P.B.; O’Neal, W.T.; Kelli, H.M.; Samman-Tahhan, A.; Hammadah, M.; Quyyumi, A.A.; Sperling, L.S. The Prognostic Significance of Diabetes and Microvascular Complications in Patients with Heart Failure with Preserved Ejection Fraction. Diabetes Care 2018, 41, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Ather, S.; Chan, W.; Bozkurt, B.; Aguilar, D.; Ramasubbu, K.; Zachariah, A.A.; Wehrens, X.H.; Deswal, A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J. Am. Coll. Cardiol. 2012, 59, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Martínez, A.D.; Muñoz Jiménez, C.; López Aguilera, J.; Crespin, M.C.; Manzano García, G.; Gálvez Moreno, M.; Calañas Continente, A.; Molina Puerta, M.J. Mediterranean Diet, Vitamin D, and Hypercaloric, Hyperproteic Oral Supplements for Treating Sarcopenia in Patients with Heart Failure—A Randomized Clinical Trial. Nutrients 2023, 16, 110. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, G.; Dos Santos, M.R.; de Souza, F.R.; Takayama, L.; Rodrigues Pereira, R.M.; Negrao, C.E.; Alves, M.d.N.N. Discriminating sarcopenia in overweight/obese male patients with heart failure: The influence of body mass index. ESC Heart Fail. 2020, 7, 84–91. [Google Scholar] [CrossRef]
- Bekfani, T.; Pellicori, P.; Morris, D.A.; Ebner, N.; Valentova, M.; Steinbeck, L.; Wachter, R.; Elsner, S.; Sliziuk, V.; Schefold, J.C.; et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int. J. Cardiol. 2016, 222, 41–46. [Google Scholar] [CrossRef]
- Canteri, A.L.; Gusmon, L.B.; Zanini, A.C.; Nagano, F.E.; Rabito, E.I.; Petterle, R.R.; Jonasson, T.H.; Boguszewski, C.L.; Borba, V.Z.C. Sarcopenia in heart failure with reduced ejection fraction. Am. J. Cardiovasc. Dis. 2019, 9, 116–126. [Google Scholar]
- Leon-Idougourram, S.; Perez-Gomez, J.M.; Munoz Jimenez, C.; L-López, F.; Manzano Garcia, G.; Molina Puertas, M.J.; Herman-Sánchez, N.; Alonso-Echague, R.; Continente, A.C.; Moreno, M.G.; et al. Morphofunctional and Molecular Assessment of Nutritional Status in Head and Neck Cancer Patients Undergoing Systemic Treatment: Role of Inflammasome in Clinical Nutrition. Cancers 2022, 14, 494. [Google Scholar] [CrossRef] [PubMed]
- Livshits, G.; Kalinkovich, A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res. Rev. 2019, 56, 100980. [Google Scholar] [CrossRef]
- Pietrobon, A.J.; Teixeira, F.M.E.; Sato, M.N. I mmunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front. Immunol. 2020, 11, 579220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; He, M.; Wang, J.; Wu, Y.; Li, Y. Immune system and sarcopenia: Presented relationship and future perspective. Exp. Gerontol. 2022, 164, 111823. [Google Scholar] [CrossRef]
- Laurentius, T.; Kob, R.; Fellner, C.; Nourbakhsh, M.; Bertsch, T.; Sieber, C.C.; Bollheimer, L.C. Long-Chain Fatty Acids and Inflammatory Markers Coaccumulate in the Skeletal Muscle of Sarcopenic Old Rats. Dis. Markers 2019, 2019, 9140789. [Google Scholar] [CrossRef]
- Custodero, C.; Mankowski, R.T.; Lee, S.A.; Chen, Z.; Wu, S.; Manini, T.M.; Echeverri, J.H.; Sabbà, C.; Beavers, D.P.; Cauley, J.A.; et al. Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2018, 46, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Cornish, S.M.; Cordingley, D.M.; Shaw, K.A.; Forbes, S.C.; Leonhardt, T.; Bristol, A.; Candow, D.G.; Chilibeck, P.D. Effects of Omega-3 Supplementation Alone and Combined with Resistance Exercise on Skeletal Muscle in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2221. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeon, J.H.; Lee, M.J. Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin-Proteasome and the Autophagy-Lysosome Systems. Nutrients 2020, 12, 2597. [Google Scholar] [CrossRef]
- Garcia Almeida, J.M.; Garcia Garcia, C.; Vegas Aguilar, I.M.; Bellido Castaneda, V.; Bellido Guerrero, D. Morphofunctional assessment of patient s nutritional status: A global approach. Nutr. Hosp. 2021, 38, 592–600. [Google Scholar]
- Herrera-Martínez, A.D.; León Idougourram, S.; Muñoz Jiménez, C.; Rodríguez-Alonso, R.; Alonso Echague, R.; Chica Palomino, S.; Sanz, A.S.; García, G.M.; Moreno, M.G.; Continente, A.C.; et al. Standard Hypercaloric, Hyperproteic vs. Leucine-Enriched Oral Supplements in Patients with Cancer-Induced Sarcopenia, a Randomized Clinical Trial. Nutrients 2023, 15, 2726. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar]
- Curcio, F.; Testa, G.; Liguori, I.; Papillo, M.; Flocco, V.; Panicara, V.; Galizia, G.; Della-Morte, D.; Gargiulo, G.; Cacciatore, F.; et al. Sarcopenia and Heart Failure. Nutrients 2020, 12, 211. [Google Scholar] [CrossRef]
- Vest, A.R.; Chan, M.; Deswal, A.; Givertz, M.M.; Lekavich, C.; Lennie, T.; Litwin, S.E.; Parsly, L.; Rodgers, J.E.; Rich, M.W.; et al. Nutrition, Obesity, and Cachexia in Patients with Heart Failure: A Consensus Statement from the Heart Failure Society of America Scientific Statements Committee. J. Card. Fail. 2019, 25, 380–400. [Google Scholar] [CrossRef]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and Cachexia in Heart Failure. JPEN J. Parenter Enter. Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef]
- Bonilla Palomas, J.L.; Gamez Lopez, A.L.; Moreno Conde, M.; Lopez Ibanez, M.C.; Castellano Garcia, P.; Raez Ruiz, C.J.; Quirós, R.R.; Ortega, E.R. Impact of malnutrition on long-term mortality in outpatients with chronic heart failure. Nutr. Hosp. 2017, 34, 1382–1389. [Google Scholar]
- Mishra, A.; Chaudhary, A.; Sethi, S. Oxidized omega-3 fatty acids inhibit NF-kappaB activation via a PPARalpha-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1621–1627. [Google Scholar] [CrossRef]
- Yee, L.D.; Lester, J.L.; Cole, R.M.; Richardson, J.R.; Hsu, J.C.; Li, Y.; Lehman, A.; Belury, M.A.; Clinton, S.K. Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition. Am. J. Clin. Nutr. 2010, 91, 1185–1194. [Google Scholar] [CrossRef]
- Borja-Magno, A.; Guevara-Cruz, M.; Flores-López, A.; Carrillo-Domínguez, S.; Granados, J.; Arias, C.; Perry, M.; Sears, B.; Bourges, H.; Gómez, F.E. Differential effects of high dose omega-3 fatty acids on metabolism and inflammation in patients with obesity: Eicosapentaenoic and docosahexaenoic acid supplementation. Front. Nutr. 2023, 10, 1156995. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Fuentes, N.R.; Hou, T.Y.; Barhoumi, R.; Li, X.C.; Deutz, N.E.P.; Engelen, M.P.K.J.; McMurray, D.N.; Chapkin, R.S. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA. Br. J. Nutr. 2018, 119, 163–175. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Deswal, A.; Petersen, N.J.; Feldman, A.M.; Young, J.B.; White, B.G.; Mann, D.L. Cytokines and cytokine receptors in advanced heart failure: An analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001, 103, 2055–2059. [Google Scholar] [CrossRef]
- Rauchhaus, M.; Doehner, W.; Francis, D.P.; Davos, C.; Kemp, M.; Liebenthal, C.; Niebauer, J.; Hooper, J.; Volk, H.-D.; Coats, A.J.S.; et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000, 102, 3060–3067. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rane, M. Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circ. Res. 2021, 128, 1728–1746. [Google Scholar] [CrossRef]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef]
- Kalogeropoulos, A.; Georgiopoulou, V.; Psaty, B.M.; Rodondi, N.; Smith, A.L.; Harrison, D.G.; Liu, Y.; Hoffmann, U.; Bauer, D.C.; Newman, A.B.; et al. Inflammatory markers and incident heart failure risk in older adults: The Health ABC (Health, Aging, and Body Composition) study. J. Am. Coll. Cardiol. 2010, 55, 2129–2137. [Google Scholar] [CrossRef]
- Hanberg, J.S.; Rao, V.S.; Ahmad, T.; Chunara, Z.; Mahoney, D.; Jackson, K.; Jacoby, D.; Chen, M.; Wilson, F.P.; Tang, W.H.W.; et al. Inflammation and cardio-renal interactions in heart failure: A potential role for interleukin-6. Eur. J. Heart Fail. 2018, 20, 933–934. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Tromp, J.; Ouwerkerk, W.; Devalaraja, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.S.; van der Harst, P.; Lang, C.C.; et al. The clinical significance of interleukin-6 in heart failure: Results from the BIOSTAT-CHF study. Eur. J. Heart Fail. 2019, 21, 965–973. [Google Scholar] [CrossRef]
- Alogna, A.; Koepp, K.E.; Sabbah, M.; Espindola Netto, J.M.; Jensen, M.D.; Kirkland, J.L.; Lam, C.S.; Obokata, M.; Petrie, M.C.; Ridker, P.M.; et al. Interleukin-6 in Patients with Heart Failure and Preserved Ejection Fraction. JACC Heart Fail. 2023, 11, 1549–1561. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, B.; Li, X.; Hui, H.; Zhou, Y.; Li, N.; Xie, X. n-3 PUFA can reduce IL-6 and TNF levels in patients with cancer. Br. J. Nutr. 2023, 129, 54–65. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Belury, M.A.; Andridge, R.; Malarkey, W.B.; Hwang, B.S.; Glaser, R. Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: A randomized controlled trial. Brain Behav. Immun. 2012, 26, 988–995. [Google Scholar] [CrossRef]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Moreno Velásquez, I.; Gajulapuri, A.; Leander, K.; Berglund, A.; de Faire, U.; Gigante, B. Serum IL8 is not associated with cardiovascular events but with all-cause mortality. BMC Cardiovasc. Disord. 2019, 19, 34. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Garcia-Gonzalez, M.; Ferrer, J. Prognostic value of interleukin-8 as a predictor of heart failure in patients with myocardial infarction and percutaneous intervention. Int. J. Cardiol. 2006, 111, 158–160. [Google Scholar] [CrossRef]
- Kim, C.S.; Park, H.S.; Kawada, T.; Kim, J.H.; Lim, D.; Hubbard, N.E.; Kwon, B.-S.; Erickson, K.L.; Yu, R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int. J. Obes. 2006, 30, 1347–1355. [Google Scholar] [CrossRef]
- Straczkowski, M.; Dzienis-Straczkowska, S.; Stêpieñ, A.; Kowalska, I.; Szelachowska, M.; Kinalska, I. Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. J. Clin. Endocrinol. Metab. 2002, 87, 4602–4606. [Google Scholar] [CrossRef]
- Parshyna, I.; Lehmann, S.; Grahl, K.; Pahlke, C.; Frenzel, A.; Weidlich, H.; Morawietz, H. Impact of omega-3 fatty acids on expression of angiogenic cytokines and angiogenesis by adipose-derived stem cells. Atheroscler. Suppl. 2017, 30, 303–310. [Google Scholar] [CrossRef]
- Namiki, M.; Kawashima, S.; Yamashita, T.; Ozaki, M.; Hirase, T.; Ishida, T.; Inoue, N.; Hirata, K.-I.; Matsukawa, A.; Morishita, R.; et al. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: Synergism with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 115–120. [Google Scholar] [CrossRef]
- Ylä-Herttuala, S.; Lipton, B.A.; Rosenfeld, M.E.; Särkioja, T.; Yoshimura, T.; Leonard, E.J.; Witztum, J.L.; Steinberg, D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 1991, 88, 5252–5256. [Google Scholar] [CrossRef]
- Deo, R.; Khera, A.; McGuire, D.K.; Murphy, S.A.; Meo Neto, J.e.P.; Morrow, D.A.; de Lemos, J.A. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J. Am. Coll. Cardiol. 2004, 44, 1812–1818. [Google Scholar] [CrossRef]
- Panee, J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012, 60, 1–12. [Google Scholar] [CrossRef]
- Herder, C.; Baumert, J.; Thorand, B.; Martin, S.; Löwel, H.; Kolb, H.; Koenig, W. Chemokines and incident coronary heart disease: Results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2147–2152. [Google Scholar] [CrossRef]
- de Lemos, J.A.; Morrow, D.A.; Sabatine, M.S.; Murphy, S.A.; Gibson, C.M.; Antman, E.M.; McCabe, C.H.; Cannon, C.P.; Braunwald, E. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 2003, 107, 690–695. [Google Scholar] [CrossRef]
- Blanco-Colio, L.M.; Méndez-Barbero, N.; Pello Lázaro, A.M.; Aceña, Á.; Tarín, N.; Cristóbal, C.; Martínez-Milla, J.; González-Lorenzo, Ó.; Martín-Ventura, J.L.; Huelmos, A.; et al. MCP-1 Predicts Recurrent Cardiovascular Events in Patients with Persistent Inflammation. J. Clin. Med. 2021, 10, 1137. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Li, W.; Kang, Y.; Xu, Z.; Li, X.; Gao, Y.; Qi, Y. MAPKs/AP-1, not NF-κB, is responsible for MCP-1 production in TNF-α-activated adipocytes. Adipocyte 2022, 11, 477–486. [Google Scholar] [CrossRef]
- Altara, R.; Mallat, Z.; Booz, G.W.; Zouein, F.A. The CXCL10/CXCR3 Axis and Cardiac Inflammation: Implications for Immunotherapy to Treat Infectious and Noninfectious Diseases of the Heart. J. Immunol. Res. 2016, 2016, 4396368. [Google Scholar] [CrossRef]
- Safa, A.; Rashidinejad, H.R.; Khalili, M.; Dabiri, S.; Nemati, M.; Mohammadi, M.M.; Jafarzadeh, A. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine 2016, 83, 147–157. [Google Scholar] [CrossRef]
- Sopova, K.; Tual-Chalot, S.; Mueller-Hennessen, M.; Vlachogiannis, N.I.; Georgiopoulos, G.; Biener, M.; Sachse, M.; Turchinovich, A.; Polycarpou-Schwarz, M.; Spray, L.; et al. Effector T cell chemokine IP-10 predicts cardiac recovery and clinical outcomes post-myocardial infarction. Front. Immunol. 2023, 14, 1177467. [Google Scholar] [CrossRef]
- Schwager, J.; Bompard, A.; Raederstorff, D.; Hug, H.; Bendik, I. Resveratrol and ω-3 PUFAs Promote Human Macrophage Differentiation and Function. Biomedicines 2022, 10, 1524. [Google Scholar] [CrossRef]
Characteristics | Total (n = 38) |
---|---|
Sex (♂/♀) | 71.10%/28.90% (11/27) |
Age (years) | 66.71 ± 13 |
Tobacco exposure (%) | |
No | 57.89 (22/38) |
Active | 18.42 (7/38) |
Previous exposure | 23.68 (9/38) |
Type 2 Diabetes (%) | 42.11 (16/38) |
Previous ischaemic cardiomyopathy (%) | 34.21 (13/38) |
Ejection fraction (%) | 38.50 ± 16 |
NT-proBNP (pg/mL) | 5768 ± 6646 |
Current weight (Kg) | 68.51 ± 13.5 |
Symptoms | |
Weight loss (3 months, %) | 55.26 (21/38) |
Weight loss Kg (3 months) | 2.43 ± 2.7 |
Weight loss (6 months, %) | 28.94 (11/38) |
Weight loss Kg (6 months) | 1.72 ± 3 |
Uncomplete denture (%) | 63.16 (24/38) |
Food intake (%) | |
Soft | 7.89 (3/38) |
Normal | 92.11 (35/38) |
Gastrointestinal symptoms (%) | 15.79 (6/38) |
Abdominal pain | 10.53 (4/38) |
Nauseas/vomits | 5.26 (2/38) |
Diarrhea | 5.26 (2/38) |
Body lesions | 0 |
Dyspnea | 78.94 (30/38) |
Malnutrition (%) | 23.68 (9/38) |
Sarcopenia (%) | 65.79 (25/38) |
Physical activity (%) | |
Intense | 0 |
Moderate | 18.42 (7/38) |
Resting time (hours/day) | 8 ± 4 |
Quality of life | |
Self-rated health score | 69 ± 22 |
Total | |||
---|---|---|---|
Characteristics | Baseline (n = 38) | Six Months (n = 32) | p |
Body weight | 77.81 ± 16.11 | 79.62 ± 17.21 | 0.02 |
Bioimpedance analysis | |||
BMI (Kg/m2) | 28.40 ± 4.74 | 29.30 ± 4.51 | 0.02 |
BCMe | 36.31 ± 7.33 | 36.31 ± 7.41 | 0.67 |
ECMe | 25.82 ± 4.71 | 27.11 ± 4.83 | 0.24 |
Fat mass (%) | 26.20 ± 2.22 | 27.60 ± 1.81 | 0.19 |
Fat mass (Kg) | 21 ± 10 | 28.10 ± 6.71 | 0.07 |
Lean mass (%) | 70.01 ± 8.80 | 69.01 ± 8.62 | 0.35 |
Lean mass (Kg) | 54.21 ± 10.13 | 54.41 ± 10.32 | 0.30 |
Water (%) | 52.19 ± 7.04 | 51.01 ± 6.23 | 0.43 |
Water (Kg) | 40 ± 8.44 | 52.9 ± 10.90 | 0.40 |
Bone Mass (Kg) | 2.89 ± 0.51 | 3.82 ± 0.81 | 0.52 |
Phase angle | 5.03 ± 2.32 | 4.92 ± 1.94 | 0.80 |
Anthropometric evaluation | |||
Abdominal circumference | 104.38 ± 12.02 | 105.26 ± 13.94 | 0.90 |
Arm circumference | 29.89 ± 3.81 | 30.10 ± 3.51 | 0.49 |
Calf circumference | 37 ± 4.80 | 37.30 ± 3.53 | 0.53 |
RF-Muscle Ultrasound | |||
Adipose tissue (cm) | 0.81 ± 0.41 | 0.78 ± 0.13 | 0.53 |
Area (cm2) | 3.72 ± 2 | 3.10 ± 1.52 | 0.19 |
Circumference (cm) | 8.63 ± 2 | 8.27 ± 1.31 | 0.42 |
AP axis (cm) | 1.13 ± 0.61 | 1.08 ± 0.23 | 0.20 |
Transversal axis (cm) | 3.71 ± 0.91 | 3.56 ± 0.40 | 0.42 |
Abdominal Ultrasound | |||
Total adipose tissue (cm) | 2.33 ± 0.22 | 2.52 ± 1.11 | 0.87 |
Subcutaneous adipose tissue (cm) | 2.71 ± 0.12 | 1.73 ± 0.82 | 0.53 |
Preperitoneal fat (cm) | 0.71 ± 0.31 | 0.74 ± 0.12 | 0.37 |
Functional evaluation | |||
Handgrip strenght (dominant arm, Kg) | 31.02 ± 11.51 | 30.81 ± 13.81 | 0.71 |
Up and go test (seconds) | 21.54 ± 9.0 | 12.12 ± 4.22 | <0.001 |
Biochemical parameters | |||
Haemoglobin | 13.98 ± 1.8 | 14.4 ± 1.49 | 0.03 |
Lymphocytes | 1827 ± 611 | 96.5 ± 14.46 | 0.13 |
Albumin (g/dL) | 4.51 ± 0.52 | 27 ± 5 | 0.30 |
Prealbumin (mg/dL) | 24.45 ± 6.43 | 36.52 ± 3.50 | 0.55 |
Ferritin (mg/dL) | 124.02 ± 99.21 | 86.13 ± 77.42 | <0.01 |
Transferrin (mg/dL) | 254 ± 51.94 | 223 ± 34.67 | 0.12 |
Total cholesterol (mg/dL) | 163 ± 46 | 164 ± 46 | 0.72 |
HDL cholesterol (mg/dL) | 47 ± 13 | 52 ± 19 | 0.17 |
LDL cholesterol (mg/dL) | 87 ± 39 | 83 ± 21 | 0.12 |
Triglycerides (mg/dL) | 235.11 ± 52.03 | 123 ± 55.34 | <0.001 |
CRP (mg/L) | 8.54 ± 14.98 | 2.82 ± 4.81 | 0.02 |
NT-proBNP (pg/mL) | 3225 ± 3882 | 1300 ± 1226 | <0.01 |
Vitamin D (ng/dL) | 19.50 ± 10.33 | 23.95 ± 13.12 | 0.08 |
Variable | OR | CI | p | |
---|---|---|---|---|
Mortality | Baseline IL-6 | 0.98 | 0.93–1.05 | 0.66 |
Baseline IL-8 | 1.00 | 0.90–1.00 | 0.76 | |
Baseline MCP-1 | 1.01 | 1.01–1.02 | 0.03 | |
Baseline IP-10 | 1.00 | 0.99–1.00 | 0.73 | |
Baseline IL-6 + MCP-1 | 1.01 | 1.01–1.02 | 0.04 | |
Baseline CRP | 0.99 | 0.94–1.06 | 0.98 | |
New hospital admissions | Baseline IL-6 | 1.01 | 0.98–1.05 | 0.23 |
Baseline IL-8 | 0.99 | 0.99–1.00 | 0.58 | |
Baseline MCP-1 | 1.00 | 0.99–1.01 | 0.55 | |
Baseline IP-10 | 1.00 | 0.99–1.00 | 0.66 | |
Baseline CRP | 1.01 | 0.97–1.06 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Martínez, A.D.; Jiménez, C.M.; Romo, A.N.; Aguilera, J.L.; Crespin, M.C.; Baena, B.T.; Casado-Díaz, A.; Moreno, M.Á.G.; Puerta, M.J.M.; Roger, A.J. Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure. Nutrients 2024, 16, 1637. https://doi.org/10.3390/nu16111637
Herrera-Martínez AD, Jiménez CM, Romo AN, Aguilera JL, Crespin MC, Baena BT, Casado-Díaz A, Moreno MÁG, Puerta MJM, Roger AJ. Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure. Nutrients. 2024; 16(11):1637. https://doi.org/10.3390/nu16111637
Chicago/Turabian StyleHerrera-Martínez, Aura D., Concepción Muñoz Jiménez, Ana Navas Romo, José López Aguilera, Manuel Crespin Crespin, Bárbara Torrecillas Baena, Antonio Casado-Díaz, María Ángeles Gálvez Moreno, María José Molina Puerta, and Aurora Jurado Roger. 2024. "Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure" Nutrients 16, no. 11: 1637. https://doi.org/10.3390/nu16111637
APA StyleHerrera-Martínez, A. D., Jiménez, C. M., Romo, A. N., Aguilera, J. L., Crespin, M. C., Baena, B. T., Casado-Díaz, A., Moreno, M. Á. G., Puerta, M. J. M., & Roger, A. J. (2024). Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure. Nutrients, 16(11), 1637. https://doi.org/10.3390/nu16111637