Associations between Gut Microbiota Dysbiosis and Other Risk Factors in Women with a History of Urinary Tract Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Study Groups
2.2. Laboratory Determinations
2.3. Examination of Lifestyle, Diet, and History of UTIs
2.4. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis. 2001, 183 (Suppl. S1), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef] [PubMed]
- Ribić, R.; Meštrović, T.; Neuberg, M.; Kozina, G. Effective anti-adhesives of uropathogenic Escherichia coli. Acta Pharm. 2018, 68, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Meštrović, T.; Matijašić, M.; Perić, M.; Čipčić Paljetak, H.; Barešić, A.; Verbanac, D. The Role of Gut, Vaginal, and Urinary Microbiome in Urinary Tract Infections: From Bench to Bedside. Diagnostics 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, S.; Asha; Sharma, K.K. Gut-organ axis: A microbial outreach and networking. Lett. Appl. Microbiol. 2021, 72, 636–668. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol. Neurobiol. 2020, 57, 5026–5043. [Google Scholar] [CrossRef] [PubMed]
- Mulak, A.; Bonaz, B. Brain-gut-microbiota axis in Parkinson’s disease. World J. Gastroenterol. 2015, 21, 10609–10620. [Google Scholar] [CrossRef]
- Kelly, J.R.; Minuto, C.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The role of the gut microbiome in the development of schizophrenia. Schizophr. Res. 2020, 234, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Carlessi, A.S.; Borba, L.A.; Zugno, A.I.; Quevedo, J.; Réus, G.Z. Gut microbiota-brain axis in depression: The role of neuroinflammation. Eur. J. Neurosci. 2021, 53, 222–235. [Google Scholar] [CrossRef]
- Evenepoel, P.; Poesen, R.; Meijers, B. The gut–kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Tsukamoto, T.; Terai, A.; Kurazono, H.; Takeda, Y.; Yoshida, O. Genetic evidence supporting the fecal-perinealurethral hypothesis in cystitis caused by Escherichia coli. J. Urol. 1997, 157, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.L.; Dynesen, P.; Larsen, P.; Frimodt-Møller, N. Faecal Escherichia coli from patients with E. coli urinary tract infection and healthy controls who have never had a urinary tract infection. J. Med. Microbiol. 2014, 63, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, H.L.; Conover, M.S.; Chou, W.C.; Hibbing, M.E.; Manson, A.L.; Dodson, K.W.; Hannan, T.J.; Roberts, P.L.; Stapleton, A.E.; Hooton, T.M.; et al. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci. Transl. Med. 2017, 9, eaaf1283. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Magruder, M.; Sholi, A.N.; Gong, C.; Zhang, L.; Edusei, E.; Huang, J.; Albakry, S.; Satlin, M.J.; Westblade, L.F.; Crawford, C.; et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 2019, 10, 5521. [Google Scholar] [CrossRef] [PubMed]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Bellini, M.; Tonarelli, S.; Nagy, A.G.; Pancetti, A.; Costa, F.; Ricchiuti, A.; de Bortoli, N.; Mosca, M.; Marchi, S.; Rossi, A. Low FODMAP Diet: Evidence, Doubts, and Hopes. Nutrients 2020, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 2019, 11, 2393. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.R.; Lindsay, J.O.; Fromentin, S.; Stagg, A.J.; McCarthy, N.E.; Galleron, N.; Ibraim, S.B.; Roume, H.; Levenez, F.; Pons, N.; et al. Effects of Low FODMAP Diet on Symptoms, Fecal Microbiome, and Markers of Inflammation in Patients with Quiescent Inflammatory Bowel Disease in a Randomized Trial. Gastroenterology 2020, 158, 176–188.e7. [Google Scholar] [CrossRef] [PubMed]
- Avram, C.; Mărușteri, M. Normality assessment, few paradigms and use cases. Rev. Romana Med. Lab. 2022, 30, 251–260. [Google Scholar] [CrossRef]
- Schippa, S.; Conte, M.P. Dysbiotic events in gut microbiota: Impact on human health. Nutrients 2014, 6, 5786–5805. [Google Scholar] [CrossRef] [PubMed]
- Loubet, P.; Ranfaing, J.; Dinh, A.; Dunyach-Remy, C.; Bernard, L.; Bruyère, F.; Lavigne, J.P.; Sotto, A. Alternative Therapeutic Options to Antibiotics for the Treatment of Urinary Tract Infections. Front. Microbiol. 2020, 11, 1509. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, C.N.; Klein, R.D.; Schreiber, H.L.; Janetka, J.W.; Hultgren, S.J. Precision antimicrobial therapeutics: The path of least resistance? npj Biofilms Microbiomes 2018, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Hrncirova, L.; Machova, V.; Trckova, E.; Krejsek, J.; Hrncir, T. Food preservatives induce Proteobacteria dysbiosis in humanmicrobiota associated Nod2-deficient mice. Microorganisms 2019, 7, 383. [Google Scholar] [CrossRef] [PubMed]
- Hrncirova, L.; Hudcovic, T.; Sukova, E.; Machova, V.; Trckova, E.; Krejsek, J.; Hrncir, T. Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiol. 2019, 64, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Van de Wiele, T.; De Bodt, J.; Marzorati, M.; Gewirtz, A.T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017, 66, 1414–1427. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, M.; Wang, S.; Han, R.; Cao, Y.; Hua, W.; Mao, Y.; Zhang, X.; Pang, X.; Wei, C.; et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010, 4, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Sekirov, I.; Russell, S.; Caetano, L.; Antunes, M.; Finlay, B.B. Gut microbiota in health and disease. Am. Physiol. Soc. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed]
- Gans, K.M.; Ross, E.; Barner, C.W.; Wylie-Rosett, J.; McMurray, J.; Eaton, C. REAP and WAVE: New Tools to Rapidly Assess/Discuss Nutrition with Patients. J. Nutr. 2003, 133, 556S–562S. [Google Scholar] [CrossRef] [PubMed]
- Hardy, H.; Harris, J.; Lyon, E.; Beal, J.; Foey, A.D. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients 2013, 5, 1869–1912. [Google Scholar] [CrossRef] [PubMed]
- Koradia, P.; Kapadia, S.; Trivedi, Y.; Chanchu, G.; Harper, A. Probiotic and cranberry supplementation for preventing recurrent uncomplicated urinary tract infections in premenopausal women: A controlled pilot study. Expert Rev. Anti-Infect. Ther. 2019, 17, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Beerepoot, M.A.; ter Riet, G.; Nys, S.; van der Wal, W.M.; de Borgie, C.A.; de Reijke, T.M.; Prins, J.M.; Koeijers, J.; Verbon, A.; Stobberingh, E.; et al. Lactobacilli vs antibiotics to prevent urinary tract infections: A randomized, double-blind, noninferiority trial in postmenopausal women. Arch. Intern. Med. 2012, 172, 704–712. [Google Scholar] [CrossRef] [PubMed]
- McGroarty, J.A.; Reid, G. Detection of a Lactobacillus substance that inhibits Escherichia coli. Can. J. Microbiol. 1988, 34, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Cribby, S.; Taylor, M.; Reid, G. Vaginal microbiota and the use of probiotics. Interdiscip. Perspect. Infect. Dis. 2008, 2008, 256490. [Google Scholar] [CrossRef] [PubMed]
- Linares, D.M.; Gómez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Front. Microbiol. 2017, 8, 846. [Google Scholar] [CrossRef] [PubMed]
- Ooi, S.L.; Correa, D.; Pak, S.C. Probiotics, prebiotics, and low FODMAP diet for irritable bowel syndrome—What is the current evidence? Complement. Ther. Med. 2019, 43, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Rapper, S.L.; Viljoen, A.; van Vuuren, S. Optimizing the Antimicrobial Synergism of Melaleuca alternifolia (Tea Tree) Essential Oil Combinations for Application against Respiratory Related Pathogens. Planta Med. 2023, 89, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Chang, S.Y.; Bogere, P.; Won, K.; Choi, J.Y.; Choi, Y.J.; Lee, H.K.; Hur, J.; Park, B.Y.; Kim, Y.; et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE 2019, 14, e0220843. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, W.W.; Metz, C.; Singh, D.P.; Roth, J. The microbes of the intestine: An introduction to their metabolic and signaling capabilities. Endocrinol. Metab. Clin. N. Am. 2008, 37, 857–871. [Google Scholar] [CrossRef] [PubMed]
- McBurney, M.I.; Davis, C.; Fraser, C.M.; Schneeman, B.O.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M.E. Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions. J. Nutr. 2019, 149, 1882–1895. [Google Scholar] [CrossRef] [PubMed]
- Avram, C.; Bucur, O.M.; Zazgyva, A.; Avram, L.; Ruta, F. Vitamin Supplementation in Pre-Pregnancy and Pregnancy among Women-Effects and Influencing Factors in Romania. Int. J. Environ. Res. Public Health 2002, 19, 8503. [Google Scholar] [CrossRef]
- Avram, C.; Avram, L.; Ruta, F.; Georgescu, I.M.; Rus, V. Consumer profile in terms of food label reading in Mures county, Romania—A pilot study. Prog. Nutr. 2020, 22, e2020072. [Google Scholar] [CrossRef]
- Avram, L.; Avram, C.; Olah, P.; Rus, V.; Georgescu, I.M.; Bucur, O.M.; Ruta, F. Knowledge about food additives among adults—Pilot study: Knowledge about food additives among adults. Prog. Nutr. 2021, 23, e2021083. [Google Scholar] [CrossRef]
- Voda, M.; Murgu, A.; Sarpe, C.A.; Graves, S.M.; Avram, C. The Țigani Community Adaptability to Changes in Rural Romania and the COVID-19 Impact. Int. J. Environ. Res. Public Health 2021, 18, 10622. [Google Scholar] [CrossRef] [PubMed]
- Avram, C.; Gligor, A.; Avram, L. A Formal Model Based Automated Decision Making. Procedia Manuf. 2020, 46, 573–579. [Google Scholar] [CrossRef]
- Avram, C.; Gligor, A.; Roman, D.; Soylu, A.; Nyulas, V.; Avram, L. Machine learning based assessment of preclinical health questionnaires. Int. J. Med. Inform. 2023, 180, 105248. [Google Scholar] [CrossRef] [PubMed]
- Calin, A.; Adrian, G.; Laura, A.E. New Approach on Optimal Decision Making based on Formal Automata Models. Procedia Econ. Financ. 2012, 3, 852–857. [Google Scholar] [CrossRef]
- Voidazan, S.; Tarcea, M.; Abram, Z.; Georgescu, I.M.; Marginean, C.; Grama, O.; Buicu, F.; Ruta, F. Associations between lifestyle factors and smoking status during pregnancy in a group of Romanian women. Birth Defects Res. 2018, 110, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10 (Suppl. S1), S17–S30. [Google Scholar] [CrossRef] [PubMed]
N = 753 | Dysbiosis Yes (N = 537) | Dysbiosis No (N = 216) | p Value | rUTI (N = 317) | nUTI (N = 436) | p Value |
---|---|---|---|---|---|---|
Age Mean (SD) | 37.65 (8.72) | 35.83 (8.53) | 0.1952 * | 38.27 (8.51) | 36.30 (8.75) | 0.1234 ** |
Weight Mean (SD) | 64.36 (11.91) | 65.39 (12.34) | 0.6699 ** | 63.48 (11.19) | 65.51 (12.56) | 0.2248 ** |
Height Mean (SD) | 165.23 (6.11) | 166.93 (6.71) | 0.0963 * | 165.4 (5.89) | 165.9 (6.63) | 0.5646 * |
BMI > 25 m2/Kg BMI = 18–24.9 m2/kg | 185 (34%) 352 (66%) | 50 (23%) 166 (77%) | 0.002 *** | 77 (24%) 240 (76%) | 128 (29%) 308 (71%) | 0.1230 *** |
Dysbiosis Yes (N = 537) | Dysbiosis No (N = 216) | p Value | |
---|---|---|---|
Recurrences of UTI before the last year • Yes • No | 297 (55%) 240 (45%) | 85 (39%) 131 (61%) | <0.0001 |
The presence of multi-resistance to antibiotics as a result of antibiotic treatments, confirmed by antibiogram • Yes • No | 113 (21%) 424 (79%) | 12 (6%) 204 (94%) | <0.0001 |
Consumption of less than 1 L of water per day • Yes • No | 236 (44%) 301 (56%) | 144 (67%) 72 (33%) | <0.0001 |
Daily consumption of sweet juices • Yes • No | 137 (26%) 400 (74%) | 88 (41%) 128 (59%) | <0.0001 |
Daily consumption of energy drinks • Yes • No | 61 (11%) 476 (89%) | 48 (22%) 168 (78%) | 0.0001 |
Less than 3 servings of vegetables consumed daily • Yes • No | 285 (53%) 252 (47%) | 124 (57%) 92 (43%) | 0.2801 |
Less than 2 servings of fruit consumed daily • Yes • No | 235 (44%) 302 (56%) | 126 (58%) 90 (42%) | 0.0003 |
Less than 3 servings of whole grains consumed daily • Yes • No | 233 (43%) 304 (57%) | 92 (43%) 124 (57%) | 0.8418 |
Habitual consumption of salty foods • Yes • No | 113 (21%) 424 (79%) | 76 (35%) 140 (65%) | <0.0001 |
Eating high-calorie, processed foods with added sugar and fat • Yes • No | 281 (52%) 256 (48%) | 148 (69%) 68 (31%) | <0.0001 |
Daily consumption of meat and processed meat derivatives • Yes • No | 353 (66%) 184 (34%) | 112 (52%) 104 (48%) | 0.0004 |
Daily dairy consumption • Yes • No | 293 (55%) 244 (45%) | 104 (48%) 112 (52%) | 0.1108 |
The use of dietary supplements for preventive purposes, during the period without UTI • Yes • No | 148 (28%) 389 (72%) | 92 (43%) 124 (57%) | <0.0001 |
Information received about the effect of antibiotics on the good bacteria in the body (risk of dysbiosis) • Yes • No | 312 (58%) 225 (42%) | 160 (74%) 56 (26%) | <0.0001 |
Compliance with the antibiotic administration schedule and doses • Yes • No | 485 (90%) 52 (10%) | 184 (85%) 32 (15%) | 0.0431 |
Information received about food supplements recommended in ITU • Yes • No | 324 (60%) 213 (40%) | 96 (44%) 120 (56%) | <0.0001 |
Information received about the role of probiotics in the treatment of UTI • Yes • No | 424 (79%) 113 (21%) | 140 (65%) 76 (35%) | <0.0001 |
Information received about the method and duration of administration of probiotics. • Yes • No | 440 (82%) 97 (18%) | 148 (69%) 68 (31%) | <0.0001 |
Compliance with the recommendations for the administration of probiotics • Yes • No | 433 (81%) 104 (19%) | 164 (76%) 52 (24%) | 0.1494 |
Drinking coffee in the morning on an empty stomach? • Yes • No | 289 (54%) 248 (46%) | 108 (50%) 108 (50%) | 0.3426 |
Smoker • Yes • No | 133 (25%) 404 (75%) | 68 (31%) 148 (69%) | 0.0596 |
Alcohol consumption • Yes • No | 64 (12%) 473 (88%) | 54 (25%) 162 (75%) | <0.0001 |
ORR | 95% CI | p Value | |
---|---|---|---|
Recurrences of UTI | 1.8447 | 0.9205–3.6967 | 0.0443 |
The presence of multi-resistance to antibiotics as a result of antibiotic treatments, confirmed by antibiogram | 3.7182 | 1.0325–13.3903 | 0.0445 |
Consumption of less than 1 L of water per day | 0.3467 | 0.1718–0.6994 | 0.0031 |
Predominant consumption of carbonated mineral water | 0.7179 | 0.2942–1.7517 | 0.4664 |
Daily consumption of sweet juices | 0.7874 | 0.3030–2.0463 | 0.6238 |
Daily consumption of energy drinks | 0.4318 | 0.1396–1.3358 | 0.1450 |
Eating high-calorie, processed foods with added sugar and fat | 0.6706 | 0.3006–1.4961 | 0.3291 |
Daily consumption of meat and processed derivatives | 1.6383 | 0.7148–3.7551 | 0.2434 |
Daily dairy consumption | 1.0407 | 0.4583–2.3630 | 0.9241 |
Lack of use of dietary supplements for preventive purposes, during the period without UTI | 2.1268 | 0.9456–4.7837 | 0.0681 |
Lack of information about the effect of antibiotics on the good bacteria in the body (risk of dysbiosis) | 3.9805 | 1.5202–10.4224 | 0.0049 |
Lack of information about food supplements recommended in ITU | 0.3519 | 0.1480–0.8371 | 0.0182 |
Lack of information about the role of probiotics in the treatment of UTI | 0.5191 | 0.2461–1.0949 | 0.0851 |
Lack of information about the method and duration of administration of probiotics | 0.3749 | 0.1286–1.0935 | 0.0724 |
rUTIs (N = 317) | nUTI (N = 436) | p Value | |
---|---|---|---|
Dysbiosis present • Yes • No | 241 (76%) 76 (24%) | 272 (62%) 164 (38%) | <0.0001 |
The presence of multi-resistance to antibiotics as a result of antibiotic treatments, confirmed by antibiogram • Yes • No | 93 (29%) 224 (71%) | 32 (7%) 404 (93%) | <0.0001 |
Consumption of less than 1 L of water per day • Yes • No | 157 (50%) 160 (50%) | 224 (51%) 212 (49%) | <0.0001 |
Predominant consumption of carbonated mineral water • Yes • No | 122 (38%) 195 (62%) | 88 (20%) 348 (80%) | <0.0001 |
Daily consumption of sweet juices • Yes • No | 101 (32%) 216 (68%) | 136 (31%) 300 (69%) | 0.8454 |
Daily consumption of energy drinks • Yes • No | 69 (22%) 248 (78%) | 40 (9%) 396 (91%) | 0.0001 |
Less than 3 servings of vegetables consumed daily • Yes • No | 149 (47%) 168 (53%) | 256 (59%) 180 (41%) | 0.0015 |
Less than 2 servings of fruit consumed daily • Yes • No | 139 (44%) 178 (56%) | 256 (59%) 180 (41%) | <0.0001 |
Less than 3 servings of whole grains consumed daily • Yes • No | 117 (37%) 200 (63%) | 212 (49%) 224 (51%) | 0.0014 |
Habitual consumption of salty foods • Yes • No | 80 (25%) 237 (75%) | 108 (25%) 328 (75%) | 0.8840 |
Eating high-calorie, processed foods with added sugar and fat • Yes • No | 201 (63%) 116 (37%) | 98 (22%) 338 (78%) | <0.0001 |
Daily consumption of meat and processed meat derivatives • Yes • No | 267 (84%) 50 (16%) | 195 (45%) 241 (55%) | <0.0001 |
Daily dairy consumption • Yes • No | 207 (65%) 110 (35%) | 109 (25%) 327 (75%) | <0.0001 |
The use of dietary supplements for preventive purposes, during the period without UTI • Yes • No | 106 (33%) 211 (67%) | 84 (19%) 352 (81%) | <0.0001 |
Information received about the effect of antibiotics on the good bacteria in the body (risk of dysbiosis) • Yes • No | 204 (64%) 113 (36%) | 269 (62%) 167 (38%) | 0.4565 |
Compliance with the antibiotic administration schedule and doses • Yes • No | 268 (85%) 49 (15%) | 400 (92%) 36 (8%) | 0.0021 |
Information received about food supplements recommended in ITU • Yes • No | 196 (62%) 121 (38%) | 224 (51%) 212 (49%) | 0.0044 |
Information received about the role of probiotics in the treatment of UTI • Yes • No | 257 (81%) 60 (19%) | 308 (71%) 128 (29%) | 0.0011 |
Information received about the method and duration of administration of probiotics. • Yes • No | 276 (87%) 41 (13%) | 312 (72%) 124 (28%) | <0.0001 |
Compliance with the recommendations for the administration of probiotics • Yes • No | 237 (75%) 80 (25%) | 360 (83%) 76 (17%) | 0.0091 |
Drinking coffee in the morning on an empty stomach? • Yes • No | 145 (46%) 172 (54%) | 248 (57%) 188 (43%) | 0.0025 |
Smoker • Yes • No | 93 (29%) 224 (71%) | 108 (25%) 329 (75%) | 0.1564 |
Alcohol consumption • Yes • No | 24 (8%) 293 (92%) | 68 (16%) 368 (84%) | 0.0009 |
ORR | 95% CI | p Value | |
---|---|---|---|
Dysbiosis present | 5.9659 | 2.4077–14.7821 | 0.0001 |
The presence of multi-resistance to antibiotics as a result of antibiotic treatments, confirmed by antibiogram | 5.3147 | 2.0726–13.6280 | 0.0005 |
Consumption of less than 1 L of water per day | 1.1504 | 0.6240–2.1211 | 0.6534 |
Predominant consumption of carbonated mineral water | 1.6897 | 0.7568–3.7727 | 0.2006 |
Daily consumption of sweet juices | 0.9420 | 0.4301–2.0633 | 0.8813 |
Daily consumption of energy drinks | 2.3870 | 0.7958–7.1602 | 0.1206 |
Less than 3 servings of vegetables consumed daily | 1.3653 | 0.6624–2.8142 | 0.3987 |
Less than 2 servings of fruit consumed daily | 0.8035 | 0.3888–1.6604 | 0.5546 |
Less than 3 servings of whole grains consumed daily | 0.5509 | 0.2739–1.1082 | 0.0945 |
Eating high-calorie, processed foods with added sugar and fat | 1.3893 | 0.6957–2.7744 | 0.3515 |
Daily consumption of meat and processed derivatives | 1.4385 | 0.6118–3.3820 | 0.4045 |
Daily dairy consumption | 0.4779 | 0.2060–1.1085 | 0.0854 |
Lack of use of dietary supplements for preventive purposes, during the period without UTI | 0.1145 | 0.0501–0.2617 | <0.0001 |
Lack of information about food supplements recommended in ITU | 1.3259 | 0.6096–2.8836 | 0.4767 |
Lack of information about the role of probiotics in the treatment of UTI | 1.3070 | 0.4305–3.9680 | 0.6366 |
Lack of information about the method and duration of administration of probiotics | 0.2166 | 0.0629–0.7455 | 0.0153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruța, F.; Pribac, M.; Mardale, E.; Suciu, S.; Maior, R.; Bogdan, S.; Avram, C. Associations between Gut Microbiota Dysbiosis and Other Risk Factors in Women with a History of Urinary Tract Infections. Nutrients 2024, 16, 1753. https://doi.org/10.3390/nu16111753
Ruța F, Pribac M, Mardale E, Suciu S, Maior R, Bogdan S, Avram C. Associations between Gut Microbiota Dysbiosis and Other Risk Factors in Women with a History of Urinary Tract Infections. Nutrients. 2024; 16(11):1753. https://doi.org/10.3390/nu16111753
Chicago/Turabian StyleRuța, Florina, Mirela Pribac, Elena Mardale, Sara Suciu, Raluca Maior, Simona Bogdan, and Călin Avram. 2024. "Associations between Gut Microbiota Dysbiosis and Other Risk Factors in Women with a History of Urinary Tract Infections" Nutrients 16, no. 11: 1753. https://doi.org/10.3390/nu16111753
APA StyleRuța, F., Pribac, M., Mardale, E., Suciu, S., Maior, R., Bogdan, S., & Avram, C. (2024). Associations between Gut Microbiota Dysbiosis and Other Risk Factors in Women with a History of Urinary Tract Infections. Nutrients, 16(11), 1753. https://doi.org/10.3390/nu16111753