Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Participants
2.2.1. Resistance Exercise Study
2.2.2. Cross-Sectional Study
2.3. Resistance Exercise Study Design
2.4. Genotyping
2.4.1. Resistance Exercise Study
2.4.2. Cross-Sectional Study
2.5. Biochemical Analysis
2.5.1. Resistance Exercise Study
2.5.2. Cross-Sectional Study
2.6. Statistical Analysis
3. Results
3.1. Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise
3.2. Association between ADORA2A Genotypes and Resting Hormone Levels in Athletes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, T.E.; Spriet, L.L. Caffeine and Exercise Performance; Sports Science Exchange; Gatorade Sports Science Institute: Barrington, IL, USA, 1996; Volume 9, pp. 1–5. [Google Scholar]
- Tarnopolsky, M.A. Effect of caffeine on the neuromuscular system—Potential as an ergogenic aid. Appl. Physiol. Nutr. Metab. 2008, 33, 1284–1289. [Google Scholar] [CrossRef]
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a factor influencing the functioning of the human body—Friend or foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef]
- Fredholm, B.B. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol. Toxicol. 1995, 76, 93–101. [Google Scholar] [CrossRef]
- MacCornack, F.A. The effects of coffee drinking on the cardiovascular system, experimental and epidemiological research. Prev. Med. 1977, 6, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef]
- Florini, J.R. Hormonal control of muscle growth. Muscle Nerve 1987, 10, 577–598. [Google Scholar] [CrossRef] [PubMed]
- Fryburg, D.A.; Gelfand, R.A.; Barrett, E.J. Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am. J. Physiol. 1991, 260, E499–E504. [Google Scholar] [CrossRef] [PubMed]
- Griggs, R.C.; Kingston, W.; Jozefowicz, R.F.; Herr, B.E.; Forbes, G.; Halliday, D. Effect of testosterone on muscle mass and muscle protein synthesis. J. Appl. Physiol. 1989, 66, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Boroujerdi, S.S.; Rahimi, R. Acute GH and IGF-I responses to short vs. long rest period between sets during forced repetitions resistance training system. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2008, 30, 31–38. [Google Scholar] [CrossRef]
- Rahimi, R.; Qaderi, M.; Faraji, H.; Boroujerdi, S.S. Effects of very short rest periods on hormonal responses to resistance exercise in men. J. Strength Cond. Res. 2010, 24, 1851–1859. [Google Scholar] [CrossRef]
- West, D.W.D.; Burd, N.A.; Tang, J.E.; Moore, D.R.; Staples, A.W.; Holwerda, A.M.; Baker, S.K.; Phillips, S.M.; Dirks, M.L.; Wall, B.T.; et al. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J. Appl. Physiol. 2010, 108, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007, 81, 209–230. [Google Scholar] [CrossRef]
- El Elj, N.; Elloumi, M.; Zaouali, M.; Latiri, I.; Lac, G.; Tabka, Z. Discrepancy in IGF-1 and GH response to submaximal exercise in young male subjects. Sci. Sports 2007, 22, 155–159. [Google Scholar] [CrossRef]
- Gatti, R.; De Palo, E. An update, salivary hormones and physical exercise. Scand J. Med. Sci. Sports 2011, 21, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, A.R.; Hackney, K.J.; Fairchild, T.J.; Keslacy, S.; Ploutz-Snyder, L.L. The metabolic costs of reciprocal supersets vs. traditional resistance exercise in young recreationally active adults. J. Strength Cond. Res. 2010, 24, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Proske, U.; Morgan, D. Muscle damage from eccentric exercise, mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 2001, 537, 333–345. [Google Scholar] [CrossRef]
- Rahimi, R.; Ghaderi, M.; Mirzaei, B.; Faraji, H. Acute IGF-1, cortisol and creatine kinase responses to very short rest intervals between sets during resistance exercise to failure in men. World Appl. Sci. J. 2010, 8, 1287–1293. [Google Scholar]
- Stokes, K.; Nevill, M.; Frystyk, J.; Lakomy, H.; Hall, G. Human growth hormone responses to repeated bouts of sprint exercise with different recovery periods between bouts. J. Appl. Physiol. 2005, 99, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Willardson, J.M. A brief review: Factors affecting the length of the rest interval between resistance exercise sets. J. Strength Cond. Res. 2006, 20, 978. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Beaven, C.M.; Hopkins, W.G.; Hansen, K.T.; Wood, M.R.; Cronin, J.B.; Lowe, T.E. Dose effect of caffeine on testosterone and cortisol responses to resistance exercise. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.R.; Parsarad, S. The effect of short-term HMB supplement on Growth hormone and Testosterone concentration after resistance exercise in the athletes. Res. Exerc. Nutr. 2022, 1, 53–62. [Google Scholar]
- Rahimi, M.R.; Khodamoradi, M.; Falah, F. Effects of caffeine consumption before resistance exercise on blood levels of testosterone and growth hormones in male athletes. Koomesh J. 2019, 21, 679–685. [Google Scholar]
- Ratamess, N.A.; Hoffman, J.R.; Ross, R.; Shanklin, M.; Faigenbaum, A.D.; Kang, J. Effects of an amino acid/creatine energy supplement on the acute hormonal response to resistance exercise. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 608–623. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.-H.; Lin, J.-C. Caffeine attenuates acute growth hormone response to a single bout of resistance exercise. J. Sports Sci. Med. 2010, 9, 262. [Google Scholar] [PubMed]
- Yang, A.; Palmer, A.A.; de Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology 2010, 211, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Carswell, A.T.; Howland, K.; Martinez-Gonzalez, B.; Baron, P.; Davison, G. The effect of caffeine on cognitive performance is influenced by CYP1A2 but not ADORA2A genotype, yet neither genotype affects exercise performance in healthy adults. Eur. J. Appl. Physiol. 2020, 120, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Loy, B.D.; O’Connor, P.J.; Lindheimer, J.B.; Covert, S.F. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: A pilot study. J. Caffeine Res. 2015, 5, 73–81. [Google Scholar] [CrossRef]
- Rahimi, M.R.; Semenova, E.A.; Larin, A.K.; Kulemin, N.A.; Generozov, E.V.; Łubkowska, B.; Ahmetov, I.I.; Golpasandi, H. The ADORA2A TT Genotype Is Associated with Anti-Inflammatory Effects of Caffeine in Response to Resistance Exercise and Habitual Coffee Intake. Nutrients 2023, 15, 1634. [Google Scholar] [CrossRef]
- Thorn, C.F.; Aklillu, E.; McDonagh, E.M.; Klein, T.E.; Altman, R.B. PharmGKB summary, caffeine pathway. Pharmacogenet. Genom. 2012, 22, 389. [Google Scholar] [CrossRef]
- Kocatürk, R.R.; Karagöz, I.; Yanik, E.; Özcan, Ö.; Ergüzel, T.T.; Karahan, M.; Tarhan, N. The effects of CYP1A2 and ADORA2A genotypes association with acute caffeine intake on physiological effects and performance: A systematic review. Balt. J. Health Phys. Act. 2022, 14, 8. [Google Scholar] [CrossRef]
- Haskell, C.F.; Kennedy, D.O.; Wesnes, K.A.; Scholey, A.B. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology 2005, 179, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Baechle, T.R.; Earle, R.W. Essentials of Strength and Conditioning; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Al-Khelaifi, F.; Yousri, N.A.; Diboun, I.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Andryushchenko, L.B.; Larin, A.K.; Generozov, E.V.; et al. Genome-Wide Association Study Reveals a Novel Association Between MYBPC3 Gene Polymorphism, Endurance Athlete Status, Aerobic Capacity and Steroid Metabolism. Front. Genet. 2020, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Donnikov, A.E.; Trofimov, D.Y. Actn3 genotype is associated with testosterone levels of athletes. Biol. Sport 2014, 31, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.C.R.; Semenova, E.A.; Bondareva, E.A.; Andryushchenko, L.B.; Larin, A.K.; Cięszczyk, P.; Generozov, E.V.; Ahmetov, I.I. Association of Genetically Predicted BCAA Levels with Muscle Fiber Size in Athletes Consuming Protein. Genes 2022, 13, 397. [Google Scholar] [CrossRef] [PubMed]
- Gineviciene, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.R.; Beaven, C.M. Caffeine Modifies the Immune and Anti-inflammatory Responses to Short Incremental Cycling Exercise Until Exhaustion in Humans: A Pilot Study. J. Sci. Sport Exerc. 2023, 1–5. [Google Scholar] [CrossRef]
- Ghanbari, N.; Rahimi, M.R.; Mahmazi, S.; Rahnema, M. Effect of Eight Weeks Caffeine Supplementation and High Fat Diet on PGC1-α, Fndc-5 and UCP-1 Gene Expression in Male Wistar Rats. J. Adv. Med. Biomedic. Res. 2021, 2676, 6264. [Google Scholar] [CrossRef]
- Rahimi, M.R.; Faraji, H.; Al-Zangana, T.A.A.; Khodamoradi, M. CYP1A2 polymorphism and caffeine ingestion in relation to apoptosis markers after a resistance exercise in trained men: A randomized, double-blind, placebo-controlled, crossover study. Prog. Nutr. 2020, 22, 493–500. [Google Scholar]
- Rahimi, R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: A randomized, double-blind, placebo-controlled, crossover study. Ir. J Med. Sci. 2019, 188, 337–345. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C.; Bishop, D.J.; Del Coso, J.; Schoenfeld, B.J.; Tinsley, G.M.; Pedisic, Z. ADORA2A C allele carriers exhibit ergogenic responses to caffeine supplementation. Nutrients 2020, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.G.; Morales, A.P.; Sampaio-Jorge, F.; de Souza Tinoco, F.; de Matos, A.A.; Leite, T.C. Acute effects of caffeine intake on athletic performance: A systematic review and meta-analysis. Rev. Chil. Nutr. 2017, 44, 283–291. [Google Scholar] [CrossRef]
- Sabol, F.; Grgic, J.; Mikulic, P. The effects of 3 different doses of caffeine on jumping and throwing performance: A randomized, double-blind, crossover study. Int. J. Sports Physiol. Perform. 2019, 14, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch. Pharmacol. 2000, 362, 364–374. [Google Scholar] [CrossRef] [PubMed]
- GTEx Portal. Available online: https://gtexportal.org/home/index.html (accessed on 23 May 2024).
- Graham, T.E. Caffeine and exercise. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Ross, R.; Shanklin, M.; Kang, J.; Faigenbaum, A.D. Effect of a pre-exercise energy supplement on the acute hormonal response to resistance exercise. J. Strength Cond. Res. 2008, 22, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, R.J.; Madgwick, Z.; Whyte, G.P. The exercise-induced growth hormone response in athletes. Sports Med. 2003, 33, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Smilios, I.; Pilianidis, T.; Karamouzis, M.; Parlavantzas, A.; Tokmakidis, S. Hormonal responses after a strength endurance resistance exercise protocol in young and elderly males. Int. J. Sports Med. 2007, 28, 401–406. [Google Scholar] [CrossRef]
- Bermon, S.; Garnier, P.Y. Serum androgen levels and their relation to performance in track and field: Mass spectrometry results from 2127 observations in male and female elite athletes. Br. J. Sports Med. 2017, 51, 1309–1314. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Stepanova, A.A.; Biktagirova, E.M.; Semenova, E.A.; Shchuplova, I.S.; Bets, L.V.; Andryushchenko, L.B.; Borisov, O.V.; Andryushchenko, O.N.; Generozov, E.V.; et al. Is testosterone responsible for athletic success in female athletes? J. Sport. Med. Phys. Fit. 2020, 60, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Bezuglov, E.; Ahmetov, I.I.; Lazarev, A.; Mskhalaya, G.; Talibov, O.; Ustinov, V.; Shoshorina, M.; Bogachko, E.; Azimi, V.; Morgans, R.; et al. The relationship of testosterone levels with sprint performance in young professional track and field athletes. Physiol. Behav. 2023, 271, 114344. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.; Semenova, E.A.; Borisov, O.V.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. Genomic predictors of testosterone levels are associated with muscle fiber size and strength. Eur. J. Appl. Physiol. 2022, 122, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimi, M.R.; Semenova, E.A.; John, G.; Fallah, F.; Larin, A.K.; Generozov, E.V.; Ahmetov, I.I. Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study. Nutrients 2024, 16, 1803. https://doi.org/10.3390/nu16121803
Rahimi MR, Semenova EA, John G, Fallah F, Larin AK, Generozov EV, Ahmetov II. Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study. Nutrients. 2024; 16(12):1803. https://doi.org/10.3390/nu16121803
Chicago/Turabian StyleRahimi, Mohammad Rahman, Ekaterina A. Semenova, George John, Fateme Fallah, Andrey K. Larin, Edward V. Generozov, and Ildus I. Ahmetov. 2024. "Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study" Nutrients 16, no. 12: 1803. https://doi.org/10.3390/nu16121803
APA StyleRahimi, M. R., Semenova, E. A., John, G., Fallah, F., Larin, A. K., Generozov, E. V., & Ahmetov, I. I. (2024). Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study. Nutrients, 16(12), 1803. https://doi.org/10.3390/nu16121803