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Abstract: This scoping review aims to investigate longitudinal changes in minerals and vitamins
concentrations in human milk among the Chinese population. Following the PRISMA-ScR guidelines,
a comprehensive and systematic literature search was conducted using both English and Chinese
databases. Data were extracted and categorized into six defined lactation stages. We found that the
concentration of most minerals decreased throughout the lactation period, although calcium (Ca)
and magnesium (Mg) fluctuated slightly across lactation periods. Fat-soluble vitamins also showed a
decline throughout the lactation period, while water-soluble vitamins exhibited an increasing trend.
However, folic acid, biotin, and pantothenic acid demonstrated a downward trend. Overall, this
review has identified the longitudinal changes in minerals and vitamins concentrations in human
milk among the Chinese population. In order to conduct a more in-depth examination of maternal
characteristics and nutritional factors of the composition of human milk, it is recommended to utilize
standardized protocols for the collection and analysis of human milk samples.

Keywords: macro mineral elements; trace elements; water-soluble vitamins; fat-soluble vitamins;
breast milk; composition; dynamic; profile

1. Introduction

Human milk provides all the necessary components for the growth and development
of infants, including macronutrients (protein, fat, and carbohydrates), micronutrients
(vitamins and minerals), and numerous important bioactive factors [1]. The World Health
Organization (WHO) recommends exclusive breastfeeding within the first 6 months of
life, with no additional fluid or food needed. It is also advised to continue breastfeeding
after 6 months while introducing complementary foods [2]. Nutrients in the human
milk and infant body storage accumulated via the placenta during fetal development
satisfy the nutritional requirements during early infancy [3]. The investigation into human
milk components is currently one of the best ways to understand infant nutrition and
health. Human milk constituents change dynamically during lactation. The concentrations
of cholesterol and oligosaccharides such as 2′-fucosyllactose decrease over the lactation
period [4,5]. The concentrations of amino acids, lactoferrin, and immunoglobulin decrease
in the initial stages of lactation [6,7]. By contrast, the levels of total fat and oligosaccharides
such as 3′-fucosyllactose increase throughout lactation [4,5]. Presumably, the dynamics
surrounding the intake of human milk components indicate the precise needs for nutrients
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of infants. For instance, concentrations of human milk total amino acids, which are the
building blocks of infant body tissue, in 5–6 months of lactation are about two thirds of
those available in the first month [6]. This observation coincides with the fact that body
weight gain in infants aged 5–6 months is about two thirds of that recorded in infants aged
0–1 month [7].

Minerals and vitamins play a crucial role in the growth, development, and overall
health of infants [8]. Numerous studies have examined the levels of these essential nutrients
in human milk throughout the lactation period [9–12]. However, these initial studies often
have limitations, such as small sample sizes and a limited number of lactation periods. As
a result, the dynamics of these nutrients throughout lactation have not been fully clarified.
To address the limitations of individual research articles, systematic review studies have
been conducted to compile data from multiple original research studies. However, there
are only a few review studies that have specifically investigated the longitudinal changes
in minerals and vitamins in human milk. For instance, Dror et al. focused on iodine and
vitamin B-12 [13,14], Zhang H et al. examined vitamin A [15], Xi Y et al. reported on
vitamin E [16], and Gidrewicz et al. provided data on calcium and phosphorus from 1 to
12 postnatal weeks [17]. Another study by Yang et al. surveyed nine minerals, but they only
analyzed milk samples beyond 2 postnatal weeks: by then, the samples contain mature
milk. It is crucial to recognize that the composition of human milk remains dynamic even
beyond two weeks post birth [18]. Significantly, China has achieved considerable progress
in the field of human milk research over recent years, with many of these discoveries
published in Chinese. Regrettably, there is an absence of reviews that offer longitudinal
data on the mineral and vitamin levels in human milk throughout lactation within the
Chinese population.

The existing knowledge gaps obstruct our comprehension of human milk and its
critical role in fulfilling the nutritional needs of infants. Consequently, this research aims
to bridge these gaps by performing a scoping review to analyze the dynamic changes in
minerals and vitamins through different stages of lactation within the Chinese population.
In order to accomplish this, a bilingual group compiled and analyzed all available studies
published in both Chinese and English. Our efforts will advance the understanding of
human milk components and infant nutrition needs.

2. Materials and Methods
2.1. Literature Search and Selection

This scoping review was conducted following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines extension for scoping reviews (PRISMA-
ScR) [19]. The research question was “What is known about the longitudinal changes in
minerals and vitamins in human milk throughout lactation in the Chinese population?”. A
comprehensive literature search was conducted using three English databases (PubMed,
Web of Science, ScienceDirect) and three Chinese databases (China National Knowledge
Infrastructure (CNKI), Chongqing VIP Information, and Wanfang). For English databases,
the following search strategy was applied: “(human OR breast) AND (milk) AND (mineral*
OR vitamin* OR trace element*) AND (quantification OR concentration* OR content*)
AND (China OR Chinese)”. For Chinese databases, we optimized the search strategy
to (human milk OR breast milk) AND (mineral OR vitamin OR trace element) per the
style of Chinese language. The search concluded in August 2022. Duplicate articles were
eliminated, and titles and abstracts of the remaining articles were screened for relevance.
The full text of the selected articles was then reviewed for qualification according to the
criteria set forth in the PICOS framework (Table 1). Moreover, an assessment of the quality
of all the included articles was conducted (Supplementary Table S1). Two investigators,
Q.R. and K.L., independently conducted the literature search and selection process. Any
discrepancies were resolved with the assistance of a third investigator, Q.X.
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Table 1. Inclusion and exclusion criteria for selecting articles (PICOS).

Parameter Inclusion Criteria Exclusion Criteria

Population Chinese population; healthy
mothers with healthy neonates.

Non-Chinese populations; non-human;
mothers or infants with defined
diseases or disorders (premature

delivery was not regarded as a disease
or disorder).

Intervention N/A N/A

Comparator N/A N/A

Outcomes

Human milk samples; data were
expressed as means or medians;
lactation stages could fit into the

categories of 1–7 d, 8–30 d, 31–60 d,
61–120 d, 121–240 d, 241–365

postnatal days.

Lactation stage not specified or simply
described as colostrum, transition milk,

or mature milk.

Study design

Original articles from
peer-reviewed journals; master

theses or doctoral dissertations that
reported original research data.

Review articles; abstracts; articles
without access to the full text; milk

samples were pooled together
before assessment.

Note: N/A, not applicable.

2.2. Data Extraction and Statistical Analysis

Lactation was categorized into six distinct periods: 1–7, 8–30, 31–60, 61–120, 121–240,
and 241–365 postnatal days. Classification of lactation was determined based on the
predominant period during which data were gathered. The concentration of elements
was summarized in terms of means and standard deviations (SDs). Medians, interquartile
rank, and ranges were converted into means as previously described [20]. A density of
103 g/100 mL was applied for the conversion of mg or µg/g of human milk to mg or
µg/L [21]. Weighted means, SDs, and standard errors (SEs) of elements in each stage
of lactation were calculated. The 95% confidence intervals (CIs) for each element across
lactation stages were estimated as weighted mean ± t × SE, where t was calculated from a
t-distribution with degrees of freedom equivalent to the sample size of the group minus
1. Cochran’s Q statistic from a fixed effect model, where heterogeneity conforms to a
X2—distribution with degrees of freedom equal to the number of subgroups minus 1,
was conducted. A random effect model was used when significant heterogeneity was
observed using the fixed model. The calculation of Higgins and Thompson’s I2 was based
on the Q statistic. Figures were produced with the ggplot2 package in R. The statistical
computations were carried out utilizing R software (version 4.0.3). Forest plots were
constructed to compare element concentrations from the studies included utilizing Stata/SE
14.0 (StataCorp LLC, College Station, TX, USA). Data mining and statistical analysis were
independently conducted by two researchers (Q.R. and K.L.). Any discrepancies were
resolved with the involvement of a third researcher (Q.X.).

3. Results

Figure 1 illustrates the process of literature searching and screening. Eventually, a total
of 78 studies were included, comprising 19 in English and 59 in Chinese [10,12,22–97]. All
the included studies are listed in Supplementary Tables S2 and S3. The concentrations of
18 minerals and 12 vitamins were retrieved from these studies, including potassium (K),
sodium (Na), calcium (Ca), phosphorus (P), magnesium (Mg), chlorine (Cl), zinc (Zn), iron
(Fe), copper (Cu), iodine (I), selenium (Se), manganese (Mn), molybdenum (Mo), cobalt
(Co), chromium (Cr), fluorine (F), strontium (Sr), barium (Ba), vitamin A (VA), vitamin
D (VD), vitamin E (VE), vitamin K (VK), thiamine (VB1), riboflavin (VB2), vitamin B-6
(VB6), biotin, folic acid, niacin, pantothenic acid, and vitamin C (VC). The forest plots
(Supplementary Figures S1–S4) were employed to visualize the heterogeneities present
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among the included studies. Significant heterogeneities among different studies were
observed for both minerals and vitamins. To understand the longitudinal variation of each
element during the stages of lactation, a more detailed subgroup heterogeneity analysis
was conducted. This analysis employed both fixed effect and random effect models to
capture the complexities of the data (Table 2, Figures 2 and 3). The results of fixed effect
model analysis suggest significant longitudinal heterogeneities across lactation stages for
most of the nutrients studied, except for molybdenum, cobalt, vitamin D, and Vitamin K
(Table 2).
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Figure 1. Flow chart of the literature searching and screening process.

Longitudinal changes in the concentration of mineral and trace elements in Chinese
human milk are presented in Figure 2, and the results from the subgroup heterogeneity
analysis are summarized in Table 2. In general, significant heterogeneities were found for
Mg, Cu, Zn, and Fe under the random effect model. The changing patterns of different min-
erals in Chinese human milk were found to vary throughout lactation. The concentrations
of K, Na, Cl, Zn, Fe, Cu, I, Se, and Co decreased over the course of lactation, while Cr and
Mo contents increased. Among them, the concentration of Fe fluctuated from 0.8 mg/L
to 1.0 mg/L until 240 days postpartum and sharply decreased to 0.4 mg/L thereafter
(Supplementary Table S4). Se levels were found to be highest (0.04 mg/L) in the first 7 post-
natal days, gradually decreasing thereafter and reaching a plateau (0.02 mg/L) between 31
and 365 postnatal days. The concentrations of Ca and P initially increased during the early
stages of lactation and then declined for the rest of lactation, while magnesium showed
the opposite trend. The concentrations of Mn showed a significantly higher level during
31–60 postnatal days compared to before and after. It is important to note that only one
study was included with respect to the 241–365 days of lactation, resulting in limited data
available for this period. On the other hand, limited research has been conducted on the
levels of Sr, Ba, and F in human milk among the Chinese population. As a result, the mean
values of some of these elements were not extracted during different lactation stages.
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Table 2. Results of subgroup heterogeneity analysis.

Fixed Model Random Model Fixed Model Random Model
Mineral Q df p I2 Q df p I2 Vitamin Q df p I2 Q df p I2

K 1171.1 4 2.94 × 10−252 99.7 3.306 4 0.508 0.0 VA 2797 4 0.000 99.9 5.99 4 0.200 33.2

Na 279.7 4 2.57 × 10−59 98.6 0.505 4 0.973 0.0 VD 1.5 1 0.217 34.5 0.2 1 0.662 0.0

Ca 2245.4 4 0.000 99.8 2.365 4 0.669 0.0 VE 624.1 2 3.00 × 10−136 100.0 3.9 2 0.142 48.8

P 1166.0 4 3.69 × 10−251 99.7 9.370 4 0.052 57.3 VK 1.7 1 0.197 40.0 0.2 1 0.655 0.0

Mg 17,387.1 4 0.000 100.0 23.314 4 1.10 × 10−4 82.8 VB1 1154.7 4 1.05 × 10−248 99.7 2.1 4 0.721 0.0

Cl 127.9 2 1.70 × 10−28 98.4 1.776 2 0.411 0.0 VB2 450.5 4 3.35 × 10−96 99.1 0.5 4 0.976 0.0

Zn 4,465,555.1 5 0.000 100.0 156.307 5 6.06 × 10−32 96.8 VB6 1087.7 4 3.58 × 10−234 99.6 7.5 4 0.113 46.5

Fe 17,461.3 5 0.000 100.0 21.334 5 7.00 × 10−4 76.6 Pantothenic acid 17.5 4 0.002 77.1 0.1 4 0.999 0.0

Cu 13,396.2 5 0.000 100.0 211.469 5 9.97 × 10−44 97.6 Niacin 699.0 4 5.74 × 10−150 99.4 2.2 4 0.691 0.0

I 59.0 4 4.67 × 10−12 93.2 0.549 4 0.969 0.0 Folic acid 69.8 4 2.45 × 10−14 94.3 1.9 4 0.756 0.0

Se 264.7 5 3.91 × 10−55 98.1 1.653 5 0.895 0.0 Biotin 18.4 3 3.64 × 10−4 83.7 0.2 3 0.976 0.0

Mn 1191.6 4 1.04 × 10−256 99.7 6.105 4 0.191 34.5 VC 78.5 4 3.62 × 10−16 94.9 2.7 4 0.615 0.0

Mo 5.6 4 0.228 29.0 0.047 4 1.000 0.0

Co 0.4 4 0.986 0.0 0.003 4 1.000 0.0

Cr 313.9 4 1.11 × 10−66 98.7 2.958 4 0.565 0.0

Means are presented as weighted means calculated from the included studies. Q: Cochran’s Q statistic which follows a chi-square distribution with df degrees of freedom; df : degrees of
freedom; I2: Higgins and Thompson’s I2.
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Longitudinal changes in the concentration of fat-soluble vitamins and water-soluble
vitamins in Chinese human milk are presented in Figure 3, and the results from the sub-
group heterogeneity analysis are summarized in Table 2. Longitudinal studies conducted
on the fat-soluble vitamins revealed a gradual decrease from colostrum to mature milk.
Notably, there was no difference in the VA content between the periods of 61–120 days
(306 µg/L) and 121–240 days (310 µg/L) postpartum (Supplementary Table S4). The re-
view observed that the concentrations of VB1, VB2, VB6, niacin, and VC increased over
the course of lactation, while folic acid, biotin, and pantothenic acid contents decreased.
Among them, the levels of VC eventually stabilized at 43–44 mg/L after 60 days of lactation.
Pantothenic acid content showed an initial increase in the first 30 days of lactation, followed
by a subsequent decrease. However, there is only one study available on pantothenic acid
levels after 30 days of lactation. In addition, there were only two studies available for VD,
VK, biotin, and folic acid, and only one study on VE content in human milk after 60 days
of lactation.
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population.

The ratio of different mineral and vitamin concentrations in human milk may affect
the infant absorption and utilization of nutrients as well as the infant health. The ratios
of different minerals and vitamins were also calculated, and are shown in Table 3. The
potassium to sodium ratio in Chinese human milk remained relatively stable at around
2.5:1 (ranging from 2.3:1 to 2.7:1) across the first 120 days of lactation, then increasing to
3.8:1 from days 121 to 240 postpartum. A similar pattern has been observed for the calcium
to phosphorus ratio, which increased from 1.9 during the first 120 days to 2.4 afterwards.
The potassium to magnesium ratio in Chinese human milk was found to gradually decrease
from 17.6:1 to 13.1:1. On the other hand, during the first 120 days of lactation, the vitamin
E to vitamin A ratio in Chinese human milk was found to be 7.3:1 (ranging from 4.3:1 to
8.2:1). From days 121 to 240 of lactation, the ratio was found to increase to 8.2:1.
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Table 3. Ratios of different minerals and vitamins.

1–7 Days 8–30 Days 31–60 Days 61–120 Days 1–120 Days 121–240 Days

K/Na 2.4 2.3 2.4 2.7 2.5 3.8
Ca/P 2.1 1.7 2 2.2 1.9 2.4

Ca/Mg 7.5 8.5 9.1 8.2 8.5 7.9
K/Mg 17.6 17.1 16 15.4 16.2 13.1
P/Mg 3.6 4.9 4.6 3.7 4.4 3.3

VE/VA 8.2 4.3 5.2 8.1 7.3 8.2

4. Discussion

Longitudinal changes in minerals and vitamins were found to be almost identical to
those reported in previous studies conducted in other populations, but there are several
differences. Two studies conducted in Japan have also examined the changes in mineral
and trace element composition in human milk over the lactation period [98,99]. Specifically,
Na, K, Cr, and Zn were found to demonstrate a decreasing trend. Although iron also
showed a downward trend, the change was not statistically significant. The trends of Mg
and Ca were found to fluctuate slightly throughout lactation. However, our results suggest
that there is no significant decline in Cr during lactation, a finding which may be influenced
by the fact that only one article on chromium concentration covering the whole lactation
period was included in this study. A study by Sakurai T et al. [100] demonstrated that the
mean concentrations of VA, VE, and VD in Japanese mothers exhibited a decreasing trend
during lactation. Similarly, a study conducted on the Brazilian population by Campos JM
et al. [101] yielded similar findings. Another study by Ford et al. [102] revealed that the
mean concentrations of VB1, VB6, niacin, pantothenic acid, biotin, and folic acid in British
mothers increased progressively with the stage of lactation. This trend was also observed
in a study conducted on the Japanese population by Sakurai T et al. [100]. However, our
findings regarding VC in human milk are inconsistent with those reported in non-Chinese
populations. Ahmed L Jr et al. [103] demonstrated that the concentration of vitamin C
in human milk from mothers in Bangladesh is at its peak in colostrum and decreases as
lactation progresses (3.52 ± 0.56 mg/dL in colostrum compared to 3.03 ± 0.67 mg/dL
in mature milk). A normal distribution is usually extensively and implicitly assumed in
meta-analyses [104], a fact which is important to consider when interpreting the statistics
of this review. This is typically true at the between-study level for random effects models
where the central limit theorem is not guaranteed for a large sample size [105]. In our
study, data for VA, VE, VB1, VB2, VC, Na, Zn, Fe, Cu, Se, Mn, Co, and Cr seem to be not
normally distributed (p < 0.05) according to the Shapiro–Wilk test (Supplementary Table S5);
therefore, the random effects of those features should be interpreted with caution.

Human milk offers an invaluable source of energy and nutrients critical for the growth
and development of infants younger than six months. Its composition is uniquely tailored to
meet the specific nutritional requirements of each individual infant. Nonetheless, there are
circumstances where exclusive breastfeeding may not be feasible. In such situations, infant
formula becomes an indispensable alternative, providing the essential nutrients required
for infant growth and development when breastfeeding is not an option. Typically, infant
formula is formulated based on dietary reference intakes (DRIs). In this study, we estimated
the daily average lactation volume of Chinese lactating mothers within 6 months after
delivery to be 750 mL. The nutrient content data collected in this review for each lactation
period were converted to obtain the daily intake and compared with the Chinese Dietary
Reference Intakes and the American Dietary Reference Intakes [106,107] (Supplementary
Table S6). These findings can offer valuable insights for the development of infant formula
in China. Longitudinal changes in nutrient content in human milk can serve as reference
values for infant needs. However, special circumstances may arise, such as the low vitamin
D content in human milk which makes it difficult to meet the recommended intake of
400 IU daily. Human milk and sun exposure constitute the natural sources of vitamin
D for an infant during the first months of life. However, it is currently recommended
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that infants under six months of age should not be exposed to direct sunlight as the most
appropriate photoprotection measure to reduce the risks of skin cancer. Therefore, infants
need pharmacological vitamin D supplementation [108]. Vitamin K, on the other hand,
is obtained from human milk and synthesized by the baby’s own intestinal microbes.
In general, not all the nutritional needs of infants can be fully based on human milk.
Nevertheless, it remains challenging to determine the relative influence of different sources
of vitamin D and vitamin K on the nutritional status of infants and young children.

The temporal trajectories of the concentration of minerals and vitamins in human
milk are important to guide the exploration of infant nutritional needs. The proportion
of nutrients is also critical, as different ratios may affect the absorption and utilization of
nutrients in infants. This study reviewed some important mineral and vitamin ratios. Na
and K are essential nutrients that play crucial roles in various physiological functions, such
as the maintenance of plasma volume, osmolality, and resting membrane potential [109,110].
Despite their opposing functions, Na and K are closely linked to blood pressure, kidney
function, and cardiovascular health [111]. While the topics of dietary sodium and potassium
intake, as well as the potassium-to-sodium ratio, are extensively discussed in adult health
contexts, there is limited information available regarding infants [112–114]. It is noteworthy
that nutritional intake during infancy can significantly influence future growth and health
outcomes. Human milk is recognized as a natural dietary source for infants, underscoring
the importance of understanding the potassium-to-sodium ratio during each lactation
period. Our study in China sheds light on the unique potassium-to-sodium ratio in
human milk, highlighting the need for further research into its impact on the long-term
development of infants. Mg and K play crucial roles in regulating muscle contraction,
relaxation, and maintaining myocardial function [115]. Mg serves as an activator for various
enzymes and participates in enzymatic reactions as a cofactor. Deficiency in Mg is often
linked with hypokalemia, as it can deactivate (Na+ + K+)-ATPase in renal tubular epithelial
cells, leading to impaired potassium reabsorption and excessive potassium loss [116,117].
Our study in China explored the magnesium-to-potassium ratio in human milk. Ca,
Mg, and P play a critical role in maintaining bone tissue balance. Any fluctuation in the
concentration of these elements can impact each other’s functions. The balance of calcium
and phosphorus in the diet is essential for healthy bone development, ideally ranging from
a ratio of 1:1 to 2:1. Additionally, Mg acts as a counterbalance to Ca. Elevated Mg levels can
alter the Ca/Mg ratio, potentially disrupting cellular processes [118]. Our study uncovered
the proportions of calcium, phosphorus, and magnesium in human milk within the Chinese
population. This finding provides a broader understanding of the appropriate nutritional
requirements to support skeletal development in infants. Complex interactions exist with
respect to fat-soluble vitamin absorption at the intestine level, suggesting that the vitamin
E may prevent vitamin A oxidation, therefore increasing its intestinal absorption [119]. Our
study revealed the ratio of vitamin A to vitamin E in Chinese human milk. Further studies
are needed to fully understand the potential impact of this ratio on the absorption of VA
and VE.

In addition to the lactation stage, various factors affect the composition of human milk.
These factors can be categorized into different aspects. One aspect is individual maternal
factors, such as genetic background, maternal health, maternal age, maternal BMI, race,
nutritional status, preterm birth, parity, delivery mode, and smoking. For example, the
calcium levels in human milk are influenced by the genotype of the vitamin D receptor, with
higher levels observed in milk of the bb genotype compared to the aa and tt genotypes [120].
Maternal familial hypophosphatemia or hyperparathyroidism can significantly decrease
human milk phosphorus concentrations [121,122]. Women with iron deficiency anemia
generally exhibit lower concentrations of calcium in their human milk [123]. However, it is
important to note that the mothers considered in this review did not have such diseases.
The influence of maternal age on human milk minerals and vitamins concentration is still a
topic of debate. Studies have shown that lactating adolescents have lower concentrations
of calcium, magnesium, vitamin A, and vitamin E in their human milk [124,125]. Research
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conducted in low-income areas has found an inverse relationship between maternal age
and the content of iron, zinc, and copper in human milk [126]. However, some studies
suggest that maternal age does not affect human milk calcium, copper, and vitamin A
concentrations [127–130]. It is important to note that this review did not include any
adolescent mothers. Previous studies have uncovered a positive correlation between the
copper content in human milk and the BMI of lactating mothers. Additionally, there is a
correlation between human milk iodine concentration and the body weight of lactating
mothers [131,132]. A study has shown that race affects vitamin D levels in human milk,
with black people exhibiting lower levels than white people [133]. The mothers included in
this review are all Chinese. However, it is important to note that China is a large country
with abundant resources and diverse ethnic groups [134]. In a study conducted by Chen
HH et al., included in our review, it was found that the levels of Ca, Mn, Cu, and Zn in
Dong’s human milk were significantly lower compared to Han’s human milk [54]. Several
research investigations have identified a notable relationship between the selenium levels
in serum or plasma and those in human milk [135], although some investigations did not
observe this correlation [136]. Other studies have found that human milk vitamin A and
vitamin D3 concentrations are closely related to the liver reserve and serum concentration
of lactating mothers [137–139]. In addition, human milk from preterm mothers has been
shown to have slightly higher levels of potassium, copper, iron, zinc, selenium, vitamin
C, pantothenic acid, and vitamin B-12 [102,140–142], as well as slightly lower levels of
vitamins A, D, E, B1, and B6 than human milk from full-term mothers [102,142–145]. Lower
concentrations of zinc and higher concentrations of vitamins A have been observed in
human milk of multipara [38,146]. The copper content in human milk has been found
to be positively correlated with parity [131]. However, some studies have reported that
parity does not influence human milk copper concentrations [129,130]. One investigation
revealed an inverse correlation between maternal parity and selenium levels in human
milk during late lactation [38], even though this association was not detected in other
research [146]. Other studies have shown that the iodine content in the milk of mothers
who delivered via cesarean between 5 and 11 days postpartum is significantly higher than
that of mothers who had a natural delivery [38]. Studies have found a negative correlation
between maternal smoking, on one hand, and iodine and vitamin E levels, on the other, in
human milk [147,148]. This review examined the inclusion criteria of the studies, which
considered factors such as the gestational status (full-term or preterm), mode of delivery,
parity (primiparae or multiparae), type of pregnancy (monocyesis or multiple gestation),
and smoking status of the mothers. However, it was noted that most studies did not
provide specific details on these factors, making it impossible for us to gather data and
examine the association among these characteristics and the levels of minerals and vitamins
in human milk. This is a limitation of this review.

The second aspect to consider is dietary factors, including dietary intake, dietary sup-
plements, geographical regions, social and economic conditions, etc. The levels of iodine, se-
lenium, mercury, vitamin A, and vitamin D in human milk have been found to be positively
correlated with the intake of these as part of the lactating maternal diet [127,128,146,149].
Similarly, maternal selenium, iodine, vitamin A, vitamin E, vitamin K, and water-soluble
vitamins supplementation have been found to effectively increase their concentrations in
human milk [10,150–155]. The dietary habits and intake of local people may be influenced
by the availability of resources in different geographical areas. In regions where there is a
low habitual consumption of calcium, the amount of dietary calcium ingested may affect
the concentrations of calcium in human milk [156]. Additionally, in locations with elevated
levels of algae and seaweed, the levels of iodine in human milk has been shown to be
elevated when compared to other regions [157]. Likewise, in areas with a high selenium
content in the soil, the maternal intake of organic selenium in the diet has been found to be
enhanced, resulting in higher concentrations of selenium in human milk [158]. In addition,
a study has shown that low-income nursing mothers in developing countries have lower
levels of vitamin A in their milk than human milk from developed countries [159]. The
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majority of studies included in this review did not focus on the dietary situation of the
mothers or provide relevant dietary survey data. This is also a limitation of this review.
However, as each study primarily recruited volunteer mothers who resided in the same
city and provided human milk, the dietary patterns of mothers living in the same area for
an extended period were generally similar. Thus, in cases where a large sample size was
used, the impact of individual dietary conditions on the statistical results of longitudinal
changes in human milk within the entire group was minimal.

The third aspect to consider is methodological considerations, such as sample collec-
tion and detection methods. Research has indicated that the season exerts a considerable
influence on the concentration of vitamin D in human milk. Specifically, elevated levels
of vitamin D have been observed during the summer and autumn when compared to the
winter and spring. Furthermore, studies have demonstrated that the quantities of iron and
folate in human milk are higher when the milk is collected in the afternoon or evening as
opposed to the morning [129,160]. Furthermore, research has found that hind-milk had
higher concentrations of iron, selenium, and vitamin D [129,161]. It is worth noting that
almost all of the studies included in this review collected human milk in the morning using
a breast pump for full expression. As for the detection methods, the most commonly used
method for measuring K, Na, Ca, Mg, Zn, Fe, Cu, and Mn was AAS, followed by ICP-MS
and ICP-AES. Ammonium date colorimetry was commonly used for testing P, while AFS
was the common method for testing Se. Lastly, HPLC was the most frequently employed
method for vitamin detection.

5. Conclusions

This research combined data on the levels of minerals and vitamins found in Chinese
human milk over time to create a comprehensive overview of relevant literature in Chinese
and English. Our scoping review indicate that, in general, most mineral levels decrease
throughout lactation. Fat-soluble vitamins also decrease over the lactation period, while
water-soluble vitamins increase. The mineral and vitamin levels in the human milk of the
Chinese population are similar to those found in non-Chinese populations. These data
can offer valuable insights for the requirements and actual intakes by infants in China.
Additionally, factors other than lactation can affect the concentration of minerals and
vitamins in human milk. Therefore, we also discuss the impact of individual maternal
factors, dietary factors, and methodological considerations. However, a common flaw
in most studies is the lack of specific details on maternal and dietary factors, making it
impossible to extract and analyze the association between these characteristics and the
concentration of minerals and vitamins in human milk. Considering the limited available
evidence, it is recommended to use standardized procedures for collecting and analyzing
human milk samples to delve deeper into the influence of maternal characteristics and
dietary factors on human milk composition.
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