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Abstract: The gut microbiota performs several crucial roles in a holobiont with its host, including im-
mune regulation, nutrient absorption, synthesis, and defense against external pathogens, significantly
influencing host physiology. Disruption of the gut microbiota has been linked to various chronic
conditions, including cardiovascular, kidney, liver, respiratory, and intestinal diseases. Studying
how animals adapt their gut microbiota across their life course at different life stages and under the
dynamics of extreme environmental conditions can provide valuable insights from the natural world
into how the microbiota modulates host biology, with a view to translating these into treatments
or preventative measures for human diseases. By modulating the gut microbiota, opportunities to
address many complications associated with chronic diseases appear. Such a biomimetic approach
holds promise for exploring new strategies in healthcare and disease management.
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1. Introduction

“All disease begins in the gut”—(Hippocrates of Kos).
Although the analysis of gut microbial composition in humans is still limited, a range

of studies has demonstrated that modulating the composition of the gut microbiota alters
metabolism. Indeed, the microbiota has a crucial role in health and development, e.g.,
through the production of vitamins and short-chain fatty acids (SCFA), modulation of the
immune system, and protection against pathogenic bacterial species colonizing the gut. The
composition of the gut microbiota changes according to intrinsic and extrinsic exposome
factors, including diet (the primary modulator), genetics, drugs, stress, geographical area,
aging, etc.), and alterations in this composition can be related to health status [1,2].

In humans, the diseasome of aging (i.e., age-related non-communicable diseases
underpinned by a common component of dysregulated aging), which includes diabetes,
cardiovascular disease, cancer, autoimmune disorders, neuropsychiatric disorders, and
chronic kidney disease, is associated with gut dysbiosis [1]. Correspondingly, microbial
dysbiosis has been ascribed as a new hallmark of aging. Notably, modulation of the effects
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of the microbiome using food may open up new therapeutic and interventional avenues
for treating chronic disease conditions [3].

Biomimetics, rooted in seeking innovation from nature, is a concept integral to sci-
entific exploration [4]. Albert Einstein’s quote “Look deep into nature, and then you will
understand everything better” underscores nature’s profound insights, highlighting how
studying the natural world can deepen our comprehension of life’s intricacies. Biomimetic
studies illuminate principles and strategies found in nature that have evolved through nat-
ural selection, offering solutions to contemporary challenges. Researchers investigate how
evolution, driven by natural selection, has equipped animals and plants with adaptations
to thrive in their environments. They explore nature’s wisdom for solutions to environ-
mental sustainability amidst human impact [5,6]. Understanding how animals adapt to
their nutritional environments can provide valuable insights for developing strategies to
mitigate gut dysbiosis by targeting the foodome. This approach is especially relevant when
considering the interaction with the epigenetic landscape, a dynamic feature responsive to
real-time environmental changes that can be regulated by bioactive compounds derived
from food [1,3,7].

Biomimetic research addresses key questions around the interplay between the foodome
and the microbiota and health. How, for example, do these features interact to sustain
the mechanisms underpinning good health? Understanding the role of the gut microbiota
in ruminants’ production of short-chain fatty acids (SCFA) from fiber fermentation to
ameliorate inflammatory processes and expression of the cytoprotective transcription factor
nuclear factor erythroid 2-related factor 2 (Nrf2) to promote cellular resilience to stress
can lend support to novel treatment strategies [8]. Additionally, the resilience of bears
during hibernation, elephants’ cancer resistance, and the giant salamander’s resilience to
global warming offer valuable insights into the regulation of the cellular processes that are
dysregulated in the “diseasome of aging”. This narrative review, adopting a biomimetic
perspective, will explore the prospect of modulating the microbiota to alleviate specific
phenotypes associated with chronic disease.

2. The Emergence of an Industrialized Microbiota

The gut microbiota of mammals is remarkably diverse, comprising bacteria, fungi,
protozoa, archaea, yeasts, and bacteriophages. The human gut microbiota has co-evolved
with our species to create a holobiont, whereby the microbial community has a composi-
tion honed over millions of years of evolution by natural selection. However, the rapid
industrialization and urbanization (air and water pollution, heat stress, and microplastic
exposure) of human society during the Anthropocene has dramatically altered the compo-
sition and diversity of the gut microbiome at a rate that has outpaced natural symbiotic
selective processes. This has resulted in a wave of “burden of lifestyle” diseases driven by a
sedentary lifestyle and industrialized environmental changes, inclusive of a Western-style
ultra-processed diet. In addition, another issue of this era is the pollution of drinking
water with xenobiotic substances, such as dyes, pharmaceuticals, personal care products,
endocrine-disrupting compounds, pesticides, and polycyclic aromatic hydrocarbons. Drink-
ing water is among the items consumed in the largest amount. It may be considered an
important factor in shaping the gut microbiome, affecting the composition, gene expression,
and function of the gut bacteria, consequently impacting the host health [9,10]. All these are
associated with various degrees of microbial dysbiosis. The adverse health consequences
of an industrialized microbiota are not yet fully realized [1,11,12].

Comparative studies of gut microbiomes across non-Westernized and industrialized
populations have revealed stark differences. The traditional human microbiome, present in
hunter–gatherer and subsistence farming communities, is characterized by high microbial
biodiversity and ancient microbial lineages that are increasingly rare in modern industri-
alized societies [13,14]. In contrast, the industrialized human microbiome is marked by
reduced richness and a relative predominance of microbes adapted to the Western diet and
lifestyle [12].
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This microbiome depletion and homogenization can be attributed to several key factors
associated with industrialization. The shift towards processed nutrient-poor foods high in
fat, sugar, and synthetic additives has profoundly reshaped the gut microbial community,
favoring microbes adept at metabolizing the components of the industrialized diet over
fiber-fermenting plant polysaccharide-degrading bacteria [15]. For example, additives from
ultra-processed food can impair the gut microbiota composition and lead to alterations in
the gut microbiota–immune system axis [16].

Improved sanitation, ubiquitous use of antimicrobials, and reduced exposure to di-
verse environmental microbiomes have also diminished microbial acquisition and trans-
mission, especially in early life stages critical for optimal microbiome development [17].
Additionally, diminished physical activity and time spent in natural environments decrease
contact with environmentally derived microbes that can seed the human gut [18]. Epi-
demiological studies have linked the industrialized microbiome profile to higher risks of
immune-mediated, metabolic, and neurological disorders. The loss of microbial diversity
and ancestral microbial species compromises the microbiome’s protective, metabolic, and
signaling functions that maintain human health [12]. Notably, the depletion of SCFA-
producing bacteria is associated with inflammation, insulin resistance, and cognitive im-
pairment [19,20].

Therefore, restoring a biodiverse ecologically stable microbiome is a crucial public
health priority. Potential strategies include promoting traditional dietary practices, increas-
ing exposure to green spaces and environmental microbiomes, and developing targeted
probiotic and prebiotic interventions [12,18]. Ultimately, recovering a healthy ancestral-like
gut ecosystem may be essential for reclaiming our evolutionary-tuned physiology and
preventing the rising tide of modern non-communicable diseases.

3. What Does the Natural World Tell Us about an Industrialized Microbiota?

By examining the microbiomes of humans and other species in natural non-industrialized
environments, we can glean valuable insights into the consequences of living in the Anthro-
pocene on the human microbiome. The natural world provides a window into the types
of microbial communities that our species co-evolved with, offering critical context for
understanding the dysbiosis observed in industrialized societies. This is a powerful compar-
ative lens to understand the industrialized human microbiome as a radical human-driven
perturbation in an ancient symbiosis [21].

Comparative studies of hunter–gatherer and traditional agricultural communities
have consistently demonstrated remarkable microbial diversity and the presence of ancient
microbial lineages that are increasingly rare in Westernized populations [13,22]. For ex-
ample, the Hadza of Tanzania, one of the last remaining hunter–gatherer groups, harbor a
gut microbiome rich in bacteria like Treponema and Prevotella, which are virtually absent
in urban industrialized settings [13]. A study examining 54 mammalian species revealed
that the vulnerable giant anteater exhibited the highest richness in gut microbiota, while
carnivores displayed the lowest. This finding suggests that a diverse microbiota may not
be necessary for digesting meat-rich diets compared with herbivorous diets. Moreover,
animals with foregut physiology demonstrated higher richness and greater microbiota
diversity, indicating the complexity of gut physiology [23]. The rumen, housing microor-
ganisms responsible for fermenting fibers and potentially altering dietary toxins, such
as tannins [24], has a crucial role in herbivores. Early studies involving germ-free sheep
revealed that these animals could not survive long after transitioning from milk to solid
food, highlighting the vital role of gut microbiota in herbivorous species [25]. Similarly,
analysis of wild great ape microbiomes revealed a level of diversity far exceeding that of
human microbiomes, even in non-Westernized human populations [26]. These ancestral
microbial communities play crucial roles in regulating host health, particularly immunity.
In captivity, primate microbiomes rapidly “humanize” and lose significant diversity [27].

The natural world also provides insights into the specific mechanisms by which
industrialization disrupts the human microbiome. Studies of wild mammals have shown
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that urbanization, pollution, and agricultural practices can directly perturb environmental
microbiomes [28,29]. Microbes essential for healthy ecosystem functioning are displaced by
opportunistic pathobiont-like species better equipped to thrive in contaminated disturbed
habitats. Importantly, experimental animal studies have demonstrated that exposing
hosts to these industrialized environmental microbiomes can recapitulate the dysbiotic
disease-associated gut microbial profiles observed in humans [12,29]. This highlights
how environmental microbiome deterioration due to human activities may be a driver of
microbiome depletion and homogenization in industrialized populations.

Additionally, wild primate studies reveal the critical role of dietary fiber and plant
secondary metabolites in shaping healthy gut microbial communities [30]. The dramatic
shift towards processed fiber-poor foods in industrialized human diets likely removes these
essential microbial substrates, contributing to the proliferation of microbes maladapted to a
plant-rich diet. Reconnecting with environmental microbiomes and dietary patterns that
align with our evolutionary heritage may be essential for restoring microbial diversity and
the holistic health benefits it confers [11].

4. Insights Gleaned from Studying the Gut Microbiota of Specific Animals

Nature is full of interesting natural animal models developed during evolution that
provide excellent models for studies about the impact of nutritional habits on the mi-
crobiome, evolutionary adaptation, and metabolic functions [1]. Table 1 outlines some
distinctive features of certain animals concerning gut microbiota metabolism. This micro-
biota has evolved as a surrogate organ, connecting human immune function, diseases, and
dietary habits [31]. Salutogenic bacteria such as Bacteroidaceae and Bifidobacteriaceae have
remained human commensals across ages [26]. In this review, we will focus on some species
(naked mole rats (NMRs), pandas, elephants, tigers, and koalas) in which alterations in
the gut microbiota have proven to play a role in the adaptive development of a protective
phenotype (Figure 1).
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Table 1. Examples of microbiota metabolism in animals.

References Animals Findings

Sommer et al. (2016) [32]
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Debebe et al. (2017) [33] 
 

Naked Mole rat 

Gut microbiome composition ↑ capacity to produce SCFA, mono-
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products. 

Xiao et al. (2019) [34] 
 

Bat 

↑ Proteobacteria when compared to humans. 
Gut microbiotas change during early summer and late summer: 
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Zhang et al. (2018) [35] 
Deng et al. (2023) [36]  

Panda 

Large and diverse gene for hemicellulose hydrolysis.  ↑ Proteobacteria.  ↑  Streptococcus alactolyticus, affecting essential amino-acid 
biosynthesis. 

Bear

Fecal transplantation of the summer bear microbiota to germ free
mice ↑ fat gain and glucose tolerance compared microbiota from
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Debebe et al. (2017) [33]
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Naked mole rats (NMRs) are subterranean long-living rodents that exhibit coprophagic
habits, both autocoprophagy and allochoprophagy. This intriguing behavior is believed
to play a role in maintaining their health, nutrient balance, and eusocial behaviors. In the
underground nest, there may be changes in the composition of fecal bacteria due to oxygen
deprivation and the mixing of bacteria from the feces and surrounding microorganisms.
Coprophagy may be an ancient mechanism for acquiring microorganisms and preventing
uniformity in their bacterial microbiome. When coprophagia occurs, animals may also
re-ingest the vitamin K2 initially produced by these gut bacteria. Vitamin K2 is important
for various bodily functions, including blood clotting and bone health. On the other hand,
animals engaging in coprophagic habits may be more vulnerable to microbial exposure [50].
In contrast, NMRs demonstrate a reduced bacterial load and diminished inflammatory
potential in their gut microbiota compared with mice and humans. This distinction is likely
attributed to the constant expression of CD14 on their granulocytes and the presence of the
cathelicidin gene, which exhibits potent antimicrobial properties [51–54]. Understanding
the microbiome and immune system characteristics can broaden our knowledge of the
evolutionary characteristics of animals that serve as models for longevity and cancer
prevention [50,55].

It is noteworthy that certain unique compositions of gut microbiota found in NMR,
including the elevated diversity of Spirochaetaceae and Mogibacteriaceae, resemble those
observed in human models of a healthy gut microbiome, such as centenarians and Hadza
hunter–gatherers. Three days of a Hazda hunter foraging diet causes a massive increase
in microbiome diversity [56]. Thus, we could make the effort to improve our gut health
by re-wilding our diet and lifestyle. NMRs’ unique metabolism involves utilizing soil
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sulfate to accept terminal electrons, sustaining an anaerobic oxidative gut metabolism [33].
This sulfate-dependent metabolism suggests a strategic role for sulfhydration in protect-
ing against disease and premature aging. Furthermore, it highlights the importance of
functional processes in host–microbiota interactions alongside microbial composition and
abundance [57].

The metabolome sheds light on microbiome–host interactions that contribute to the
longevity of NMRs. Compared with mice, they exhibit lower levels of 3-Indole propionic
acid, likely of bacterial origin, suggesting potential variations in the microbiota that may
explain some of the metabolic differences between the two species [58]. Additionally, the
gut microbiota of NMR is characterized by a significant abundance of Bacillus megaterium,
known for its efficiency in polyamine biosynthesis [51,59]. Polyamines, such as spermidine,
are recognized for their ability to induce autophagy, a cellular process linked to maintaining
good health and promoting longevity. Multiple studies have reported enhanced autophagy
in NMR [58,60,61].

Another remarkable characteristic of NMRs is their extraordinary tolerance to hy-
poxia. They can survive up to 18 min of complete oxygen deprivation thanks to metabolic
adaptations that involve rewiring glycolysis [62]. The connections between microbiota and
hypoxia are fascinating, involving a dynamic exchange of gaseous signaling mediators
produced by bacterial and intestinal metabolisms [63]. In the colon, where the partial
pressure of oxygen (pO2) ranges from 0.4 to 2.0% (compared with 21% at sea level and 10%
in tissues), intestinal hypoxia fosters the growth of anaerobic bacteria that produce gases
like NO, CO, H2S, and CO2, known to activate hypoxia-inducible factors (HIFs). HIFs
regulate genes involved in various adaptations to hypoxia, resulting in increased mucin
production, β-defensins from mucus, and the regulation of tight junction proteins such
as claudin-1. However, increased activation of HIF may be associated with diseases like
inflammatory bowel disease and colorectal cancer [63]. A recent study has demonstrated
that C57BL/6 J mice exposed to hypoxic conditions (simulated high-altitude hypoxia)
exhibited alterations in their gut microbiota composition (increasing Akkermansia and
reducing Firmicutes-to-Bacteroidetes ratio and Bifidobacterium) compared with the nor-
moxic group, showing a beneficial response to environmental stress [64]. This is also seen
in blue sheep [65], European mouflon, and Tibetan antelope [66].

Although evolutionary evidence suggests that ancestral pandas were carnivorous,
they adapted to a herbivorous diet over time. Pandas, with a digestive system typical of
carnivores, possess a gut microbiota seemingly ill-prepared for fiber fermentation despite
their almost exclusive bamboo diet [36,67]. However, they exhibit an increased abun-
dance of the Proteobacteria phylum, capable of lignin degradation—the primary bamboo
component—potentially serving as a compensatory mechanism. Streptococcus alactolyti-
cus is the predominant bacterial species in giant pandas’ gut microbiota. This bacterium
plays a crucial role in essential amino acid biosynthesis within the gut microbiota, indi-
cating its involvement in the host’s adaptation to a bamboo-centric diet [36]. In tandem
with the compensatory role played by Proteobacteria in pandas, where the diet (bamboo)
contrasts with the gut microbiota typical of carnivores, Bifidobacterium, known for lactose
fermentation, could have aided in the human adaptation to milk consumption. Remarkably,
alleles in the gene linked to lactase persistence in humans exhibit a notable correlation with
the gut microbiota composition [25,68]. Research has revealed shifts in the metabolites,
composition, and function of the gut microbiome as giant pandas transition from a milk-
rich diet in cubs to a bamboo-focused diet in the early and adult stages. Furthermore, a
microbiome’s involvement in age-related metabolism in giant pandas has been proposed.
Notably, substantial variations in bile acid content were observed among different age
groups, including cubs, young, adult, and old, with a notable increase in bile acid metabo-
lites detected in the fecal samples of older pandas. This increase could be linked to the
higher incidence of lipid metabolism disorders observed in these animals. Furthermore,
there was a positive correlation between bile acids glymodeoxycholic, taurodeoxycholic,
and taurodeoxycholic and Lactobacillus and Bifidobacterium species [69]. These bacteria
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can produce enzymes that facilitate the conversion of primary to secondary bile acids, a
process linked to compromised intestinal barrier function and increased production of reac-
tive oxygen species [70,71]. This finding aligns with the oxidative stress and inflammation
metabolome profile observed in older giant pandas [69].

The gut microbiome of Asian elephants exhibits a high proportion of Firmicutes,
known for their lignocellulose-degrading enzymes, similar to the digestive profile observed
in giant pandas [72]. Moreover, the gut microbiota of elephant calves is primarily composed
of milk-fermenting taxa, such as the Bifidobacterium genus of the Bifidobacteriaceae family
and Akkermansia genus. As elephants mature into subadults and adults, Firmicutes
become the dominant phylum, followed by Bacteroidetes and Actinobacteria [38]. Research
tracking the transition of gut microbiota profiles in Asian elephants throughout different
stages of growth and development has revealed that microbiota diversity is lowest during
infancy, remains stable in adulthood, and slightly decreases during the geriatric phase [38],
matching what is observed in humans. The decline in diversity among geriatric elephants
may stem from losing their last molar teeth, resulting in larger food particles in their feces,
which could lead to less efficient food utilization by gut bacteria [38,73]. Intriguingly, it
has been suggested that the decrease in human microbiome diversity may be more closely
linked to age-related frailty than chronological age. Furthermore, during this stage of life,
immune health also experiences instability, suggesting a symbiotic relationship between
gut microbiota, the immune system, and overall health status [74].

Tigers present a higher abundance of Fusobacterium, commonly found in carnivorous
predators and associated with red meat consumption and digestion. Researchers compared
older and cub tigers receiving meat and milk, respectively, and they found that meat-fed
tigers showed increased abundances of Fusobacterium, and the milk-fed tigers presented
at the genus level a high abundance of Bifidobacterium, Escherichia/Shigella, and Lac-
tobacillus [40]. Intriguingly, when tigers are fed milk, the abundance of Fusobacterium
decreases [40]. Fusobacterium is associated with some diseases, such as acute appendicitis
and colon cancer in humans [40,75]. This is interesting, considering that the high abundance
of Fusobacterium is seen in meat eaters [76]. Further comparative studies may provide
valuable insights into the relationship between red meat consumption and human cancer
risk. As tiger cubs fed goat milk exhibit a reduced proportion of Bifidobacterium and Lac-
tobacillus compared with those nursed by their mothers, this suggests that varying dietary
patterns can alter the gut microbiota composition in these animals [77]. It is noteworthy
that tiger cubs raised in captivity and requiring artificial feeding have a higher mortality
rate attributed to gastrointestinal diseases and associated alterations in gut microbiota.
Addressing this issue could provide important solutions for improving their health and
survival in captivity [40].

The gut microbiome composition of South China tigers kept in the same zoo and fed
artificially mainly consists of Fusobacteria, Firmicutes, Bacteroidota, Proteobacteria, and
Actinobacteriota. The gut microbiome of these tigers undergoes significant changes as they
age, progressing through developmental (cub), transitional (subadult), and stable (adult)
phases. Initially, at five months of age, Fusobacteriota dominates the gut microbiome, but, as
the tigers grow older, Firmicutes become the predominant phylum. The ratio of Firmicutes
to Bacteroides increases between the cub and adult stages. While there are no discernible
differences in the alpha diversity of the gut microbiome among juvenile, subadult, and
adult South China tigers, it has been suggested that the richness and evenness of their gut
microbiome may gradually increase with age [78]. Conversely, Zhu et al. [79] reported that
microbial diversity and richness decrease with age in captive Amur tigers. Furthermore,
there is ongoing discussion regarding the high proportion of Firmicutes and reduction in
Bacteroidetes observed in obese animals compared with lean ones. Han et al. [80] observed
that heavier Amur leopards, storing fat due to severe cold conditions, exhibited a higher
proportion of Firmicutes than North Chinese leopards.

The koala relies heavily on a diet composed almost entirely of foliage from eucalyptus
trees, which contain various potentially harmful plant secondary metabolites. Conse-
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quently, koalas and their gut microbes have undergone co-evolution to effectively digest
this low-nutrient potentially toxic diet [25]. Bacteroidetes, Firmicutes, and Cyanobacteria
are co-dominant in the gut microbiota of wild koalas. However, the gut microbiota of koalas
exhibits specificity according to the species of eucalyptus consumed, showing significant
differences in microbial composition. Some eucalyptus species are associated with domi-
nance of the genera Parabacteroides and/or Bacteroides, while others show dominance
of an unidentified genus from the family Ruminococcaceae. Differences likely influence
these variations in the gut microbiome of koalas in the protein and fiber content present
in different eucalyptus diets [81]. Notably, changes in the Bacteroidetes to Firmicutes
ratio in koalas may be attributed to protein and fiber content variations across different
diets. Specifically, a higher prevalence of Firmicutes and a reduced relative abundance of
Bacteroidetes have been associated with microbiome adaptations to increased fiber intake
and decreased protein consumption during transitions from animal-based to plant-based
diets [82].

Contrary to expectations, no significant overall changes are observed in the fecal
microbiomes of koalas following their relocation from an area characterized by severe
over-browsing and koala starvation to a mixed eucalypt forest. Despite the koalas having
access to a wider variety of eucalyptus species post-relocation, their microbiomes maintain
consistency with their pre-relocation composition. This suggests that the koalas can find
suitable diets in the new habitat without necessitating significant microbiome adaptations.
Consequently, it is proposed that the gut microbiomes of koalas are primarily shaped by
their acquisition and development throughout their lives, with subsequent dietary changes
exerting a comparatively minor influence [83].

5. Gut Microbiota in Captive versus Wild Animals

Diet plays a significant role in shaping the ancient microbial lineages and promoting
the growth of specific bacteria. However, exposome factors such as ecology, life history, and
physiology also contribute to the diversity and structure of the microbiota in non-human
primates, even when they share the same environment [84]. Studies on various species,
including tigers, elephants, giraffes, bears, monkeys, and sea lions, have shown differences
in gut microbiome composition between captive and wild animals. These differences can
be attributed to various factors such as diets, pharmacological interventions, increased
human contact, and reduced interaction with other wild animals [85,86]. For instance, a
study involving Asian elephants relocated from a semi-captive camp in Myanmar to a zoo
in Japan revealed alterations in the gut microbiota profile due to anthropogenic activities,
such as transportation, captivity, and deworming [86].

A comprehensive study examining the microbiota of 41 species of captive and wild
mammals found that alpha diversity was generally reduced in captive mammalian families.
Furthermore, captive animals displayed altered gut bacterial communities compared with
their wild counterparts, except for impalas, giraffes, and antelopes. Taxonomic class anal-
ysis revealed decreased Prevotella (Bacteroidetes) and Clostridia (Firmicutes) in captive
animals. Conversely, there was an increase in the relative abundance of anaerobic Bacilli
such as Streptococcus luteciae and Clostridium (Firmicutes), as well as Gammaproteobacte-
ria (Proteobacteria), which was associated with a diminished gut health status in captive
animals [85]. Indeed, as diet is the primary driver of the gut microbiota, anthropogenic
activities can change the gut microbiota in captive animals [87].

6. Gut Microbiota Changes Due to Changes in the Environment

It has been suggested that mammals have evolved mechanisms to utilize their gut
microbiota as sensors, triggering adaptive responses to changes in their external environ-
ment [25]. Seasonal variations have been observed to alter the gut microbiota profiles in
animals, as demonstrated in monkeys [30,42]. Similarly, altitude influences the microbiota,
resulting in profiles capable of metabolizing high-fiber foods and associated with energy
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production from microbial metabolites such as SCFA and methane in sheep [44] and plateau
pikas [45].

In the animal kingdom, body temperature varies significantly, ranging from 5 ◦C
in hibernating animals to 29 ◦C in platypuses, with an average of 37 ◦C in humans [88].
Interestingly, bats increase their temperature above 40 ◦C during flights, and reduce it
dramatically during daily torpor to around 10 ◦C, which can be a way to keep energy and
limit the viral load since they are a natural reservoir for viruses that are not harmful to
them [89]. Environmental temperatures affect microbiota composition. Some bacteria, like
Escherichia coli and Enteropathogenic Yersinia, can survive in warm and cold conditions.
Proteobacteria, a predominant phylum in some animals, demonstrate flexibility in response
to temperature changes, with a positive association with higher temperatures. Conversely,
Firmicutes correlate negatively with elevated temperatures [88,90]. The metabolic activity
of microbiota in non-hibernating small mammals is believed to contribute to thermogenesis
by releasing norepinephrine from the sympathetic nervous system in response to cold
stimuli. This leads to increased SCFA and secondary bile acid production, stimulating G
protein-coupled receptors and enhancing brown adipose tissue activity, thus promoting
thermogenesis [91]. Unsurprisingly, gut microbiota plays a crucial role in the seasonal
metabolic changes observed in bears, affecting glucose and fat metabolism. These findings
hold promise for potential treatments for metabolic disorders, such as obesity, type-2
diabetes, and muscle-wasting disorders associated with chronic diseases [32]. During
hibernation, changes in the bear’s gut microbiota are linked to reduced production of
toxins like trimethylamine N-oxide (TMAO). As reported, free-ranging brown bears exhibit
elevated choline and betaine levels during hibernation, offering protective effects. This
may indicate that a metabolic switch is turned on during hibernation [92]. Mastering such
a switch may be of major benefit for protecting the human burden of lifestyle diseases.

Hibernators accumulate fat reserves during the summer, serving as their primary en-
ergy source during winter hibernation. Consequently, the gut microbiota composition shifts
from carbohydrate-related to lipid-related, with bacteria like Pseudomonas adapting to low
temperatures and secreting lipase, aiding in fat metabolism during winter fasting [34,93].
The potential impact of environmental temperature on the gut microbiota underscores con-
cerns about climate change’s adverse effects on intestinal microorganisms. Climate change,
marked by increased greenhouse gas concentrations and reduced natural carbon sinks,
leads to higher temperatures. Elevated CO2 emissions affect soil microbial composition
and function, potentially influencing the human gut microbiome through alterations in
soil biodiversity that impact food crop quality [94]. In bats, it was recently reported that
hibernation energy requirements could change as an adaptation to a warmer climate [95].

7. Impact of the SARS-CoV-2 Pandemia on Gut Microbiota

While the impact of the SARS-CoV-2 virus on the gut microbiome is still being studied,
emerging evidence suggests that the virus can alter the composition and function of the
gut microbiota, with potential implications for both gastrointestinal and systemic health.
The SARS-CoV-2 pandemic has prompted investigations into the susceptibility of various
animal hosts and the potential risk of zoonotic transmissions to humans. While bats are
known reservoir hosts for SARS-CoV-2 and other viruses [96], recent studies show that
domestic pigs and chickens resist intranasal or ocular/oronasal SARS-CoV-2 infection [97].
The reasons behind the absence of susceptibility of chickens and pigs to SARS-CoV-2
remain unclear. Several factors, including the absence of compatible SARS-CoV-2 receptor
binding sites, may contribute to the resistance observed in pigs and chickens. Additionally,
dietary factors and gut microbiota could play a role. For instance, incorporating fermented
grains into pig diets enhances gastrointestinal health, regulates intestinal pH, modulates the
composition of gut bacteria, and improves overall pig performance [98]. Similarly, in broiler
chickens, fermented feed enhances nutrient absorption, suppresses the growth of harmful
gut bacteria, and reduces anti-nutritional factors in plant proteins, leading to improved
performance and gut health [99]. Considering the critical role of impaired interferon (IFN)
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response in severe COVID-19 cases [100], it is noteworthy that fermented dairy products
from camels increase IFN-γ mRNA expression in the intestines of mice [101]. Moreover,
fermented B. rapa extracts promoted the production of IFN-γ and interleukin (IL)-10 in
mouse spleen cells more than non-fermented vegetable extracts. The salutogenic properties
of these extracts appear to be mediated by Lactobacillus. Thus, as recent findings suggest a
potential link between the beneficial effects of fermented foods, probiotics, and prebiotics
on gut immunity and protection against severe COVID-19 infection, further investigations
are warranted to make our gut microbiome better prepared for the next pandemic.

8. Conclusions

Insights from the animal kingdom underscore the vital role of the gut microbiota
in mitigating the impact of lifestyle diseases. Hibernating animals, for instance, display
remarkable resilience and adaptability to external conditions, with their gut microbiota
potentially playing a significant role in these adaptations. In certain circumstances, environ-
mental factors influence the selection of microbial communities, leading to the development
of a highly adapted and beneficial microbiome. The rapid restructuring of the microbiome
can introduce new metabolic traits, aiding the organism’s adaptation and acclimatization
to environmental shifts [102–104]. Understanding the functioning of the gut microbiota
in animals and its potential for promoting health benefits provides valuable insights into
modulating the gut microbiota in patients with chronic burden of lifestyle diseases to
mitigate complications.
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