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Abstract: Certain workplaces, like deep-sea voyages, subject workers to chronic psychological
stress and circadian rhythm disorders due to confined environments and frequent shifts. In this
study, participants lived in a strictly controlled confined environment, and we analyzed the effects
of a confined environment on gut microbiota and metabolites. The results showed that living in
confined environments can significantly alter both the gut microbiota and the gut metabolome,
particularly affecting lipid metabolism pathways like glycerophospholipid metabolism. There was a
significant reduction in the abundance of Faecalibacterium and Bacteroides, while Blautia, Bifidobacterium,
and Collinsella showed significant increases. An association analysis revealed a strong correlation
between changes in the gut microbiota and the metabolome. Four upregulated lipid metabolites
may serve as biomarkers for damage induced by confined environments, and certain gut microbiota
alterations, such as those involving Faecalibacterium and Bacteroides, could be potential psychobiotics
or therapeutic targets for enhancing mental health in a confined environment.

Keywords: confined environment; gut microbiota; non-target metabolome; glycerophospholipid
metabolism; correlation analysis

1. Introduction

Specific working environments like ocean navigation and deep-sea scientific expedi-
tions feature confined spaces for work and living, which negatively impact workers due to
factors including noise and circadian rhythm disruptions [1,2]. The small space and social
isolation of confined environments lead to a gradual increase in the psychological pressure
experienced by workers [3]. Studies have shown that confined environments significantly
affect the emotional and physical well-being and work efficiency of individuals. However,
the majority of these studies take place in semi-open settings like cargo ships on extended
voyages, offering participants more room for movement and the ability to interact with the
outside world.

Besides diet and antibiotic use, heightened psychological stress may induce either
temporary or permanent alterations in the gut microbiota [4,5]. Individuals working in
confined environments are often required to work frequent shifts, disrupting their circa-
dian rhythms and exacerbating emotional and psychological stress, including anxiety and
depression. Insufficient sleep and circadian rhythm disorders can significantly disrupt the
gut microbiota’s rhythms, impacting immunity, digestion, and behavior [6–8]. Research
indicates a robust connection between circadian rhythm regulation, gut microbiota, and
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psychological stress. For instance, chronic stress over time in mice can alter the gut micro-
biota’s composition and functionality, increase the brain’s production of kynurenine and its
metabolites, and disrupt tryptophan metabolism, leading to diminished neurogenesis in
the hippocampus and depression [9,10]. In conclusion, chronic stress from environmental
and other factors can modify the gut microbiota and impact neurotransmitter metabolism,
causing an imbalance in the brain–gut axis’s two-way communication. This may result in
depression, irritability, and cognitive decline.

In confined work environments, workers undergo continuous shifts. As a result,
their biological rhythms, sleep cycles, and eating habits become misaligned, leading to
intestinal dysbacteriosis and changes in intestinal permeability, thereby increasing the
risk of metabolic diseases like diabetes and coronary heart disease [11–13]. Night-shift
work can result in nutritional imbalances and biological clock disruptions, contributing to
metabolic syndrome [14]. Moreover, night-shift work may heighten emotional vulnerability,
as greater disturbances in circadian rhythms are associated with heightened depression
and anxiety-like behaviors [15]. Compared with shift workers in normal environments,
those in confined environments experience greater emotional stress. Such stress can induce
emotional disturbances that affect workers’ task responsiveness and accuracy, especially
those in pivotal roles.

Previous studies on confined working and living environments have focused on im-
proving living conditions, alleviating workers’ anxiety, and increasing their work efficiency
through the control of elements like lighting and temperature [16–18]. Nevertheless, the
specific alterations in gut microbial abundance and metabolite profiles among individu-
als in confined environments, as well as the relationship between these changes, remain
unclear. Consequently, examining the intrinsic connections between gut microbiota and
metabolism in individuals living and working in confined environments is essential.

This study simulates a closed underwater environment such as a submarine, where
subjects cannot exit the simulation chamber, are unable to communicate with the outside
world through mobile phones or computers, and work in frequent shifts according to
a work rhythm. The impact of such a strictly confined space on subjects will be more
pronounced, especially on the gut microbiota and its metabolites.

Therefore, this manuscript primarily explores the effects of a strictly confined envi-
ronment (worked in continuous shifts) on the gut microbiota and metabolites in subjects.
Diversity sequencing and metabolomics technology were used to analyze the composi-
tion of and elucidate the associations between gut microbiota and metabolites and to
screen for metabolic markers. By examining the relationship between gut microbiota and
distinct metabolites, the goal is to identify potential biomarkers that may be utilized to
assess or counteract the impacts of confinement. This study establishes a theoretical ba-
sis for future research aimed at enhancing the health and work efficiency of individuals
residing and working in confined environments, which will facilitate the formulation of
targeted strategies.

2. Materials and Methods
2.1. Participants

Twelve male participants were selected who did not have cardiovascular, respiratory,
and other diseases, maintained a good sleep schedule for 7 days before the trial, and did not
consume alcohol, antibiotics, and other drugs. The participants had signed the informed
consent form and understood the process and risks of the experiment. All experiments
were approved and performed following the guidelines of the Ethical Committee of Naval
Medical University (Approval No. 2023032302).

2.2. Confined Environment

This experiment was carried out in a 1:1 restored submarine simulation cabin, which
had a normal pressure, room temperature, and closed cabin, an effective volume of 200 m3,
and the temperature and relative humidity errors in the room were less than 0.5 ◦C and
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5% RH, respectively. During the experiment, participants were allowed to have a regular
diet, but alcohol consumption and smoking were strictly prohibited. The participants
could use computers, fitness equipment, etc., but there was no external network, and the
submarine environment simulation cabin was in a state of information isolation. During
the trial, all participants were placed on a strict shift system, working 6 h and resting for
6 h, and the trial duration was 14 days and nights. The flow chart of the experimental
groups is shown in Figure 1A. To eliminate the impact caused by dietary differences,
after recruitment, participants will be pre-adapted in a normal environment for 7 days.
During this period, the diet of the participants will be consistent with that of the confined
environment experiment, and they will be free to move and communicate with the outside
world. After the adaptation period, participants will enter the confined environment
simulation chamber to officially begin the experiment, which will last for 14 days.
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Results are expressed as the mean ± SEM of participants for each experimental group (n = 12). The 
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Figure 1. Effect of confined environment on lipopolysaccharides (LPSs), mast cell trypsin (MCT),
and intestinal microbiota composition. (A) Flow chart of experimental groups; (B) Content of MCT
in fecal samples. (C) Content of LPS in fecal samples. (D) α-diversity changes of gut microbiota
in different groups. (E) Community bar-plot analysis of relative abundance of gut microbiota on
phylum level. (F) Community bar-plot analysis of relative abundance of gut microbiota on genus
level. Results are expressed as the mean ± SEM of participants for each experimental group (n = 12).
The significance of differences between the data was assessed using one-way ANOVA by Dunnett’s
analysis, * p < 0.05, ** p < 0.01. Different letters (a, b) indicate significant differences among the groups
at p < 0.05.
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2.3. Sample Collection

Fecal samples of participants were collected at 18:00–22:00 on days 1, 7, and day 14.
The fecal samples of one subject were added into sterilized 10 mL Eppendorf tubes on ice
and stored at −80 ◦C. On the first day after officially entering the simulation chamber, fecal
samples from the participants were collected as the control group W1.

2.4. DNA Extraction, PCR Amplification, and Illumina MiSeq Sequencing

Fecal DNA was extracted from fecal samples using an E.Z.N.A. stool DNA Kit (Omega
Bio-tek, Norcross, GA, USA) following the manufacturer’s protocol. The hypervariable
V3-V4 regions of the bacterial 16S rRNA genes were amplified with primers 338F and
806R. PCR amplification of the 16S rRNA gene was performed in triplicate using a mixture
containing 10 ng template DNA, 2 µL of 2.5 mM dNTPs, 0.8 µL of each primer at 5 µM,
0.4 µL Fast Pfu polymerase, 4 µL of 5× Fast Pfu Buffer, and ddH2O to a final volume of
20 µL. PCR amplification cycling conditions were as follows: initial denaturation at 95 ◦C for
3 min, followed by 27 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, and extension at 72 ◦C for 30 s
and single extension at 72 ◦C for 10 min. The quality of PCR products was quantified using
QuantiFluor™-ST system (Promega, Madison, WI, USA) in accordance with the standard
protocols. Subsequently, purified PCR products were sequenced using an Illumina MiSeq
platform (Illumina, San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd.,
Shanghai, China.

2.5. Microbiota Analysis

Microbiota analysis of participants was performed by Majorbio Cloud (https://cloud.
majorbio.com, accessed on 15 September 2023). All raw reads were demultiplexed and
quality-filtered using QIIME (version 1.9.1) with the following criteria: (1) the 300 bp reads
were truncated at any site receiving an average quality score < 20 over a 50 bp sliding
window; (2) sequences with reads containing ambiguous characters, or two nucleotide
mismatches in primer matching were removed. The optimized sequences were clustered
into operational taxonomic units (OTUs) using UPARSE (version 11, http://drive5.com/
uparse/, accessed on 15 September 2023). RDP Classifier (version 2.13, http://rdp.cme.
msu.edu/, accessed on 15 September 2023) was used to analyze the taxonomy of each 16S
rRNA gene sequence, and against the SILVA (version 138) 16S rRNA database using a
confidence threshold of 70%.

2.6. Metabolomic Analysis

Metabolite extraction: Fecal samples of 50 mg were accurately weighed, and the
metabolites were extracted using a 400 µL methanol–water (1:1, v/v) solution and grinding
beads. L-2-chlorophenylalanine (0.02 mg/mL) was added as an internal standard. After
grinding for 30 s, ultrasonic extraction was performed for 30 min at 5 ◦C and 40 kHz. The
supernatant was collected by centrifugation at 13,000× g at 4 ◦C for 15 min and carefully
transferred to sample vials for LC–MS/MS analysis.

UHPLC–MS/MS analysis: UHPLC-Q Exactive HF-X system equipped with an AC-
QUITY UPLC HSS T3 column (100 mm × 2.1 mm i.d., 1.8 µm; Waters, Milford, MA, USA).
The mobile phases were as follows: A, 95% water + 5% acetonitrile (containing 0.1% formic
acid); and B, 47.5% acetonitrile + 47.5% isopropanol + 5% water (containing 0.1% formic
acid). The column temperature was set at 40 ◦C. The mass spectrometric data were collected
using a Thermo UHPLC-Q Exactive Mass Spectrometer equipped with an electrospray
ionization source operating in either positive or negative ion mode. The optimal conditions
were set as follows: auxiliary gas heater temperature, 425 ◦C; sheath gas flow rate, 40 psi;
auxiliary gas flow rate, 30 psi; ion-spray voltage floating, −2800 V in negative mode and
3500 V in positive mode; and normalized collision energy, 20–40–60 V rolling for MS/MS.
Data acquisition was performed in DDA mode. The detection was carried out over a mass
range of 70–1050 m/z.

https://cloud.majorbio.com
https://cloud.majorbio.com
http://drive5.com/uparse/
http://drive5.com/uparse/
http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/
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Data preprocessing and annotation: After UHPLC–time-of-flight/MS analyses, the
raw data were imported into Progenesis QI 2.3 (Nonlinear Dynamics, Waters) for peak
detection and alignment. The preprocessing results generated a data matrix that consisted
of the retention time, mass-to-charge ratio (m/z) values, and peak intensity. Metabolic
features detected at a frequency of at least 80% in any set of samples were retained. After
filtering, the minimum metabolite values were imputed for specific samples in which the
metabolite levels fell below the lower limit of quantitation, and each metabolic feature
was normalized by summing. The internal standard was used for data quality control
(QC, reproducibility). Metabolic features for which the relative standard deviation of
the QC values was >30% were discarded. The mass spectra of these metabolic features
were identified using the accurate mass, MS/MS fragment spectra, and the isotope ratio
difference obtained from reliable biochemical databases, namely the Human Metabolome
Database (HMDB, http://www.hmdb.ca/, accessed on 20 September 2023) and the Metlin
Database (https://metlin.scripps.edu/, accessed on 20 September 2023). The mass tolerance
between the measured m/z values and the exact mass of the components of interest was
±10 ppm. For metabolites with MS/MS confirmation, only those with an MS/MS fragment
score > 30 were considered to be confidently identified. Otherwise, the metabolites had
only tentative assignments.

2.7. Determination of MCT and LPS in Fecal Samples

After accurate weighing from the sample, 250 mg of stool was diluted in 1.5 mL
of precooled phosphate-buffered saline (PBS) with 1 mM PMSF protease inhibitor and
homogenized using a pellet pestle. After centrifuging twice for 10 min, 5000× g at 4 ◦C,
supernatants were freshly made prior to detecting the content of MCT and LPS in the
feces. The supernatant was taken to detect MCT and LPS content by enzyme-linked
immunosorbent assay using human trypsin (TPS) ELISA Assay Kit and human lipopolysac-
charide (LPS) ELISA Assay Kit (Shanghai Tongwei, Shanghai, China) according to the
manufacturer’s instructions.

2.8. Statistical Analysis

Bioinformatic analysis of the gut microbiota was carried out using the Majorbio Cloud
platform (https://cloud.majorbio.com, accessed on 15 September 2023). The similarity
among the microbial communities in different samples was determined by principal co-
ordinate analysis (PCoA) based on Bray–Curtis dissimilarity. For metabolomics analysis,
multivariate statistical analysis was performed using the ropls R package from Biocon-
ductor (Version 1.6.2, http://bioconductor.org/packages/release/bioc/html/ropls.html,
accessed on 15 September 2023) on the Majorbio Cloud Platform. Variable importance in the
projection (VIP) values was calculated using an orthogonal projection to latent structures
discriminant analysis (OPLS–DA) model. p values were estimated using a paired-sample
Student’s t-test for single-dimensional statistical analysis. SPSS 17.0 (Chicago, IL, USA) and
Origin 2018 (Origin Lab, Northampton, MA, USA) were used to analyze the data, and the
data are expressed as means ± standard deviation (n = 12).

3. Results
3.1. Effects on Intestinal Lipopolysaccharides (LPSs), Mast Cell Trypsin (MCT), and Intestinal
Microbiota Composition

Figure 1A illustrates the study design, encompassing 12 participants who lived in
a confined environment for 14 days while adhering to a shift-work system. Analysis of
fecal samples revealed that the concentrations of MCT (p < 0.01) and LPSs (p < 0.05) were
significantly higher at the experiment’s conclusion (W3 point) compared to the beginning
(W1 point) (Figure 1B,C). It indicated that living and working in a confined environment
leads to changes in the intestinal environment that may affect the intestinal inflammatory
balance and tissue sensitivity [19,20]. Gut microbiota analysis indicated that, in comparison
to the study’s W1 point, the α-diversity was markedly decreased after 7 days of confinement

http://www.hmdb.ca/
https://metlin.scripps.edu/
https://cloud.majorbio.com
http://bioconductor.org/packages/release/bioc/html/ropls.html
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(W2 point). However, no significant difference was observed after an additional 7 days
(totaling 14 days) in the confined environment (W3 point) when compared to the initial W1
point (Figure 1D).

Figure 1E,F depict the impact of the experiment on the gut microbiota composition at
the phylum and genus levels, respectively. At the phylum level, the gut microbiota on day 1
(W1 point) was predominantly (>99%) Firmicutes and Bacteroidota, while on day 14 (W3
point), it was primarily composed of Firmicutes, Actinobacteriota, and Proteobacteria. At the
genus level, the gut microbiota of the W1 point was primarily composed of Faecalibacterium,
Bacteroides, Megamonas, Blautia, and other bacterial genera, whereas that of the W3 point
was mainly composed of Blautia, Bifidobacterium, Collinsella, Agathobacter, and other bacterial
genera. These findings suggest that the confined environment significantly altered the gut
microbiota composition of the participants.

3.2. Analysis of Differences in the Gut Microbiota

Principal coordinate analysis indicated that the gut microbiota structure at the W3
point was significantly distinct from the W1 point at the genus level (p = 0.001), with re-
duced dispersion (Figure 2A). This difference could be due to the participants maintaining
a sleep schedule at the W1 point. A significance test comparing the gut microbiota between
the W1 and W3 points demonstrated a substantial difference at the phylum level (p < 0.001).
Specifically, compared with the W1 point, the relative abundance of Bacteroidota was signifi-
cantly decreased and that of Actinobacteriota was significantly increased at the W3 point
(Figure 2B). Among the top 20 genera, the relative abundance of Faecalibacterium, Bacteroides,
Alistipes, and other genera was significantly decreased, and that of Blautia, Bifidobacterium,
Collinsella, Dorea, Eubacterium_hallii_group, and Fusicatenibacter was significantly increased
at the W3 point compared with the W1 point (Figure 2C).
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Figure 2. Analysis of differences in the gut microbiota. (A) PCoA (principal coordinate analysis) of
gut microbiota based on Bray–Curtis dissimilarity. (B) Phylotypes are significantly different between
W1 and W3 time points on the phylum level. (C) Phylotypes are significantly different between W1
and W3 time points on the genus level. The significance of the differences between the data was
assessed using one-way ANOVA by Dunnett’s analysis, * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.3. Non-Targeted Metabolomics Analysis of Fecal Samples

Fecal samples from the participants (W1 and W3) were analyzed using non-target
metabolomics techniques. Following data pre-processing, 1490 metabolites were identified
in positive-ion mode and 898 in negative-ion mode. Analysis of samples using partial least
squares discriminant analysis (PLS-DA) revealed significant differences in metabolomic
profiles between the W3 and W1 points (Figure 3A,B).
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Figure 3. Non-targeted metabolomics analysis of fecal samples. (A) PLS-DA of metabolomics
data for different fecal samples under NEG model. (B) PLS-DA of metabolomics data for different
fecal samples under POS model. (C) Top 20 KEGG pathways of metabolites. (D) KEGG pathway
classification: metabolites detected and annotated. (E) HMDB classification of annotated metabolites.

As shown in Figure 3C, all metabolites were annotated to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, indicating that pathways related to trypto-
phan metabolism, ATP-binding cassette transporters, bile secretion, and steroid hormone
biosynthesis were notably more active than other pathways. Figure 3D illustrates that
metabolites were predominantly linked to KEGG metabolic pathways, including those for
metabolism, human diseases, and organismal systems, with the highest number of metabo-
lites annotated in amino acid metabolism (94), lipid metabolism (87), and digestive system
(61) pathways. According to the Human Metabolome Database (HMDB) classification, at
the class level, metabolites with a relative abundance exceeding 1% were predominantly
carboxylic acids and derivatives (18.50%), fatty acyls (14.84%), prenol lipids (14.84%), and
organo-oxygen compounds (7.64%), as shown in Figure 3E.

3.4. Differential Metabolite Analysis

A differential metabolic set (W3_W1) was established according to specific criteria (fold
change [FC] > 1.2, variable importance in projection [VIP] > 1, and p < 0.05), resulting in the



Nutrients 2024, 16, 1761 8 of 17

identification of 122 differential metabolites. Analysis using HMDB indicated that among
these metabolites, those with a relative abundance exceeding 1% were predominantly
prenol lipids (15.38%), carboxylic acids and their derivatives (11.54%), steroids and steroid
derivatives (10.26%), and fatty acyls (7.69%), as illustrated in Figure 4A. The orthogonal
projections to latent structures discriminant analysis (OPLS-DA) results demonstrated
that the differential metabolites at the W3 point were clearly differentiated from those
at the W1 point, suggesting a substantial impact of the experimental environment on
participants’ metabolic profiles, as depicted in Figure 4B. As shown in Figure 4C, volcanic
map analysis showed that compared with the W1 point, the W3 point had 36 upregulated
metabolites and 40 downregulated metabolites. The KEGG annotation results indicated that
the majority of differential metabolites were associated with lipid metabolism pathways, as
shown in Figure 4D. Further KEGG enrichment analysis revealed significant enrichment in
glycerophospholipid metabolism among the differential metabolites (p < 0.05), as indicated
in Figure 4E.
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Figure 4. Differential metabolites analysis in metabolic set of W3_W1. (A) HMDB classification of
differential metabolites. (B) PLS-DA of differential metabolites in fecal samples. (C) Volcano plot
of differential metabolites. (D) KEGG pathway classification of differential metabolites. (E) KEGG
enrichment analysis of metabolic pathways identified between W3 and W1. (F) Metabolite clustering
heatmap analysis and variable importance in projection (VIP) scores of differential metabolites
between W3 and W1. Selected metabolites (VIP top 30) were those with VIP > 1.0. VIP score was
based on OPLS-DA model. Significant differences were compared with each two groups (** p < 0.01,
*** p < 0.001).
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Figure 4F presents a heatmap analysis of the top 30 differential metabolites sorted
by VIP, highlighting significant differences in the metabolite profiles between the W3
and W1 points. Several metabolites, including 7α,17-dimethyl-5β-androstane-3α,17β-
diol, 1-(sn-glycero-3-phospho)-1D-myo-inositol, crocin, and histidinyl hydroxyproline,
were notably upregulated at the W3 point, whereas others like sphingosine 1-phosphate,
5,10-methenyltetrahydrofolic acid, 7-dehydrodesmosterol, 16β-hydroxyestrone, and me-
thionylglutamine were found to be significantly downregulated at the W1 point.

3.5. Screening of Metabolic Markers

The top 25 differentially expressed metabolites, sorted by VIP values and assessed
for biomarker potential, are depicted in Figure 5. Analysis using the receiver operating
characteristic (ROC) curve indicated that 12 metabolites, with VIP values between 2.88 and
4.44, exhibited areas under the curve exceeding 0.95. Classification by HMDB revealed that
these metabolites were predominantly glycerophospholipids, carboxylic acids and their
derivatives, and sphingolipids, as illustrated in Figure 5A. Figure 5B presents a comparative
analysis of the expression levels of the 12 identified metabolites, highlighting the changes oc-
curring after participants’ exposure to the confined environment. It demonstrates that nine
metabolites exhibited upregulation, while three showed downregulation. The KEGG path-
way annotation suggests that lipid metabolic pathways were significantly active among par-
ticipants throughout the experiment. Consequently, ROC curves were constructed for four
specific lipid metabolites: 1-(sn-glycero-3-phospho)-1D-myo-inositol, phosphatidylserines
(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), ganglioside monosialic 2 (d18:0/12:0),
and cardiolipins (18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)/18:3(6Z,9Z,12Z)). Figure 5C illus-
trates that these four lipid metabolites could potentially serve as biomarkers for metabolic
processes that are upregulated in individuals working in confined environments.
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Figure 5. Metabolic markers analysis in confined environment. (A) HMDB classification of top
25 differentially expressed metabolites was sorted by VIP values. (B) Comparative analysis of the
relative content of metabolites (ROC > 0.95). (C) ROC curves of four lipid metabolites upregulated in
W3 time point. Significant differences were compared with each two groups (*** p < 0.001).

3.6. Association between Gut Microbiota and Metabolome

Procrustes analysis, a technique in multivariate statistics, is utilized for the compara-
tive analysis of traits, aiming to determine the best alignment between two sets of geometric
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shapes through rotation, translation, reflection, and scaling. Accordingly, this method was
applied to assess the correlation between the spatial arrangement of participants’ gut
microbiota and fecal metabolites, as well as to explore the similarities and differences
between the microbiomes and metabolomes. The findings revealed a significant correlation
between the diversity of the gut microbiota and the metabolite levels (p < 0.01), suggesting a
robust association between gut microbiota composition and metabolite profiles (Figure 6A).
Additionally, a two-way orthogonal partial least squares (O2PLS) analysis confirmed a
strong correlation between gut microbiota composition and the metabolome (Figure 6B,C).
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Figure 6. Association between gut microbiota and metabolome. (A) Procrustes analysis of gut
microbiota and metabolome. (B,C) O2PLS analysis of gut microbiota and metabolome. (D) Correlation
network analysis of gut microbiota (top 15 of relative abundance) with upregulated differential
metabolites (top 15 VIP). (E) Correlation network analysis of gut microbiota (top 15 of relative
abundance) with downregulated differential metabolites (top 15 VIP).

From the differential metabolic set W3_W1, the top 15 upregulated and downregulated
metabolites were identified (Table 1) and subjected to an association network analysis with
the gut microbiota. Figure 6D,E illustrate that, at the genus level, the gut microbiota
displayed a complex network of interactions with the selected differential metabolites. The
upregulated differential metabolites demonstrated a strong positive correlation with the
genera Collinsella, Blautia, and Fusicatenibacter, while showing a strong negative correlation
with Bacteroides. Conversely, the downregulated differential metabolites exhibited opposite
correlation patterns with the aforementioned gut microbial genera.

Table 1. The information of the top 30 metabolites (sorted by VIP).

Metabolites Code VIP_PLSDA p FC (W3/W1)

2-Phenylethanol glucuronide metab_1_down 3.945 2.25 × 10−7 0.536
Dehydrozingerone metab_2_down 3.8852 0.0001184 0.2979

Serylarginine metab_3_down 3.4511 7.42 × 10−6 0.6066
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Table 1. Cont.

Metabolites Code VIP_PLSDA p FC (W3/W1)

Methionyl-Glutamine metab_4_down 3.4181 4.80 × 10−6 0.5118
Sphingosine 1-phosphate metab_5_down 3.1949 0.0003718 0.6538

Geniposidic acid metab_6_down 2.8451 0.00153 0.6132
L-Thyronine metab_7_down 2.7952 3.44 × 10−7 0.7068

4-(1-hydroxy-3-phenylpropyl)-5-methoxy-2,6-
dimethylbenzene-1,3-diol metab_8_down 2.7574 0.003052 0.5893

6-pentadecyl Salicylic Acid metab_9_down 2.655 5.62 × 10−8 0.7579
CP 47,497-C8-homolog C-8-hydroxy metabolite metab_10_down 2.6112 5.17 × 10−6 0.7451

Tiazuril metab_11_down 2.6021 9.18 × 10−6 0.7204
Repaglinide aromatic amine metab_12_down 2.5741 0.002264 0.7198

5,10-Methenyltetrahydrofolic acid metab_13_down 2.5588 0.006257 0.673
Humulenol II metab_14_down 2.5371 0.001422 0.7852

Met Ile Lys His metab_15_down 2.5225 8.10 × 10−5 0.7595
Crocin 4 metab_1_up 4.6252 1.18 × 10−5 3.2293

(R)-Meranzin metab_2_up 4.0333 1.01 × 10−9 2.7535
Polypodoside C metab_3_up 3.8511 5.77 × 10−9 1.9694

PS(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) metab_4_up 3.5563 4.06 × 10−8 1.5789
Hamaudol metab_5_up 3.5003 1.89 × 10−8 1.9738

1-(sn-Glycero-3-phospho)-1D-myo-inositol metab_6_up 3.3895 2.29 × 10−10 1.4525
Ganglioside GM2 (d18:0/12:0) metab_7_up 3.2341 2.35 × 10−9 1.457

Isovitexin 2′′-O-glucoside metab_8_up 3.2274 0.0003862 1.8025
7a,17-dimethyl-5b-Androstane-3a,17b-diol metab_9_up 3.2009 1.46 × 10−9 1.4234

CL(18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)/18:3(6Z,9Z,12Z)) metab_10_up 3.1481 2.92 × 10−7 1.3588
3,4,5-trihydroxy-6-[5-hydroxy-2-methoxy-4-(prop-2-en-1-

yl)phenoxy]oxane-2-carboxylic acid metab_11_up 3.1198 0.0008611 1.7527

3-[4-hydroxy-3-(4-hydroxy-3-methylbut-2-en-1-
yl)phenyl]prop-2-enoic acid metab_12_up 3.1166 9.90 × 10−8 1.4571

Austalide I metab_13_up 3.036 0.0001106 1.4601
3,5,6,7-tetrahydroxy-2-(3-methoxyphenyl)-8aH-chromen-8a-yl metab_14_up 2.9157 2.55 × 10−5 1.3227

Leucyl-leucyl-norleucine metab_15_up 2.8408 5.84 × 10−8 1.4052

3.7. Significance Analysis of the Association of the Gut Microbiota with Metabolites

Figure 7 presents a correlation heatmap illustrating the relationships between the top
30 gut microbial genera by relative abundance and the top 15 metabolites by VIP score. The
heatmap analysis demonstrated significant correlations between metabolites and the gut
microbiota, irrespective of the metabolites’ regulation status. Specifically, as depicted in Fig-
ure 7A, Bacteroides and Alistipes were significantly negatively associated with upregulated
metabolites, while Collinsella, Blautia, and Fusicatenibacter exhibited significant positive as-
sociations with these metabolites. Conversely, the correlations between the gut microbiota
and downregulated metabolites mirrored the inverse of those observed with upregulated
metabolites, with the strongest effects noted for Collinsella, Blautia, and Bacteroides. To
substantiate the observed correlations between the gut microbiota and four potential lipid
metabolism biomarkers, a MaAsLin-based correlation analysis was conducted, with results
detailed in Figure 7C. The findings indicated that following the participants’ exposure to
the confined environment, the enrichment of Collinsella, Blautia, and other genera within
their gut microbiota was strongly correlated with these four biomarkers.
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** p < 0.01, *** p < 0.001).

4. Discussion

In this study, the participants performed experiments in frequent shifts in a strictly
confined environment. Multi-omics techniques were employed to assess alterations and
correlations within the gut microbiota and metabolites. In confined workspaces, such as
deep-sea scientific expeditions, workers must often perform frequent shifts, which perturbs
dietary, sleep, and other rhythms, thereby affecting the gut microbiota and its metabolic
characteristics. Notably, night shifts can disrupt circadian rhythms, diminish melatonin
production, and heighten the risk of metabolic disorders, including cardiovascular dis-
eases [21–23]. Shift workers, especially those working night shifts, are frequently exposed
to artificial light and experience significant changes in their sleep patterns and eating times.
This can lead to the desynchronization of the central and peripheral circadian clocks and
disrupt the rhythmic changes of the gut microbiota, thereby contributing to metabolic dis-
eases [24,25]. Furthermore, individuals in confined environments experience greater social
isolation compared to those in normal environments, potentially intensifying appetite loss



Nutrients 2024, 16, 1761 13 of 17

and mood disturbances. Additionally, research by Li et al. has indicated that in confined
environments, the gut microbiota’s composition and functionality significantly influence
workers’ moods [26].

In healthy individuals, up to 60% of the gut microbiota oscillates rhythmically [27].
Metabolic abnormalities associated with rhythm disorders are closely related to perturba-
tions of oscillations in the gut microbiota and its products [25,28]. In this study, the gut
microbiota structure of the participants was significantly different after they were exposed
to the confined environment, contrasting with their pre-exposure state. In particular, there
was a significant rise in the relative abundance of Bacteroides and Actinobacteriota. This
suggests that the participants’ gut microbiota composition and oscillation patterns were
disrupted, potentially affecting their circadian rhythm regulation [29,30]. Shift work in
confined environments, leading to sleep deprivation, can disrupt the rhythmic oscillations
of Bacteroides, a finding that corroborates Li et al.’s research [31]. Additionally, sleep depri-
vation can weaken our immune function through changes in the gut microbiota [32–34].
Furthermore, disorders of gene expression involved in liver rhythm regulation, such as
those of Bmal1 and Clock, were observed in high-energy diet models and are related to
Bacteroides [35].

Confined environments can cause constant psychological stress and thus significantly
affect mood [36]. Sustained stress can also trigger the hypothalamus–pituitary–adrenal
axis, which affects the gut microbiota by reducing the relative abundance of Lactobacillus
and Bacteroides [37]. Hao et al. showed that during the 1-year “Lunar Palace 365” project,
the presence of potential probiotics such as Bacteroides uniformis and Roseburia inulinivorans
were positively correlated with positive emotions in participants [38]. Lu et al. indicate
that the working environment of underground tunnels can cause significant changes in the
gut microbiota, which may be related to the workers’ psychological stress and emotional
abnormalities [39].

Bacteroides, Roseburia, and other genera are able to metabolize carbohydrates, so sig-
nificant changes in their abundance may be related to the perturbation of people’s dietary
rhythms in confined environments [40]. Bacteroides regulate a depressed mood by influ-
encing bidirectional communication via the brain–gut axis through tryptophan metabolic
pathways and neurotransmitter conduction, but this function is species-dependent [41].
Furthermore, in this study, the relative abundance of Faecalibacterium was found to be
significantly reduced in participants after they had lived in a confined environment. As
Faecalibacterium is directly proportional to sleep quality in patients with bipolar disor-
der, increasing the abundance of Faecalibacterium improved sleep quality [42]. Grosicki
et al. showed that in young, healthy individuals, the relative abundance of Blautia and
Ruminococcus in the gut microbiota was inversely proportional to sleep quality, while that
of Bacteroidetes was positively associated with sleep quality [43].

Changes in the gut microbiota can significantly impact the intestinal microenviron-
ment, inflammatory state, and metabolites. In this study, after living and working in a
confined environment, the LPS concentrations in the fecal matter of participants were
significantly increased, which may be related to the increased abundance of the genus
Collinsella [44]. Collinsella, a member of the Actinobacteriota phylum, is closely associated
with various diseases, including diabetes and nonalcoholic steatohepatitis [45,46]. More-
over, Kalinkovich et al. found that Collinsella has pro-inflammatory effects, such as its
capability of epitope mimicry and enhancing cell apoptosis [47].

Intestinal metabolites are shaped by numerous factors, including diet, gut microbiota,
and host metabolic processes. Our metabolomic analyses revealed that frequent shift work
within a confined environment resulted in a substantial upregulation of lipid metabolic
pathways and elevated levels of various lipid metabolites, potentially linked to disrupted
rhythms and sleep deprivation [48]. Lipid metabolites are essential for various cellular func-
tions, including biofilm formation, cell signaling, and protein–chromosome interactions,
and are significantly correlated with sleep, mood, and circadian rhythm regulation [49].
Furthermore, the synthesis and metabolic processes of lipid metabolites, including glyc-
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erophospholipids, are under complex and stringent temporal regulation in cells such as
retinal cells and fibroblasts [50,51]. Moreover, fluctuations in gut microbial abundance also
influence the composition of lipid metabolites. For example, sphingolipids are the main
lipid components of the exosomes of Bacteroides, which are involved in the digestion of
carbohydrates [52]. The relative abundance of Bacteroides decreased significantly in the
participants in this study after they had lived in the confined environment, resulting in a
decrease in the content of sphingolipids in their fecal samples compared with before the
experiment.

5. Conclusions

We examined the effects of confined environments on participants’ gut microbiota and
metabolism under a strict shift work system. Studies have shown that shift work in a con-
fined environment can seriously affect the structure and composition of gut microbiota, and
can significantly increase the abundance of Collinsella, Blautia, and other genera of bacteria.
At the same time, it can also significantly increase the content of LPS and MCT in feces.
Metabolomics studies showed that after the experiment, the activity of lipid metabolism
in the intestinal metabolites of the subjects increased significantly, and the changes in the
intestinal metabolites had a strong correlation with the changes in the gut microbiota. We
screened four biomarkers associated with confined environment experiments from lipid
metabolites and found that these metabolic markers were positively correlated with the
enrichment of Collinsella, Blautia, and other genera of bacteria. This suggests that gut
microbiota may be a potential therapeutic target for mitigating the health effects of confined
environments such as deep sea and aerospace.

Probiotics and dietary interventions can effectively improve gut microbiota dysbiosis,
which may potentially alleviate the effects of confined spaces. So, future studies will explore
the impact of dietary interventions on the effects of confined environments and validate
the efficacy of the identified potential biomarkers.
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