Enteral Nutrition in Operated-On Gastric Cancer Patients: An Update
Abstract
:1. Introduction
2. Gastrectomy for Gastric Cancer: Clinical Consequences and Treatment
2.1. Weight Loss
2.2. Cachexia
2.3. Sarcopenia
2.4. Maldigestion and Malabsorption
2.5. Vitamin B12 Deficiency
2.6. Calcium and Vitamin D Deficiency
2.7. Iron Deficiency and Anemia
2.8. Bone Disease
2.9. Postgastrectomy Syndromes (Dumping Syndrome)
3. Evaluation of the Nutritional Status of Gastric Cancer Patients
3.1. Biochemical Factors
3.2. Anthropometric Parameters
3.3. Skinfold Thickness (SFT)
3.4. Mid Arm Circumference
3.5. Screening Tools and Questionnaires
3.5.1. Nutritional Risk Screening 2002 (NRS)
3.5.2. Malnutrition Screening Tool (MST)
3.5.3. Patient-Generated Subjective Global Assessment (PG-SGA)
3.6. Prognostic Nutritional Index
3.7. Short Nutritional Assessment Questionnaire (SNAQ)
3.8. Other Tools
4. Enteral Nutrition (EN)
4.1. Perioperative (Pre and Post) Enteral Nutrition of Patients Operated on for Gastric Cancer
Author/ Year/Citation | Number of Pts & Controls | Groups | Clinical Outcome/ Hospital Stay | Conclusion |
---|---|---|---|---|
Barlow et al., 2011 [57] | 121 (38GC, 29PC, 54EC) | EN vs. controls (nil by mouth) | 16 days vs. 19 days | Potential benefit of early oral nutrition. |
Hur H et al., 2011 [56] | 58 | Early EN vs. Late EN | Significant differences were noticed | Early oral feeding: shorter hospitalization. Improved QoL, (early postoperative period). |
Yao K et al., 2013 [63] | Total number of pts: 77 Group A: 42 Group B: 35 | TPN vsEEN by tubes (250–500 mL 5% NaCl and glucose IV for 24 h followed by EN emulsion from 48 h, and then total EN) | Insulin resistance was present early (days 1 to 7) in GC pts. Significant differences between pts who were operated on and those who had not were found. Insulin sensitivity: higher in group B vs. group A. | EEN alleviates insulin resistance in operated-on GC pts. |
Mahmood-zadeh H, et al., 2015 [62] | 109 pts | Group A (EOF): (1st postoperative day). Group B (LOF): (Nil by mouth until the return of bowel sounds) | Better clinical outcomes in the EOF group. More common rehospitalization in the LOF group. Gas passage, nasogastric tube discharge, time to start a soft diet, and hospital discharge: earlier in the EOF group. | EOF is safe. EOF is associated with favorable early in-hospital outcomes. EOF is associated with a shorter hospital stay. |
Ding D, et al., 2015 [61] | 106 pts of GC. | Trial group: preoperative one week EN. Control group: early postoperative EN group | PA and IgG levels of the trial group were higher vs. the control group on the postoperative 10th day. IL-6 level of the trial group: lower vs. control group. | EN support improves the postoperative nutritional status and immune function, alleviates inflammatory response, and facilitates recovery. |
Wang F, et al., 2015 [60] | 200 pts of GC. | Study group: EN starting 1 week before surgery. Control group: EN starting early after surgery. | No differences in: Time of passage of gas, abdominal distension, blood glucose, hepatic and renal function. Albumin and prealbumin levels decreased 1 day after the operation. IgG: higher in the study group Inflammation indices: lower in the study group. | Preoperative EN support improves postoperative nutritional status and immune function and reduces inflammatory response. |
Li B. et al., 2015 [54] | 400 pts. 200 in the experimental and 200 in the control group. | Control group: Postoperative parenteral nutrition (PN). Experimental group: Postoperative EN. | Postoperative fever time, intestinal function recovery time, anal exhaust time, and the length of hospital stay for patients in the experimental group: Shorter vs. control group. Activities of multiple immune cell types: Lower in both groups when compared with preoperative levels. | After EEN of pts undergoing radical resection for GC, the clinical outcome, immune function, and nutritional status were significantly improved |
Kobayashi D et al., 2017 [70] | 82 eligible pts operated on for GC | Racol® NF at a dose of 400 kcal/400 mL/d was started within 7 days postoperatively. Continued for 3 months. | Adherence to Racol® NF therapy was the only factor that correlated with the body weight loss ratio among all clinical characteristics | Racol® NF supplementation: significant reduction in body weight loss for pts who tolerated >200 mL/d. |
Zhao R et al., 2017 [69] | 120 pts | Group A: Fiber-free (FF) group, n = 40), Group B: Fiber-enriched (FE) group, n = 40, Group C: Fiber & probiotic-enriched (FPE) group, n = 40. Postoperative EN: 7 days in all pts | Diarrhea cases: Higher in FF vs. FE group & lower in FEP vs. FE group. First flatus time: Shorter in FE vs. FF group No differences between the FE and FEP groups. Intestinal disorder cases: Lower in FEP vs. FF group LOHS: Shorter in the FE and FEP vs. FF group. | The combination of fiber and probiotics was significantly effective in Treating diarrhea that is associated with EN in postoperative pts with GC. |
Martos-Benítez FD et al., 2018 [68] | Prospective study. 465 pts submitted to GI surgery for cancer and admitted to an oncological ICU | General rules: Pain relief, early mobilization, antibiotic and deep vein thrombosis prophylaxis, respiratory physiotherapy. GI rules: Gastric protection, control of postoperative nausea, early removal of the nasogastric tube, EN | Reduction in major complications, respiratory and infectious complications, GI complications, delirium, ICU mortality, length of ICU stay, length of hospitalization. | The program of GI rehabilitation and early postoperative EN is associated with reduced postoperative complications and improved clinical outcomes in pts undergoing GI surgery for cancer. |
Shimizu N et al., 2018 [72] | Pts who underwent DG or TG for GC | Intervention group (EOF) vs. Control group (conventional postoperative management) for DG or TG. | No significant differences in LHS between EOF and the control group (pts with DG). Incidence of postoperative complications: greater in the DG EOF group. In contrast, the LHS was shorter in the TG EOF group. | EOF did not shorten the postoperative hospital stay after DG. The higher incidence of postoperative complications precluded the unselected adoption of EOF for DG pts. |
Kimura Y et al., 2019 [71] | 106 pts | Control group: Regular diet alone postgastrectomy. ED group: 300 kcal ED plus regular diet for 6–8 weeks on postoperative BWL. | BWL 1 year postoperatively: Lower in the ED group than in the control group among pts undergoing TG, but not in patients who underwent DG. Multivariate analysis: ED is the only factor affecting BWL (pts who underwent TG). | Daily nutritional intervention for 6–8 weeks reduced BWL postoperatively and at 1 year in pts who underwent TG. |
Miyalazi Y et al., 2021 [67] | 1003 GC pts. BWL data were available in 880 pts (ONS 437, control 443) | Pts were assigned to the ONS or the control group. In the former, 400 mL (400 kcal)/d for 12 weeks as EN was planned, and the actual intake amount was recorded daily by the pts. | After 3 months: BWL: lower in the ONS group vs. control group After 6 months: Difference gradually declined. After 1 year: BWL not significant ONS group: 50.4% of pts took >200 mL/d of ONS and showed less BWL at 1 year than the control | ONS for 12 weeks after gastrectomy did not improve BWL at 1 year. The improvement in BWL remained until 1 year after surgery in pts who took more than 200 kcal/d of ONS. |
Meng Q et al., 2021 [66] | 353 pts at nutritional risk (171 in the ONS group and 166 in the control group) | ONS with dietary advice or dietary advice alone (control) for 3 months after discharge. | After 3 months: ONS and dietary advice group: Less weight loss and higher BMI and SMI vs. dietary advice alone. Sarcopenia: Lower in the ONS group vs. control group. Postoperative chemotherapy in ONS and dietary advice group: Fewer chemotherapy modifications. | The findings strongly support the concept of the introduction of postdischarge ONS with dietary advice to this patient cohort. |
He FJ et al., 2022 [65] | 66 pts completed the trial (31 in the ONS group, and 35 in the DA group. | Preoperative ONS group vs. DA group. Both groups were fed via NJs (1st day to the 5th day after surgery). | FI rate in the ONS group: Lower than that in the DA group. The postoperative 5-day 50% energy compliance rate in the ONS group was higher than that in the DA group. | Short-term preoperative ONS cannot improve FI and the energy compliance rate in the early stage after radical gastrectomy. |
Okamoto Y et al., 2023 [64] | 19 pts | Pts were assigned to: PN group and EAN group (for 7 days after surgery). | No differences in: Postoperative complications, LHS, oral intake, BW. Serum arginine levels: similar. Nitrogen balance: Negative up to postoperative day 7 in the PN group and neutral in the EAN group. | Arginine-rich EEN could improve the nitrogen balance after total gastrectomy. |
4.2. Nutrition in GC Patients Undergoing Chemotherapy
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, B.; Zhang, J.; Zhang, J.; Zou, S.; Luo, R.; Xu, H.; Huang, B. The impact of preoperative underweight status on postoperative complication and survival outcome of gastric cancer patients: A systematic review and meta-analysis. Nutr. Cancer 2018, 70, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.C.; Deutz, N.E.P.; Erickson, N.; Laviano, A.; Lisanti, M.P.; Lobo, D.N.; et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 2017, 36, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Hébuterne, X.; Lemarié, E.; Michallet, M.; de Montreuil, C.B.; Schneider, S.M.; Goldwasser, F. Prevalence of malnutrition and current use of nutrition support in patients with cancer. JPEN J. Parenter. Enter. Nutr. 2014, 38, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.W.; Kim, I.H. Comparison of different nutritional assessments in detecting malnutrition among gastric cancer patients. World J. Gastroenterol. 2010, 16, 3310–3317. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Wang, T.J.; Huang, C.S.; Liang, S.Y.; Yu, C.H.; Lin, T.R.; Wu, K.F. Nutritional Status and Related Factors in Patients with Gastric Cancer after Gastrectomy: A Cross-Sectional Study. Nutrients 2022, 14, 2634. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Park, J.M.; Song, K.Y.; Choi, M.G.; Park, C.H. Survival impact of postoperative body mass index in gastric cancer patients undergoing gastrectomy. Eur. J. Cancer 2016, 52, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.Q.; Yu, J.M.; Li, W.; Fu, Z.M.; Lin, Y.; Shi, Y.Y.; Hu, W.; Ba, Y.; Li, S.Y.; Li, Z.N.; et al. Survey and analysis of the nutritional status in hospitalized patients with malignant gastric tumors and its influence on the quality of life. Support. Care Cancer 2020, 28, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Tsujiura, M.; Hiki, N.; Ohashi, M.; Nunobe, S.; Kumagai, K.; Ida, S.; Hayami, M.; Sano, T.; Yamaguchi, T. Excellent long-term prognosis and favorable postoperative nutritional status after laparoscopic pylorus-preserving gastrectomy. Ann. Surg. Oncol. 2017, 24, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Min, J.S.; Information Committee of the Korean Gastric Cancer Association. Comparison of complications between laparoscopic and open gastrectomies for early gastric cancer by a nationwide propensity score-matched cohort study. Sci. Rep. 2023, 13, 18970. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Yoshikawa, T.; Hayashi, T.; Hasegawa, S.; Tsuchida, K.; Yamada, T.; Cho, H.; Ogata, T.; Fujikawa, H.; Yukawa, N.; et al. Randomized comparison of surgical stress and the nutritional status between laparoscopy-assisted and open distal gastrectomy for gastric cancer. Ann. Surg. Oncol. 2014, 21, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.N.; Chen, X.Z.; Zhang, W.H.; Yang, K.; Chen, X.L.; Zhang, B.; Chen, Z.X.; Chen, J.P.; Zhou, Z.G.; Hu, J.K. The impact of body mass index on the surgical outcomes of patients with gastric cancer: A 10-year, single-institution cohort study. Medicine 2015, 94, e1769. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Li, H.R.; Zhang, W.H.; Liu, K.; Zhang, D.Y.; Sun, L.F.; Chen, X.L.; Zhao, L.Y.; Chen, X.Z.; Yang, K.; et al. Visceral Fat Area (VFA) Superior to BMI for Predicting Postoperative Complications After Radical Gastrectomy: A Prospective Cohort Study. J. Gastrointest. Surg. 2020, 24, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liang, H.; Deng, J.; Ding, X.; Pan, Y.; Wang, X.; Wang, B.; Wu, L.; Jiang, N. The impact of preoperative weight loss for gastric cancer patients after gastrectomy. Zhonghua Wai Ke Za Zhi 2014, 52, 409–414. [Google Scholar] [PubMed]
- Fukahori, M.; Shibata, M.; Hamauchi, S.; Kasamatsu, E.; Machii, K. A retrospective cohort study to investigate the incidence of cancer-related weight loss during chemotherapy in gastric cancer patients. Support. Care Cancer 2021, 29, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Karuppannan, M.; Muthanna, F.M.S.; Mohd Fauzi, F. Breaking Down Cachexia: A Narrative Review on the Prevalence of Cachexia in Cancer Patients and Its Associated Risk Factors. Nutr. Cancer 2024, 76, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.L.; Shen, X.; Zou, H.B.; Dong, Q.T.; Cai, H.Y.; Chen, X.L.; Yu, Z.; Wang, S.L. EWGSOP2 versus EWGSOP1 for sarcopenia to predict prognosis in patients with gastric cancer after radical gastrectomy: Analysis from a large-scale prospective study. Clin. Nutr. 2020, 39, 2301–2310. [Google Scholar] [CrossRef] [PubMed]
- Lidoriki, I.; Schizas, D.; Mpaili, E.; Vailas, M.; Sotiropoulou, M.; Papalampros, A.; Misiakos, E.; Karavokyros, I.; Pikoulis, E.; Liakakakos, T. Associations between skeletal muscle mass index, nutritional and functional status of patients with oesophago-gastric cancer. Clin. Nutr. ESPEN 2019, 34, 61–67. [Google Scholar] [CrossRef]
- Sakurai, K.; Kubo, N.; Tamura, T.; Toyokawa, T.; Amano, R.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Maeda, K.; Hirakawa, K.; et al. Adverse effects of low preoperative skeletal muscle mass in patients undergoing gastrectomy for gastric cancer. Ann. Surg. Oncol. 2017, 24, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Kamarajah, S.K.; Bundred, J.; Tan, B.H.L. Body composition assessment and sarcopenia in patients with gastric cancer: A systematic review and meta-analysis. Gastric Cancer 2019, 22, 10–22, Erratum in Gastric Cancer 2019, 22, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Park, K.B.; Kwon, O.K.; Yu, W. Midterm body composition changes after open distal gastrectomy for early gastric cancer. Ann. Surg. Treat. Res. 2018, 95, 192–200. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nagatsuma, Y.; Fukuda, Y.; Hirao, M.; Nishikawa, K.; Miyamoto, A.; Ikeda, M.; Nakamori, S.; Sekimoto, M.; Fujitani, K.; et al. Effectiveness of a preoperative exercise and nutritional support program for elderly sarcopenic patients with gastric cancer. Gastric Cancer 2017, 20, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Ahn, S.H.; Lee, J.H.; Park, D.J.; Lee, H.J.; Kim, H.H.; Yang, H.K. Comparative study of diabetes mellitus resolution according to reconstruction type after gastrectomy in gastric cancer patients with diabetes mellitus. Obes. Surg. 2012, 22, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Straatman, J.; Wiegel, J.; van der Wielen, N.; Jansma, E.P.; Cuesta, M.A.; van der Peet, D.L. Systematic Review of Exocrine Pancreatic Insufficiency after Gastrectomy for Cancer. Dig. Surg. 2017, 34, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Antonini, F.; Crippa, S.; Falconi, M.; Macarri, G.; Pezzilli, R. Pancreatic enzyme replacement therapy after gastric resection: An update. Dig. Liver Dis. 2018, 50, 1–5. [Google Scholar] [CrossRef]
- González-Sánchez, V.; Amrani, R.; González, V.; Trigo, C.; Picó, A.; de-Madaria, E. Diagnosis of exocrine pancreatic insufficiency in chronic pancreatitis: 13C-Mixed Triglyceride Breath Test versus Fecal Elastase. Pancreatology 2017, 17, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Catarci, M.; Berlanda, M.; Grassi, G.B.; Masedu, F.; Guadagni, S. Pancreatic enzyme supplementation after gastrectomy for gastric cancer: A randomized controlled trial. Gastric Cancer 2018, 21, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, R.P.; Yacob, M.; Chowdhury, S.D.; Balasubramanian, K.A.; Samarasam, I. Exocrine pancreatic insufficiency following gastric resectional surgery-is routine pancreatic enzyme replacement therapy necessary? Indian J. Surg. Oncol. 2021, 12, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Grace, E.; Shaw, C.; Whelan, K.; Andreyev, H.J. Review article: Small intestinal bacterial overgrowth—Prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment. Pharmacol. Ther. 2013, 38, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, M.; Miceli, E.; Missanelli, A.; Mazzocchi, S.; Corazza, G.R. Absorbable vs. non-absorbable antibiotics in the treatment of small intestine bacterial overgrowth in patients with blind-loop syndrome. Aliment. Pharmacol. Ther. 2005, 21, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kim, H.I.; Hyung, W.J.; Song, K.J.; Lee, J.H.; Kim, Y.M.; Noh, S.H. Vitamin B(12) deficiency after gastrectomy for gastric cancer: An analysis of clinical patterns and risk factors. Ann. Surg. 2013, 258, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S.; Kawamoto, T.; Otsuka, M.; Todoroki, T.; Fukao, K. Enteral vitamin B12 supplements reverse postgastrectomy B12 deficiency. Ann. Surg. 2000, 232, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Hyung, W.J.; Song, K.J.; Choi, S.H.; Kim, C.B.; Noh, S.H. Oral vitamin B12 replacement: An effective treatment for vitamin B12 deficiency after total gastrectomy in gastric cancer patients. Ann. Surg. Oncol. 2011, 18, 3711–3717. [Google Scholar] [CrossRef] [PubMed]
- Muszyński, T.; Polak, K.; Frątczak, A.; Miziołek, B.; Bergler-Czop, B.; Szczepanik, A. Vitamin D-the nutritional status of post-gastrectomy gastric cancer patients-systematic review. Nutrients 2022, 14, 2712. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Villar, I.; García-Erce, J.A. An update on iron physiology. World J. Gastroenterol. 2009, 15, 4617–4626. [Google Scholar] [CrossRef]
- Imamura, T.; Komatsu, S.; Ichikawa, D.; Kosuga, T.; Okamoto, K.; Konishi, H.; Shiozaki, A.; Fujiwara, H.; Otsuji, E. Reconstruction method as an independent risk factor for the postoperative decrease in hemoglobin in stage I gastric cancer. J. Gastroenterol. Hepatol. 2016, 31, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Yoon, B.H.; Ha, Y.C.; Suh, D.C.; Lee, S.M.; Koo, K.H.; Lee, Y.K. The change of bone mineral density and bone metabolism after gastrectomy for gastric cancer: A meta-analysis. Osteoporos. Int. 2020, 31, 267–275. [Google Scholar] [CrossRef]
- Scarpellini, E.; Arts, J.; Karamanolis, G.; Laurenius, A.; Siquini, W.; Suzuki, H.; Ukleja, A.; Van Beek, A.; Vanuytsel, T.; Bor, S.; et al. International consensus on the diagnosis and management of dumping syndrome. Nat. Rev. Endocrinol. 2020, 16, 448–466. [Google Scholar] [CrossRef] [PubMed]
- Mine, S.; Sano, T.; Tsutsumi, K.; Murakami, Y.; Ehara, K.; Saka, M.; Hara, K.; Fukagawa, T.; Udagawa, H.; Katai, H. Large-scale investigation into dumping syndrome after gastrectomy for gastric cancer. J. Am. Coll. Surg. 2010, 211, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zhou, L.; Balde, A.I.; Li, Z.; He, L.; ZhenWei, C.; Zou, Z.; Huang, S.; Han, S.; Wei Zhou, M.; et al. Prognostic impact of preoperative prognostic nutritional index in resected advanced gastric cancer: A multicenter propensity score analysis. Eur. J. Surg. Oncol. 2019, 45, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, A.; Spolverato, G.; Kim, Y.; Poultsides, G.A.; Fields, R.C.; Bloomston, M.; Cho, C.S.; Votanopoulos, K.; Maithel, S.K.; Pawlik, T.M. Impact of body mass index on perioperative outcomes and survival after resection for gastric cancer. J. Surg. Res. 2015, 195, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ou, G.; Li, X.; Huang, J.; Liu, J.; Wei, H. Screening of the nutritional risk of patients with gastric carcinoma before operation by NRS 2002 and its relationship with postoperative results. J. Gastroenterol. Hepatol. 2010, 25, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Zhang, X.Z.; Ma, B.W.; Li, B.; Zhou, D.L.; Liu, Z.C.; Chen, X.L.; Shen, X.; Yu, Z.; Zhuang, C.L. A comparison of four common malnutrition risk screening tools for detecting cachexia in patients with curable gastric cancer. Nutrition 2020, 70, 110498. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.W.; Youn, J.; Kim, E.M.; Choi, M.G.; Lee, J.E. Associations of patient-generated subjective global assessment (PG-SGA) and NUTRISCORE with survival in gastric cancer patients: Timing matters, a retrospective cohort study. BMC Gastroenterol. 2022, 22, 468. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, T.; Ninomiya, M.; Maeda, T.; Matsukuma, A.; Nakashima, H.; Ezaki, T. Prognostic nutritional index: A tool to predict the biological aggressiveness of gastric carcinoma. Surg. Today 2010, 40, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Ohira, M.; Tamura, T.; Toyokawa, T.; Amano, R.; Kubo, N.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Maeda, K.; et al. Predictive potential of preoperative nutritional status in long-term outcome projections for patients with gastric cancer. Ann. Surg. Oncol. 2016, 23, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Okagaki, M.; Neriya, H.; Yoshii, K.; Sekido, K.; Higashi, A. Short Nutritional Assessment Questionnaire as a predictor of undernutrition in cancer patients receiving outpatient chemotherapy: A retrospective study. Eur. J. Oncol. Nurs. 2021, 54, 102013. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.Z.; Fu, Z.M.; Zhang, Q.; Song, M.M.; Ruan, G.T.; Zhang, X.; Zhang, X.W.; Li, X.R.; Zhang, K.P.; Tang, M.; et al. AIWW: A new nutrition-screening tool for the oncologic population. Sci. China Life Sci. 2023, 66, 1831–1840. [Google Scholar] [CrossRef] [PubMed]
- Cheung, H.H.T.; Joynt, G.M.; Lee, A. Diagnostic test accuracy of preoperative nutritional screening tools in adults for malnutrition: A systematic review and network meta-analysis. Int. J. Surg. 2024, 110, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Kuzu, M.A.; Terzioğlu, H.; Genç, V.; Erkek, A.B.; Ozban, M.; Sonyürek, P.; Elhan, A.H.; Torun, N. Preoperative nutritional risk assessment in predicting postoperative outcome in patients undergoing major surgery. World J. Surg. 2006, 30, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Mariette, C.; De Botton, M.L.; Piessen, G. Surgery in esophageal and gastric cancer patients: What is the role for nutrition support in your daily practice? Ann. Surg. Oncol. 2012, 19, 2128–2134. [Google Scholar] [CrossRef]
- Mariette, C. Role of the nutritional support in the ERAS programme. J. Visc. Surg. 2015, 152 (Suppl. S1), S18–S20. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.; Cheong, J.H.; Lee, K.Y.; Lee, H.; Lee, J.G.; Noh, S.H. Perioperative nutritional status changes in gastrointestinal cancer patients. Yonsei Med. J. 2013, 54, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Gabor, S.; Renner, H.; Matzi, V.; Ratzenhofer, B.; Lindenmann, J.; Sankin, O.; Pinter, H.; Maier, A.; Smolle, J.; Smolle-Jüttner, F.M. Early enteral feeding compared with parenteral nutrition after oesophageal or oesophagogastric resection and reconstruction. Br. J. Nutr. 2005, 93, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, H.Y.; Guo, S.H.; Sun, P.; Gong, F.M.; Jia, B.Q. The postoperative clinical outcomes and safety of early enteral nutrition in operated gastric cancer patients. J. Buon. 2015, 20, 468–472. [Google Scholar] [PubMed]
- Hur, H.; Si, Y.; Kang, W.K.; Kim, W.; Jeon, H.M. Effects of early oral feeding on surgical outcomes and recovery after curative surgery for gastric cancer: Pilot study results. World J. Surg. 2009, 33, 1454–1458. [Google Scholar] [CrossRef] [PubMed]
- Hur, H.; Kim, S.G.; Shim, J.H.; Song, K.Y.; Kim, W.; Park, C.H.; Jeon, H.M. Effect of early oral feeding after gastric cancer surgery: A result of randomized clinical trial. Surgery 2011, 149, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Barlow, R.; Price, P.; Reid, T.D.; Hunt, S.; Clark, G.W.; Havard, T.J.; Puntis, M.C.; Lewis, W.G. Prospective multicentre randomised controlled trial of early enteral nutrition for patients undergoing major upper gastrointestinal surgical resection. Clin. Nutr. 2011, 30, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Sun, Z.; Huang, J.; Shen, Z. Early enteral nutrition in combination with parenteral nutrition in elderly patients after surgery due to gastrointestinal cancer. Int. J. Clin. Exp. Med. 2015, 8, 13937–13945. [Google Scholar] [PubMed]
- Wu, G.H.; Liu, Z.H.; Wu, Z.H.; Wu, Z.G. Perioperative artificial nutrition in malnourished gastrointestinal cancer patients. World J. Gastroenterol. 2006, 12, 2441–2444. [Google Scholar] [CrossRef]
- Wang, F.; Hou, M.X.; Wu, X.L.; Bao, L.D.; Dong, P.D. Impact of enteral nutrition on postoperative immune function and nutritional status. Genet. Mol. Res. 2015, 14, 6065–6072. [Google Scholar] [CrossRef]
- Ding, D.; Feng, Y.; Song, B.; Gao, S.; Zhao, J. Effects of preoperative and postoperative enteral nutrition on postoperative nutritional status and immune function of gastric cancer patients. Turk. J. Gastroenterol. 2015, 26, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodzadeh, H.; Shoar, S.; Sirati, F.; Khorgami, Z. Early initiation of oral feeding following upper gastrointestinal tumor surgery: A randomized controlled trial. Surg. Today 2015, 45, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Zhang, X.; Huang, Z.; Li, X. Influence of early enteral nutrition (EEN) on insulin resistance in gastric cancer patients after surgery. Asia Pac. J. Clin. Nutr. 2013, 22, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Sakaguchi, T.; Ikematsu, Y.; Kanai, T.; Hirayama, K.; Tamura, H.; Hayashi, T.; Nishiwaki, Y.; Konno, H.; Aoki, K. Early enteral nutrition with arginine compensates for negative nitrogen balance in patients undergoing curative total gastrectomy. J. Med. Investig. 2023, 70, 325–333. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Wang, M.J.; Yang, K.; Chen, X.L.; Jin, T.; Zhu, L.L.; Zhuang, W. Effects of preoperative oral nutritional supplements on improving postoperative early enteral feeding intolerance and short-term prognosis for gastric cancer: A prospective, single-center, single-blind, randomized controlled trial. Nutrients 2022, 14, 1472. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Tan, S.; Jiang, Y.; Han, J.; Xi, Q.; Zhuang, Q.; Wu, G. Post-discharge oral nutritional supplements with dietary advice in patients at nutritional risk after surgery for gastric cancer: A randomized clinical trial. Clin. Nutr. 2021, 40, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Omori, T.; Fujitani, K.; Fujita, J.; Kawabata, R.; Imamura, H.; Okada, K.; Moon, J.H.; Hirao, M.; Matsuyama, J.; et al. Oral nutritional supplements versus a regular diet alone for body weight loss after gastrectomy: A phase 3, multicenter, open-label randomized controlled trial. Gastric Cancer 2021, 24, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Martos-Benítez, F.D.; Gutiérrez-Noyola, A.; Soto-García, A.; González-Martínez, I.; Betancourt-Plaza, I. Program of gastrointestinal rehabilitation and early postoperative enteral nutrition: A prospective study. Updates Surg. 2018, 70, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Wang, Y.; Huang, Y.; Cui, Y.; Xia, L.; Rao, Z.; Zhou, Y.; Wu, X. Effects of fiber and probiotics on diarrhea associated with enteral nutrition in gastric cancer patients: A prospective randomized and controlled trial. Medicine 2017, 96, e8418. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, D.; Ishigure, K.; Mochizuki, Y.; Nakayama, H.; Sakai, M.; Ito, S.; Kojima, H.; Kajikawa, M.; Ando, M.; Kodera, Y. Multi-institutional prospective feasibility study to explore tolerability and efficacy of oral nutritional supplements for patients with gastric cancer undergoing gastrectomy (CCOG1301). Gastric Cancer 2017, 20, 718–727. [Google Scholar] [CrossRef]
- Kimura, Y.; Nishikawa, K.; Kishi, K.; Inoue, K.; Matsuyama, J.; Akamaru, Y.; Tamura, S.; Kawada, J.; Kawase, T.; Kawabata, R.; et al. Long-term effects of an oral elemental nutritional supplement on post-gastrectomy body weight loss in gastric cancer patients (KSES002). Ann. Gastroenterol. Surg. 2019, 3, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, N.; Oki, E.; Tanizawa, Y.; Suzuki, Y.; Aikou, S.; Kunisaki, C.; Tsuchiya, T.; Fukushima, R.; Doki, Y.; Natsugoe, S.; et al. Effect of early oral feeding on length of hospital stay following gastrectomy for gastric cancer: A Japanese multicenter, randomized controlled trial. Surg. Today 2018, 48, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Sierzega, M.; Choruz, R.; Pietruszka, S.; Kulig, P.; Kolodziejczyk, P.; Kulig, J. Feasibility and outcomes of early oral feeding after total gastrectomy for cancer. J. Gastrointest. Surg. 2015, 19, 473–479. [Google Scholar] [CrossRef] [PubMed]
- van den Ende, T.; Abe Nijenhuis, F.A.; van den Boorn, H.G.; Ter Veer, E.; Hulshof, M.C.C.M.; Gisbertz, S.S.; van Oijen, M.G.H.; van Laarhoven, H.W.M. COMplot, a graphical presentation of complication profiles and adverse effects for the curative treatment of gastric cancer: A systematic review and meta-analysis. Front. Oncol. 2019, 9, 684. [Google Scholar] [CrossRef]
- Siow, S.L.; Mahendran, H.A.; Wong, C.M.; Milaksh, N.K.; Nyunt, M. Laparoscopic T-tube feeding jejunostomy as an adjunct to staging laparoscopy for upper gastrointestinal malignancies: The technique and review of outcomes. BMC Surg. 2017, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafillidis, J.K.; Papakontantinou, J.; Antonakis, P.; Konstadoulakis, M.M.; Papalois, A.E. Enteral Nutrition in Operated-On Gastric Cancer Patients: An Update. Nutrients 2024, 16, 1639. https://doi.org/10.3390/nu16111639
Triantafillidis JK, Papakontantinou J, Antonakis P, Konstadoulakis MM, Papalois AE. Enteral Nutrition in Operated-On Gastric Cancer Patients: An Update. Nutrients. 2024; 16(11):1639. https://doi.org/10.3390/nu16111639
Chicago/Turabian StyleTriantafillidis, John K., John Papakontantinou, Pantelis Antonakis, Manousos M. Konstadoulakis, and Apostolos E. Papalois. 2024. "Enteral Nutrition in Operated-On Gastric Cancer Patients: An Update" Nutrients 16, no. 11: 1639. https://doi.org/10.3390/nu16111639
APA StyleTriantafillidis, J. K., Papakontantinou, J., Antonakis, P., Konstadoulakis, M. M., & Papalois, A. E. (2024). Enteral Nutrition in Operated-On Gastric Cancer Patients: An Update. Nutrients, 16(11), 1639. https://doi.org/10.3390/nu16111639