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Abstract: Context: Short-chain fatty acids (SCFAs) have been reported to be associated with the
pathogenesis of irritable bowel syndrome (IBS), but the results are conflicting. Objective: Here,
a systematic review of case–control studies detecting fecal SCFAs in IBS patients compared with
healthy controls (HCs) and self-controlled studies or randomized controlled trials (RCTs) investigating
fecal SCFA alterations after interventions were identified from several databases. Data sources: A
systematic search of databases (PubMed, Web of Science, and Embase) identified 21 studies published
before 24 February 2023. Data extractions: Three independent reviewers completed the relevant
data extraction. Data analysis: It was found that the fecal propionate concentration in IBS patients
was significantly higher than that in HCs, while the acetate proportion was significantly lower.
Low-FODMAP diets significantly reduced the fecal propionate concentration in the IBS patients
while fecal microbiota transplantation and probiotic administration did not significantly change the
fecal propionate concentration or acetate proportion. Conclusions: The results suggested that the
fecal propionate concentration and acetate proportion could be used as biomarkers for IBS diagnosis.
A low-FODMAP diet intervention could potentially serve as a treatment for IBS while FMT and
probiotic administration need more robust trials.
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1. Introduction

Irritable bowel syndrome (IBS) is one of the most common chronic gastrointestinal
disorders, which substantially reduces the quality of life and work productivity [1]. It is
subtyped into diarrhea-predominant IBS (IBS-D), constipation-predominant IBS (IBS-C),
IBS with mixed bowel habits (IBS-M), and un-subtyped IBS (IBS-U) depending on the
bowel habit abnormality [2]. However, the current understanding of IBS etiology and
pathogenesis remains limited [3]. Its proposed pathogenesis mechanisms include altered
pain perception, altered brain–gut interaction, dysbiosis, increased intestinal permeability,
increased gut mucosal immune activation, and visceral hypersensitivity [4]. Recently,
accumulating evidence has highlighted the role of the gut microbiota in the development
of IBS [5,6], and numerous studies have reported differences in the gut microbiota of
IBS patients compared with healthy controls (HCs) [7–9]. IBS exhibits a definite overall
microbial signature, which produces a clear differentiation from healthy controls (HCs), and
the composition varies depending on the predominant form of IBS [10]. Short-chain fatty
acids (SCFAs), particularly acetate, propionate, and butyrate, not only exhibit important
intestinal and immune-modulatory functions but also reflect the status of the intestinal
flora [11–13].
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Up to now, no specific and reproducible hallmarks have been identified and an IBS
diagnosis, in some cases, may lead to a differential diagnosis problem, as suggested by
a recent study [14]. The correlation between intestinal physiological characteristics and
functional bowel disorders has been extensively investigated. Many studies have focused
on the association between fecal SCFAs and IBS, whereas the conclusions are inconsistent
or even contrary. For instance, Tana et al. showed that IBS patients possess significantly
higher levels of total SCFAs including acetate and propionate than HCs, while Treem et al.
proved that IBS-D patients had less total SCFAs and a lower acetate proportion than HCs;
Tian et al. found that there was no significant difference between IBS patients and HCs
with regard to the concentrations of fecal acetate, propionate, and butyrate [15–17]. To
comprehensively understand these differences, we perform a meta-analysis to discover the
potential association between the fecal SCFA concentration and IBS status from all previous
studies, and explore whether fecal SCFAs can be utilized as biomarkers of an IBS diagnosis.

Restricting food with highly fermentable oligo-, di-, monosaccharides, and polyols
(FODMAPs), is a novel treatment option [18]. Examples of foods containing FODMAPs
include fruits (apple, pears, peaches, and watermelons), vegetables (onions, garlic, squash,
and mushrooms), dairy products, grains (wheat and rye), and sweeteners (sorbitol and
mannitol), etc. [19]. The low-FODMAP diet is effective in reducing the global symptoms
and improving the bowel habits of adult IBS patients [20]. The modulation of the gut
microbiota with agents such as probiotics, prebiotics, symbiotics, luminal antibiotics, and
fecal microbiota transplantation (FMT) have also been suggested as treatment options
for IBS, while a recent systematic review and meta-analysis did not support FMT as a
successful treatment strategy in IBS [21]. Here, we also evaluate fecal SCFA alterations in
IBS patients after receiving different interventions to provide a reference for the clinical
treatment of IBS.

2. Materials and Methods
2.1. Protocol Registration and Reporting Format

The protocol of the present review was registered and allocated the identification
number CRD42023452054 in the PROSPERO database, hosted by the National Institute
for Health Research, University of York, Center for Reviews and Dissemination. This
manuscript was prepared following the Cochrane Collaboration guidelines and is reported
in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analysis
Extension (PRISMA).

2.2. Information Sources and Search Strategy

A systematic literature search of online databases including PubMed, Web of Science,
and Embase was performed for all published articles from inception to February 2023.
The search terms included “irritable bowel syndrome”, “IBS”, “short-chain fatty acids”,
“volatile fatty acids”, “SCFAs”, “acetate”, “propionate”, “butyrate”, and “valerate”. Boolean
operators (AND, OR, NOT) were used to widen and narrow the results. Review articles
and meeting abstracts were excluded during searching process as well as articles not in
English or performed with animals (see Supplementary Methods, full electronic search
strategy for each database including all limits and filters used). After screening the titles
and abstracts, cited and citing reference searches were conducted in selected articles. The
Systematic Review Registration: PROSPERO registration no CRD42023452054.

2.3. Study Selection and Eligibility Criteria

Titles and abstracts of retrieved records were investigated for relevance to our topic,
then full texts of all potentially relevant articles were evaluated in detail according to the
following inclusion and exclusion criteria. The inclusion criteria include the following:
(1) the diagnosis of IBS was based on Rome criteria (issued at that time, or described as IBS
before the issue of Rome criteria I in 1990); (2) the study design for comparing IBS patients
with HCs was case–control, and for comparing treatment with pre-treatment or placebo
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was self-controlled or a randomized controlled trial (RCT); (3) available fecal SCFA data
were sufficient to calculate mean difference (MD) or standardized mean difference (SMD)
with 95% confidence interval (CI); (4) adult IBS patients and HCs were similar in age and
sex. The exclusion criteria include the following: (1) studies in which IBS patients also
suffered from other gastrointestinal diseases; (2) studies of pediatric patients or animals;
(3) studies with no available full text or sufficient data for calculation of MD or SMD. Three
reviewers (Xuan Ju, Zhenliang Jiang, and Jiayin Ma) evaluated each record that met the
predetermined criteria independently, and any disagreement was resolved through mutual
consultation or discussion with a fourth independent reviewer.

2.4. Data Extraction

Three independent reviewers (Xuan Ju, Zhenliang Jiang, and Jiayin Ma) completed
relevant data extraction from each included report to reduce the reporting error, then
extracted data were crossed over and any inconsistent differences were resolved through
discussion until consensus. Extracted data included concentrations and proportions of
fecal SCFAs as the main outcome parameters and basic characteristics of studies: (1) name
of first author; (2) publication year; (3) country; (4) IBS subtypes; (5) diagnostic criteria of
IBS; (6) participant information including age, sex, and number; (7) data format provided
for SCFAs; (8) methods by which fecal SCFAs were analyzed.

2.5. Quality Assessment of Included Studies

Newcastle–Ottawa Scale (NOS) was used to evaluate the quality of included case–
control studies, including three aspects: selection, comparability, and exposure [22]. The se-
lection criteria contained adequate definition of cases, representativeness of cases, selection
of controls, and definition of controls; the comparability criteria included comparability of
cases and controls based on the design or analysis; the exposure criteria contained ascertain-
ment of exposure, same method of ascertainment for cases and controls, and nonresponse
rate. The sum of scores was equal to the total NOS score, where ≥7 means high quality.

RCTs were assessed using the Revised Cochrane Risk of Bias tool (RoB 2) [23]. Studies
were classified as “low risk”, “high risk”, and “uncertain risk” based on seven bias criteria:
random sequence generation, allocation concealment, blinding of participants and person-
nel, blinding of outcome assessment, incomplete outcome data, selective reporting, and
other bias. The risk of bias summary was generated with Review Manger (RevMan) 5.4.1
software (Cochrane, Oxford, UK).

2.6. Statistical Analysis

RevMan was used for statistical analysis of continuous data available in included
studies. MD values when outcomes were in the same unit or SMD values when not in the
same unit with 95% CI, calculated from mean and standard deviation (SD), were used as a
measure of effect. As for studies where results were presented as median, upper quartile,
lower quartile, or interquartile range (IQR), mean and SD were estimated according to
Wan’s method; as for those in which mean and 95% CI were extracted, SD was calculated
using the method described in the Cochrane Handbook [24,25]. Heterogeneity across
studies was examined by the I2 and Q test [26]. An I2 value < 50% and p-value > 0.1 were
considered low-heterogeneity, with fixed effects model being used. Otherwise, the random
effects model was used. Subgroup analysis of different IBS subtypes was performed
to explore possible causes of statistical heterogeneity. A p-value < 0.05 was considered
statistically significant in all analyses.

2.7. Sensitivity Analysis and Publication Bias Assessment

Stata/MP 17.0 software (StataCorp, College Station, TX, USA) was used for sensitivity
analysis to show how the values of different studies affect the synthesis results. Funnel
plots and Egger’s regression test were used to assess publication bias where potential
publication bias might result in asymmetry of funnel plots.
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3. Results
3.1. Study Selection

The workflow for the identification and stepwise selection of the studies is presented
in Figure 1. Initially, a total of 601 citations (181 from PubMed, 256 from Web of Science, and
164 from Embase) were obtained through database searching. Among them, 141 records
were removed for the reason of duplication and 460 articles were included for screening and
filtering titles and abstracts, as described in Section 2. After excluding 419 irrelevant records,
the remaining 41 articles were retrieved for a full-text review. Among them, 20 articles
were excluded for various reasons: 10 failed to provide required data; 3 lacked similar
interventions; 2 used the same participants; 2 did not indicate the data format; 1 lacked
healthy controls; 1 provided data that cannot be expressed as mean ± SD; and 1 provided
data skewed away from normality [16,27–45]. Finally, the cited references and citations of
21 remaining studies were manually searched, and no other eligible studies were included.
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3.2. Study Characteristics

The characteristics of the included studies are summarized in Supplementary
Tables S1 and S2. Of these 21 studies, 12 were case–control studies and 9 were self-controlled
studies or RCTs [15,17,46–56]. Among the studies investigating the effects of interventions,
there were three interventions: diets low in FODMAP, FMT, and supplementary probiotics.
The publication year of the included studies varied from 1984 to 2023, and the geographical
distribution covered four continents (13 conducted in Europe, 5 in Asia, 2 in North America,
and 1 in Oceania). The available data of the fecal SCFAs in 10 studies were expressed in the
format of mean ± SD, and in other studies were expressed as median (IQR), mean (95% CI),
mean ± SEM, and estimated marginal mean (EMM) ± SEM. All the data in the other
formats were converted into mean ± SD for synthesis in the meta-analysis. Concerning
the methods for detecting fecal SCFAs, 10 studies used gas chromatography (GC), and
other methods included gas–liquid chromatography (GLC), gas chromatography-mass
spectrometry (GC-MS), and high-performance liquid chromatography (HPLC), etc.

3.3. Quality Assessment of Studies

As shown in Supplementary Table S3, we used NOS to evaluate the quality of each
case–control study. Among them, 10 studies were sufficient to conduct a meta-analysis with
moderate quality (NOS score ≥ 7), whereas the other 2 studies published in the 1980s were
excluded because of their low quality. As shown in Supplementary Figure S1, the risk of
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bias in four RCTs was assessed, and the quality of the included RCTs was moderate. After
removing 2 studies, the 10 case–control studies included 553 IBS patients and 258 HCs,
and 225 IBS patients in treatment groups and 220 as controls were included.

3.4. Results of Synthesis

Our study focused on the changes in the fecal SCFA concentrations (including total
SCFAs, acetate, propionate, butyrate, iso-butyrate, valerate, and iso-valerate) and each
of their proportions in IBS patients and the effects of interventions. The results of our
meta-analysis are displayed in forest plots.

Firstly, we examined the concentrations of the total SCFAs (Figure 2A), acetate (Figure 2B),
propionate (Figure 2C), butyrate (Figure 2D), iso-butyrate (Figure 2E), valerate (Figure 2F),
and iso-valerate (Figure 2G) in the feces of IBS patients and HCs as possible indicators. Nine
case–control studies with 472 IBS patients and 228 HCs showed that the concentration of fe-
cal propionate in the IBS patients was significantly higher than that in the HCs (SMD = 0.27,
95% CI 0.03 to 0.51, p < 0.05), and the heterogeneity among the included studies was signif-
icantly different (p = 0.08, I2 = 44%). None of the other indicators exhibited a significant
correlation with IBS patients or HCs. The proportions of SCFAs in the total concentration of
SCFAs in the IBS patients and HCs were further examined. Three studies including 173 IBS
patients and 108 HCs showed that the proportions of fecal propionate (Figure 3B), butyrate
(Figure 3C), iso-butyrate (Figure 3D), valerate (Figure 3E), and iso-valerate (Figure 3F)
were not significantly different among the IBS patients or HCs. Except the proportion
of fecal acetate was significantly lower compared with the HCs (Figure 3A, MD = −2.75,
95% CI −4.39 to −1.11, p < 0.05), the heterogeneity among the included studies was not
significantly different (p = 0.17, I2 = 44%).

Next, a subgroup analysis based on the different IBS subtypes were conducted. As
for the total SCFAs, there was no significant difference between the IBS-D patients or
IBS-C patients and HCs (Figure 4A). As for acetate, there was no significant difference
between the four subtypes (Figure 4B). As for propionate, the fecal concentration between
the IBS-D patients and HCs was significantly different (Figure 4C, SMD = 0.32, 95% CI
0.12 to 0.51), and the result of this subgroup analysis was consistent with the overall
results of the IBS patients. For butyrate, the fecal concentrations were found to be ir-
relevant among the different subtypes of IBS and HCs (Figure 4D). The concentrations
of iso-butyrate (Supplementary Figure S2A), valerate (Supplementary Figure S2B), and
iso-valerate (Supplementary Figure S2C) in the feces of the IBS-D patients and HCs were
examined since the other subtypes lacked corresponding data, and there were no significant
differences.

The effects of three interventions: low-FODMAP diets, FMT, and supplementary
probiotics were studied. As for the self-controlled studies, the concentrations of fecal
SCFAs in the IBS patients before and after receiving the interventions were the major
outcome measure, and the baseline-adjusted marginal means of the concentration of fecal
SCFAs in the treatment group and placebo group were the major outcome measure in
the RCTs. Diets low in FODMAP significantly reduced the concentrations of fecal total
SCFAs (Supplementary Figure S3A, SMD = −0.41, 95% CI −0.69 to −0.13, p < 0.05), acetate
(Supplementary Figure S3B, SMD = −0.41, 95% CI −0.66 to −0.15, p < 0.05), propionate
(Supplementary Figure S3C, SMD = −0.29, 95% CI −0.55 to −0.04, p < 0.05), and butyrate
(Supplementary Figure S3D, SMD = −0.32, 95% CI −0.58 to −0.07, p < 0.05). There were no
significant differences in the other indicators. FMT did not significantly change the concen-
trations of fecal total SCFAs, acetate, propionate, and butyrate (Supplementary Figure S4A–D),
but the concentrations of iso-butyrate (Supplementary Figure S4E, SMD = 0.30, 95% CI
0.02 to 0.59, p < 0.05), valerate (Supplementary Figure S4F, SMD = 0.24, 95% CI 0.07 to 0.41,
p < 0.05), and iso-valerate (Supplementary Figure S4G, SMD = 0.48, 95% CI 0.08 to 0.89,
p < 0.05) were significantly different from the controls. Supplementary probiotics did not
exhibit a significant impact on the fecal concentrations of any SCFAs in the IBS patients
(Supplementary Figure S5).
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3.5. Publication Bias

Publication bias among the included studies was assessed and is shown in funnel
plots. There was no publication bias for the concentration of acetate (Figure 5A, p = 0.354),
propionate (Figure 5B, p = 0.585), and butyrate (Figure 5C, p = 0.287). The publication bias
for the other fecal SCFA concentrations was assessed by Egger’s test, and no publication
bias was found (Supplementary Table S4). A sensitivity analysis was performed by culling
individual studies to analyze the effect on the synthesis result. The synthesis results
did not change significantly after removing each study (Supplementary Figure S6 and
Supplementary Table S5).
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(A) acetate, (B) propionate, and (C) butyrate.

4. Discussion

Gut microbiota dysbiosis contributes to the development of intestinal disorders, which
is confirmed by clinical and experimental evidence [6]. Gut microbiota dysbiosis induces
pathophysiological reactions such as activation of the mucosal immune system, increased
intestinal permeability, activation of sensory pathways, and modulation of the enteric motil-
ity [46]. Several studies show evidence for the association and differences between the gut
microbiota in IBS patients and HCs [57–59]. SCFAs are produced by gut microbiota through
the fermentation of ingestible polysaccharides and proteins, and have been described as
the link between the microbes and the host [60]. SCFAs exhibit anti-inflammatory effects
through the modulation of immune cell chemotaxis, and the release of reactive oxygen
species (ROS) and cytokines [61]. The effects are mediated mainly by the inhibition of
histone deacetylases (HDACs) and stimulation of G-protein-coupled receptors (GPCRs),
particularly GPR43 [62]. Studies have shown the activation of the immune system and an
imbalance in the cytokine pattern in IBS patients, indicating IBS might be an inflammation-
mediated disease [63]. Acetate has the highest concentration than the other SCFAs, and is
involved in the carbohydrate and fat metabolic pathways [64]. Propionate is a potent acti-
vator of GPCR43 that is present in immune, nervous, and endocrine cells along the entire
gastrointestinal tract [65]. Butyrate, which is a key promoter of colonic health and the main
provider of energy for colonocytes, inhibits Il-12 and increases Il-10 production [66]. Con-
sidering the significance of the correlation between SCFAs and IBS, it is urgently needed to
explore consistent SCFA characterization in IBS patients and identify whether fecal SCFAs
could be a valuable biomarker for IBS diagnosis.

In our analysis, the fecal propionate concentration in IBS patients was found to be
significantly higher than that in HCs, suggesting that it can serve as a biomarker for IBS
diagnosis. The increase in propionate is consistent with a previous report, which revealed
that the propionate-producing genera Lactobacillus and Veillonella are increased in IBS
patients, and they transform lactic acid into propionate [15,67]. And it is speculated that
sustained acid stimuli in the gut mucosa leads to the activation of subcortical brain nuclei
that are involved in emotional, behavioral, neuroendocrine, autonomic, and antinociceptive
reactions to noxious stimuli [68]. Another explanation is that higher amounts of SCFAs in
the feces are associated with less absorption, which results in gut dysbiosis, gut permeability,
excess adiposity, and cardiometabolic risk factors [69]. The concentrations of fecal acetate
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in two studies were lower than those in HCs, while another study showed the opposite
result [15,47,52]. And there are no significant differences in the synthesis results of the
concentrations of the other fecal SCFA indicators between the IBS patients and HCs. Most
studies used the symptom-based Rome criteria for the diagnosis of IBS, and the results
indicate that the concentration of fecal propionate could be a reliable biomarker for the
differentiation of healthy subjects from subjects with IBS. The relative amount of each SCFA
is also important, and the ratio of acetate, propionate, and butyrate in HCs is approximately
5:2:2 [70]. Three of the included studies reported the proportion of fecal SCFAs in the
IBS patients, and the result shows that the proportion of fecal acetate in the IBS patients
is significantly lower than that in the HCs [46,51,52]. Our conclusion is in contrast with
previous studies, mainly because the limited publications included in their data synthesis
(n = 5 and n = 15), and more than half of the studies included in our study were published
after these previous studies [71,72].

IBS is conventionally classified into four subtypes according to the associated bowel
habits: IBS-D, IBS-C, IBS-M, and IBS-U. The diverse mechanisms underlying the pathophys-
iology of the IBS subtypes remain unknown, and validated mechanistic biomarkers for the
subtypes are not available [28]. A detailed examination is performed to further distinguish
the relation between the IBS subtypes and SCFA concentrations, while the concentration
data of the total SCFAs, iso-butyrate, valerate, and iso-valerate is only available for the
IBS-D subtype. For the IBS-C, IBS-M, and IBS-U subtypes, data on the acetate, propionate,
and butyrate concentrations are available. In the subgroup analysis, the concentration of
fecal propionate in the IBS-D patients is significantly higher than that in HCs, consistent
with the result of the entire IBS patient analysis. IBS-C patients exhibit a significantly lower
amount of fecal acetate than HCs. Compared to IBS-C, IBS-D patients exhibit increased
intestinal motility and decreased transit time, so the results can be explained by two pos-
sible mechanisms: (1) colonic fermentation is stimulated by increased intestinal motility,
leading to higher fecal levels of SCFAs; and (2) the decreased transit time slows down
the absorption of SCFAs, contributing to the accumulation of SCFAs [73]. Fecal SCFAs
including the proportion of acetate and the concentration of propionate can be used as
biomarkers for distinguishing the IBS subtypes.

Among these treatments analyzed, diets low in FODMAP lead to a significant reduc-
tion in the abnormal fecal total SCFA, acetate, and propionate concentrations in the IBS
patients compared with the pre-treatment patients or those receiving a placebo, indicat-
ing the low-FODMAP diet normalized the IBS patients’ abnormal SCFA concentrations.
Further studies need to assess if this normalization is linked to a clinical improvement
and its efficacy as an intervention for IBS patients, which is quite promising, as suggested
by previous findings [36,74]. While other studies found that the low-FODMAP diet did
not significantly alter the fecal SCFAs [75,76], it is possible that low FODMAP administra-
tion to IBS patients should be offered with personalization and the later reintroduction of
FODMAPs after the alleviation of IBS symptoms [36,77].

On the other hand, FMT increases the concentrations of iso-butyrate, valerate, and iso-
valerate in IBS patients. While there is no significant difference in fecal iso-butyrate, valerate,
and iso-valerate between IBS patients and HCs, FMT seems unhelpful for IBS patients. This
is consistent with the results of a previous study, where no significant difference in the
global improvement in IBS symptoms was observed at 12 weeks with FMT vs. placebo [78].
Other studies showed very-low-quality evidence to support recommending FMT for IBS,
which requires larger and more rigorously conducted trials [79,80]. Currently, FMT is only
recommended for the treatment of Clostridioides difficile infection and should be applied
with extreme caution for other conditions [81]. There are also no significant changes in
the SCFA concentrations after supplementary probiotics, and this is highly likely due to
the absence of probiotic strain information in the studies included. It is reported that
single-strain probiotics or their mixtures showed significant efficacy for at least one IBS
outcome measure [82]. A more robust clinical trial for probiotic administration for treating
IBS is needed.
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5. Conclusions

In conclusion, there is a correlation between IBS and the concentration of fecal SCFAs
including propionate and acetate, so these two could be used as biomarkers for IBS diagno-
sis. Specifically, the fecal propionate concentration could be used as a biomarker for IBS-D
subtype diagnosis. A diet low in FODMAPs is an effective intervention for IBS patients,
while FMT or supplementary probiotics seem unhelpful for IBS patients.
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