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Abstract: Background: Chronic kidney disease increases uremic toxins concentrations, which have
been associated with intestinal dysbiosis. Sorghum bicolor L. Moench has dietary fiber and bioactive
compounds, while Bifidobacterium longum can promote beneficial health effects. Methods: It is a
controlled, randomized, and single-blind clinical trial. Thirty-nine subjects were randomly separated
into two groups: symbiotic group (SG), which received 100 mL of unfermented probiotic milk with
Bifidobacterium longum strain and 40 g of extruded sorghum flakes; and the control group (CG), which
received 100 mL of pasteurized milk and 40 g of extruded corn flakes for seven weeks. Results: The
uremic toxins decreased, and gastrointestinal symptoms improved intragroup in the SG group. The
acetic, propionic, and butyric acid production increased intragroup in the SG group. Regarding
α-diversity, the Chao1 index was enhanced in the SG intragroup. The KEGG analysis revealed
that symbiotic meal increased the intragroup energy and amino sugar metabolism, in addition to
enabling essential amino acid production and metabolism, sucrose degradation, and the biosynthesis
of ribonucleotide metabolic pathways. Conclusions: The consumption of symbiotic meal reduced
BMI, improved short-chain fatty acid (SCFA) synthesis and gastrointestinal symptoms, increased
diversity according to the Chao1 index, and reduced uremic toxins in chronic kidney disease patients.

Keywords: Sorghum bicolor L. Moench; symbiotic meal; gut microbiota; SCFAs; uremic toxins

1. Introduction

Chronic kidney disease (CKD) is a clinical syndrome secondary to definitive alteration
in the function and/or structure of the kidneys. It is characterized by its irreversibility
and slow and progressive evolution, with a high risk of complications and mortality [1].
In 2017, CKD prevalence was between 9.1% and 13.4% in the worldwide population [2].
In addition, CKD is associated with a higher risk of cardiovascular disease, severity, and
death [3].

Evidence suggests that CKD causes intestinal dysbiosis, with alterations in gut micro-
biota composition and intestinal functionality. These effects break the intestinal epithelial
barrier and increase intestinal permeability, production, and entry of endotoxins, which
favors systemic inflammation. The systemic inflammation promoted by CKD has been
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associated with a reduction in the populations of beneficial bacteria such as Lactobacillus
and Bifidobacterium and an increase in potentially pathogenic bacteria such as Escherichia coli
and Clostridium spp., microorganisms capable of producing toxins and harmful substances
such as p-cresol and indoxyl sulfate, which directly interfere with intestinal health, favoring
intestinal dysbiosis, increasing intestinal permeability, and reducing SCFA synthesis [4,5].

In addition, other factors such as the reduction in Lactobacillus and Bifidobacterium, as
well as the low intake of dietary fiber, can also reduce the synthesis of SCFAs, favoring
intestinal dysbiosis. The intestinal dysbiosis in CKD includes increased species of the
genera Enterobacteriaceae and Pseudomonadaceae of the phylum Proteobacteria, Bac-
teroidaceae, and Clostridiaceae and decreased species of Lactobacillacea, Prevotellaceae,
and Bifidobacteriaceae [4–6]. Surprisingly, acting as a vicious cycle, the species that expand
in CKD are generally able to induce local and systemic inflammation directly and indi-
rectly [6]. In this context, intestinal dysbiosis is associated with the progression of CKD,
including proteinuric renal disorders and associated morbidities, including inflammation,
hypertension, and diabetes [6,7].

The consumption of whole grains and cereals promotes healthy intestinal microbiota
phenotypes, thus increasing their richness and diversity, as well as the production of
short-chain fatty acids (SCFAs) [8]. The BRS 305 sorghum genotype is rich in dietary fiber,
polyphenols, condensed tannin, and resistant starch compared to other genotypes of the
grain, such as red and white sorghum. Lopes et al. (2018), who used the same genotype and
heat treatment for sorghum, revealed that extruded sorghum breakfast cereal was composed
of 8.84% of total dietary fiber, of which 8.78% was insoluble fiber and 0.07% was soluble
fiber, 71.04% of carbohydrates, 11.26% of proteins, 0.41% of lipids, 1.03% of resistant starch,
1.87% of ash, and 6.57% of moisture. The authors also observed that this extruded sorghum
showed 340.33 mg·100−1 g of phosphorus, 0.33 mg·100−1 g of copper, 1.93 mg·100−1 g
of zinc, 1.45 mg·100−1 g of magnesium, 102.00 mg·100−1 g of calcium, 1.45 mg·100−1 g
of manganese, 5.59 mg·100−1 g of iron, and 353.00 mg·100−1 g of potassium. In terms
of phenolic compounds, the extruded sorghum contains 1.10 ± 0.02 mg of gallic acid
equivalent/g of sample of phenolic compounds and 0.71 ± 0.08 catechin equivalent/g of
sample of condensed tannins (proanthocyanidins). The antioxidant activity observed in
extruded sorghum was 4.68 ± 0.01 µmol trolox/g, the main 3-deoxyanthocyanins present
in this sorghum were luteolinidin and 5-methoxyluteolinidin, and the authors detected
traces of apigeninidin and 7-methoxyapigeninidin [9].

These compounds are associated with intestinal modulation, as they are non-digestible
carbohydrates fermented by gut microorganisms, which increases SCFA synthesis [10].
The beneficial effect of sorghum BRS 305 consumption on health has already been demon-
strated. In rodent models, the BRS 305 sorghum whole flour modulated the gut microbiota
composition, the abundance of SCFA-producing bacteria, and intestinal morphology [11].
In CKD patients, a symbiotic meal containing BRS 305 extruded sorghum reduced uremic
toxins, fecal pH, and urea concentration [12].

On the other hand, studies have demonstrated that probiotic supplementation, such
as with Bifidobacterium longum, isolated or associated with other microorganisms, led to
positive changes in the intestinal microbiota, as well as gastrointestinal symptoms, such
as increased frequency of bowel movements in healthy subjects [13] or in subjects with
persistent gastrointestinal symptoms, such as lactose intolerance [14]. In CKD patients,
the administration of a symbiotic meal containing Bifidobacterium longum and Lactobacillus
acidophilus alongside 60 mg of fructooligosaccharides (FOSs) for 60 days improved consti-
pation symptoms and constipation-related quality of life [15]. Another study pointed out
that the offer of a low-protein diet (0.6 g/kg/body weight) associated with a probiotic con-
taining Bifidobacterium longum 5 × 109 CFU/mL and Lactobacillus reuteri 1 × 109 CFU/mL
for 60 days reduced blood urea nitrogen and microbiota toxins, including indoxyl sulfate
and lipoprotein-associated phospholipase A2 [16].

Thus, the present study aimed to investigate the effects of the consumption of a symbi-
otic meal containing extruded sorghum BRS 305 and Bifidobacterium longum 108CFU/100 mL
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strain on uremic toxin serum levels, SCFA production, and the gut microbiota composition
of CKD patients. We hypothesized that this symbiotic meal may improve gut microbiota
diversity, gastrointestinal symptoms, and SCFA production, in addition to reducing the
blood level of uremic toxins in CKD patients.

2. Materials and Methods
2.1. Study Design

This is a controlled, randomized, single-blind clinical trial, conducted for 7 weeks, with
CKD patients submitted to hemodialysis for at least 3 months. This study uses data from a
subsample of a randomized, controlled, single-blind clinical trial previously conducted by
our research group [9,12], since some volunteers donated stool samples for data analysis.
The analysis of the intestinal microbiota and its association with markers of intestinal health
have not been previously explored, which explains the need for this new investigation
study. The participants included in the study were randomly allocated in a 1:1 ratio to
receive a symbiotic meal containing extruded BRS 305 whole sorghum plus a probiotic milk
containing Bifidobacterium longum 2.5 × 106 CFU/mL or pasteurized milk plus extruded
corn (Figure 1).
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This study was conducted according to the guidelines in the Declaration of Helsinki,
and all procedures involving human subjects/patients were approved by the Human
Research Ethics Committee of the Federal University of Vicosa, MG, Brazil (protocol
number 701.796/2014). It was registered at www.ensaiosclinicos.gov.br under ID number
RBR-2d9ny6. Written informed consent was obtained from all subjects/patients.

2.2. Participants

The participants were recruited at the Hemodialysis Sector of Hospital São João Batista,
located in Viçosa, Minas Gerais, Brazil, between March and June 2015. The first step to
recruit volunteers was a meeting with the medical team from the hospital nephrology sector.
Then, a conversation with each patient on hemodialysis was conducted to explain to them

www.ensaiosclinicos.gov.br
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that a meal containing sorghum and milk would be offered daily for 7 weeks. The patients
who agreed to participate in the study were screened to investigate whether they met the
eligibility criteria and did not meet any of the non-inclusion criteria. Those who were fit to
participate in the study signed the free and informed consent form and were included in
the study. Further information about this step is available in Lopes et al. (2018) [9].

Our eligibility criteria were patients of both sexes with CKD who were at least
18 years of age who had been submitted to hemodialysis sessions three times a week
in the Nephrology Sector of the Hospital São João Batista, Viçosa, Brazil, for at least three
months. The non-inclusion criteria were the presence of auditory deficiency, autoimmune
diseases, hepatitis B and C virus infection, implanted catheters, hemodynamic instability,
and lactose intolerance or discomfort when consuming milk (Figure 2). The exclusion
criteria were the use of antibiotics during the intervention and non-consumption of the
symbiotic meal for more than five days (consecutive or not). Participants were characterized
by sociodemographic and clinical aspects before the intervention period. The collection of
information on sociodemographic and clinical aspects was obtained from medical records
and through questions asked in direct interviews, collecting information such as time of
disease, associated morbidities, food consumption, measurement of weight and height,
and calculation of BMI. They received the meals for a period of 7 weeks, respecting the
routine of blood collection at the hemodialysis service.
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2.3. Randomization, Allocation, and Sample Power

The sequence of allocation and attribution of participants in the two groups was
randomly and blindly performed. Therefore, after the randomization, the participants
were allocated into two intervention groups—the control group (CG) and the symbiotic
group (SG). The randomization was performed by drawing lots, using paper, in which one
individual was drawn at random for the CG and another individual for the SG. The sample
size required (n = 19/group) was based on the comparison of the means of serum urea
levels, considering that it is a relevant variable in renal patients on dialysis. The present
study presented 96.68% statistical power (α = 0.05) to detect a 22.9 reduction in serum urea
levels, considering the baseline data of our subjects [17].

2.4. Raw Material and Meal Preparation

The sorghum grains were provided by Embrapa Milho e Sorgo, Sete Lagoas, MG,
Brazil (−19.466672726578615◦ S, −44.17357630467641◦ W). The BRS 305 sorghum hybrid is
rich in tannins and resistant starch. The grains used in this study were cultivated between
April and July 2014, while the corn grains were obtained from the 2013/2014 crop. After
harvest, the grains were packed in plastic bags and sent to Embrapa Agroindústria de
Alimentos, Rio de Janeiro, Brazil, for the extrusion process. The chemical composition of
extruded sorghum and corn was determined by the AOAC methodology (Table S2) [9,18].

2.5. Interventions

All study participants were instructed to follow the usual pattern of diet, physical
activity, and lifestyle. Their food intake and intestinal symptoms, as well as marker uremic
and inflammatory symptoms, were assessed at the beginning and end of the intervention.
Their clinical data, including dialysis time, were collected through the Metabolic Question-
naire adapted from Dixon [19], with multiple-choice questions, to identify the occurrence
of gastrointestinal symptoms. In addition, the Bristol scale [20] was applied to verify stool
consistency, and the 24 h food recall was used to assess the pattern of food consumption.

The intervention consisted of two groups that received two dairy meals. The dairy
meals used in the study were 100 mL of pasteurized milk plus extruded corn, which
was supplied to the CG, and 100 mL of pasteurized milk with the probiotic bacteria Bifi-
dobacterium longum (Granotec do Brazil S.A) 2.5 × 106 CFU/mL plus extruded sorghum
added, supplied to the SG (Supplementary Figure S1). The beverages were produced
weekly at the dairy plant of the Federal University of Viçosa. Milk pasteurized with
probiotics was inoculated with a direct vat set (DVS)-type culture from Granotec do
Brazil S.A. to present a minimum concentration of viable cells of Bifidobacterium longum of
108 UFC/portion (100 mL of milk) [12]. The drinks were packaged in plastic bottles with an
aluminum seal and labeled with the following information: date of manufacture, expiration
date, and instructions for conservation and consumption. Storage was carried out under
refrigeration at 4 ± 2 ◦C for up to 8 days to preserve the product.

The participants in the control group received a food kit containing pasteurized
milk- MP (100 mL) and extruded corn flakes (40 g). The intervention group received a
kit with probiotic dairy drink (PDD) (100 mL) containing the Bifidobacterium longum
(4 × 108 CFU/100 mL) strain and extruded sorghum flakes (40 g) (Table S1). The number
of extruded cereals offered daily to the volunteers was based on a usual portion of breakfast
cereal (40 g) [21]. Two food kits were given to the patients during hemodialysis. One
of them should be consumed in the third hour of hemodialysis and the other on the
interdialytic day. Patients that could not consume the products in the nephrology sector
were instructed to take them home and consume them together on the same day. During
hemodialysis, the participants answered a questionnaire about the consumption of the
offered meals and the occurrence of adverse effects to assess their adherence to the study
protocol and possible complications during the study.
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2.6. Outcomes

Their feces were collected at the baseline and endpoint of the intervention for the
analysis of their gut microbiota and short-chain fatty acids. Stool samples were collected
by the participants in sterile bottles and kept at a temperature of −18◦ until the moment
of hemodialysis. The participants transported the containers to the nephrology sector in
Styrofoam packaging with ice cubes to maintain the temperature. The samples collected
during hemodialysis were aliquoted and stored at −80 ◦C. The anthropometric measure-
ments and collection of feces and blood samples were carried out in the beginning and at
the end of the experiment.

The present study primarily detected the effects of the interventions on gut microbiota
composition and markers related to intestinal health, such as gastrointestinal symptoms,
short-chain fatty acid production, and uremic markers. The second outcome refers to food
consumption and the effects on biochemical markers related to chronic kidney disease,
such as urea and creatinine.

2.7. Anthropometric Measures

Body weight was evaluated using an electronic platform scale (Toledo Brazil, Model
2096 PP) capable of handling up to 150 kg and providing measurements with the precision
of 50 g. Height was determined using a wall-mounted stadiometer (Alturexata®, Belo
Horizonte, Brazil). Body mass index (BMI) was calculated as weight in kilograms divided
by the square of height in meters (kg/m2) and categorized according to the World Health
Organization (WHO) guidelines, 2000 [22]. These anthropometric assessments were con-
ducted following the conclusion of the hemodialysis session, thus allowing a 30 min period
of hemodynamic stabilization.

2.8. Analysis of the Consumption of Macronutrients

The consumption of macronutrients was assessed using a 24 h dietary recall, con-
sidering one day of hemodialysis, one interdialytic day, and one weekend. The Dietpro®

nutrition software system (version 5i) was used to assess the intake of nutrients.

2.9. Uremic Markers

Uremic markers, such as p-cresyl sulfate, indoxyl sulfate, and indole-3-acetic acid, were
analyzed and determined in plasma samples by HPLC, according to the method proposed
by LOOR et al. (2009) [23]. The method is based on the acidification and centrifugation
of the plasma sample. The clear supernatant obtained was injected on a reversed phase
HPLC column.

2.10. Gastrointestinal Symptoms

The gastrointestinal symptoms were identified by applying multiple-choice questions
taken from the Metabolic Questionnaire adapted from DIXON [19], and the shape of the
stools was classified according to the Bristol scale [20].

2.11. Fecal SCFA Concentrations

Approximately 500 mg of feces was blended while adding 1 mL of ultrapure water
to extract the short-chain fatty acids from the fecal samples. Next, the samples were sub-
jected to centrifugation at 12,000× g for 10 min at the temperature of 4 ◦C using a Himac
CT 15RE centrifuge from Hitachi (Tokyo, Japan). Subsequently, the supernatants were
processed as outlined by Ussar et al. (2015) [24]. The propionic and butyric acids were
quantified via high-performance liquid chromatography (HPLC), using a Dionex Ultimate
3000 dual-detector HPLC system (Dionex Corporation, Sunnyvale, CA, USA) coupled
with a refractive index (RI) Shodex RI-101 detector (Tokyo, Japan). The following chro-
matographic conditions were employed: a Bio-Rad HPX-87H column (300 mm × 4.6 mm)
(Hercules, CA, USA) equipped with a Bio-Rad Cation H guard column (Hercules, CA,
USA), maintained at a column temperature of 45 ◦C, and a 20 µL injection volume. The
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mobile phase consisted of concentrated sulfuric acid, EDTA, and ultrapure water, with a
flow rate of 0.7 mL/min. The standard curve was calibrated using the following organic
acids: acetic, succinic, formic, propionic, valeric, isovaleric, isobutyric, and butyric acid. The
standard solutions of these acids were prepared with a final concentration of 10 mmol/L,
except for acetic acid, which presented a concentration of 20 mmol/L. The solute levels
were determined using standards and a quantitative curve.

2.12. Analysis of Intestinal Microbiota

The DNA from stool samples was extracted using the QIAmp DNA stool mini kit
for human stool (Qiagen®, Venlo, The Netherlands), according to the manufacturer’s
protocol. The quality and quantity of the extracted DNA were verified using a µDropTM
Plate (Thermo Fisher Scientific, Vantaa, Finland). Integrity and size were measured by
agarose gel electrophoresis, and the samples were stored at −20 ◦C until the time of
sequencing analyses.

The variable regions of the 16S rRNA gene of members of the bacteria domains
(V3–V4) were sequenced by the company Argonne National Laboratory® (Lemont, IL,
USA), using the MiSeq platform (Illumina, San Diego, CA, USA). Data processing and
analysis were performed using the Mothur v.1.40.0 program [25]. The sequences were
aligned using the SILVA v.132 16S rRNA gene reference database [26]. The taxonomic
classification was carried out using the same database mentioned above. The operational
taxonomic unit (OTU) was grouped with a cutoff point of 97% similarity.

The Chao1, Shannon, and Simpson indices were applied for α-diversity analysis.
β-diversity was assessed by principal coordinate analysis (PCoA) based on the Bray–Curtis
dissimilarity index and similarity test for non-parametric data (ANOSIM, permutation
number = 1000), using the Past software system (HAMMER et al., 2001) [27].

The metagenome functional predictive analysis was carried out using the PICRUSt2
software system. The normalized OTU abundance was identified, and the assigned func-
tional traits were predicted, based on reference genomes, using the Kyoto Encyclopedia
of Genes and Genomes (KEGG). The most abundant metabolic processes and significant
fold-change differences in functional pathways between experimental groups, adopting un-
paired t-test control versus symbiotic analysis or paired t-test (for beginning- and endpoint
group analysis) (α = 95%) using STAMP software version 2.1.3, were plotted.

2.13. Statistical Analysis

The dataset was tested for normality by the Kolmogorov–Smirnov test, and parametric
data were submitted to ANOVA followed by Tukey’s post hoc test for multiple comparisons.
The non-parametric and independent data were submitted to the Kruskal–Wallis test
followed by the Mann–Whitney test for multiple comparisons. T-tests were applied to
compare the baseline and endpoint results of each group. The data were corrected using
the FDR (false discovery rate) criterion in the STAMP software. Statistical analyses were
performed using GraphPad software version 9.0. Statistical significance was established at
p < 0.05.

3. Results
3.1. Baseline Characteristics of Treatment Groups

Thirty-nine subjects completed the study protocol and were included in the analyses;
20 of them were from CG and 19 were from SG. The anthropometric measurements did not
differ between the groups at baseline (Table 1). According to the body mass index (BMI),
15% (n = 3) of the participants were overweight or obese; 60% (n = 12) were eutrophic; and
25% (n = 5) were considered underweight. They were 26.81 ± 0.74 years old, with a mean
waist circumference of 96.88 ± 1.04 cm.
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Table 1. Baseline characteristics of the study participants.

Variables Symbiotic Group Control Group p Value

Subjects (n = 39) 19 20 -

Sex Man: 12
Woman: 7

Man: 15
Woman: 5 -

Age (years) 62.85 ± 11.74 64.22 ± 9.68 0.68
Body weight (kg) 66.06 ± 10.79 59.20 ± 9.89 0.05
BMI (kg/m²) 25.96 ± 4.68 23.08 ± 3.09 0.05
HD time (months) 59.60 ± 72.79 50.83 ± 55.05 >0.99

BMI: body mass index; HD: hemodialysis. The data were subjected to unpaired t-test or Mann–Whitney test at 5%
probability in GraphPad prism version 9.0.

3.2. Consumption of Macronutrients and Body Mass Index

The consumption of energy, carbohydrates, proteins, and lipids did not differ between
the groups during the intervention. Every day, the CG consumed 36.24 ± 13.44 g of lipids,
73.17 ± 30.91 g of protein, and 219.94 ± 92.11 g of carbohydrates. Every day, the symbiotic
group consumed 34.94 ± 13.98 g of lipids, 63.45 ± 28.54 g of protein, and 211.19 ± 73.89 g of
carbohydrates. On the other hand, the symbiotic consumption reduced the body mass index
(BMI) intergroup at the endpoint, with delta equal to −0.079 ± 0.7511 for the symbiotic
group and 0.59 ± 1.1204 for the control group (p = 0.0479).

3.3. Uremic Markers

The serum urea levels were similar inter- and intragroup and did not differ between
the groups after the intervention period. Regarding the uremic markers, the symbiotic
meal consumption reduced the p-cresyl sulfate and indole-3-acetic acid concentrations
intragroup. Considering the delta values, intergroup differences were not observed. The
creatinine and urea levels did not change after the intra- and intergroup intervention
(Table 2).

Table 2. Uremic marker blood concentrations in CKD patients who received symbiotic or control
meal by 7 weeks.

Variables
Symbiotic Group

p¹ Value
Control Group p¹ Value Delta p Value

Baseline Endpoint Baseline Endpoint

IS (mg/dL) 140.46 ± 70.85 115.95 ± 55.65 0.1297 151.94 ± 61.13 147.74 ± 51.36 0.7075 0.1758
IAA (µg/L) 24.21 ± 13.73 18.19 ± 10.67 0.0030 18.62 ± 13.44 15.62 ± 4.91 0.9764 0.3891

p-CS (mg/L) 386.47 ± 197.99 241.13 ± 99.79 0.0001 289.21 ± 245.62 295.02 ± 127.18 0.065 0.3524
Urea

Creatinine
37.15 ± 16.70

8.31 ± 3.23
37.80 ± 12.42

8.67 ± 2.60
0.8835
0.1011

43.70 ± 32.88
8.44 ± 3.30

33.09 ± 16.35
9.01 ± 3.93

0.1482
0.1530

0.2175
0.7016

IS: indoxyl sulfate; IAA: indole-3-acetic acid; p-CS: p-cresyl sulfate. Values expressed as mean ± standard
deviation (SD). Data were subjected to an unpaired t-test or a Mann–Whitney test at 5% probability in GraphPad
prism version 9.0. p¹ means the difference comparing baseline and endpoint of each intervention group.

3.4. Gastrointestinal Symptoms

The consumption of the symbiotic drink increased the evacuation frequency and
decreased the gastrointestinal symptoms assessed through the Dixon questionnaire. After
the intervention period, 68.4% and 31.6% of the participants allocated to the SG reported
having evacuated 5–7 and 2–4 times per week, respectively. On the other hand, 25%, 35%,
and 40% of the participants allocated to the CG reported having evacuated 1 time, 5–7, and
2–4 times per week, respectively. In addition, 63.1% and 60% of the participants of the SG
and CG groups, respectively, did not present constipation, nausea, heartburn, bloating,
intestinal gas, diarrhea, or belching.

According to the Bristol scale, the prevalence of SG participants with a normal consis-
tency of stool, diarrhea, and constipation was 84.2%, 10.5%, and 5.3%, respectively, while
for CG, values of 90%, 5%, and 5% were found, respectively (Table S3).
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3.5. Fecal SCFA Concentrations

The production of short-chain fatty acids (acetic, propionic, and butyric acid) increased
intragroup after the consumption of symbiotic and control meals in both intervention
groups when compared to the baseline, with the exception of butyric acid for the CG. The
SCFA content did not differ intergroup (Table 3).

Table 3. Short-chain fatty acid fecal concentrations in patients with CKD who received symbiotic or
control meal by 7 weeks.

Variables
Symbiotic Group

p¹ Value
Control Group p¹ Value Delta p Value

Baseline Endpoint Baseline Endpoint

Acetic acid 3.71 ± 1.76 7.00 ± 2.60 <0.0001 4.91 ± 2.07 7.95 ± 3.98 0.0007 0.1758
Propionic acid 2.41 ± 2.04 6.38 ± 3.73 <0.0001 3.05 ± 2.91 5.95 ± 3.71 0.0050 0.3891

Butyric acid 2.26 ± 1.66 3.87 ± 2.38 0.040 2.57 ± 1.91 4.42 ± 4.10 0.0636 0.3524

Values expressed as mean ± standard deviation (SD). Data were subjected to an unpaired t-test or a Mann–
Whitney test at 5% probability in GraphPad prism version 9.0. p¹ means the difference comparing baseline and
endpoint of each intervention group.

3.6. Analysis of Intestinal Microbiota

The sequencing of the 16S rRNA gene from stool samples generated 2,645,395 raw
sequences. After filtering and cleaning, 1,890,466 good-quality sequences were obtained.
The Good’s coverage obtained in the samples was >99%, which indicates good sequencing
coverage. Raw read, filtered read, and normalized read counts per group are provided in
the Supplemental Materials (Table S4).

The α-diversity, microbial richness estimated by the Chao1 index increased in SG,
compared to the baseline (p = 0.02) (Figure 3A). However, the Simpson and Shannon indices
did not differ between groups after the intervention period (Figure 3B,C).
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Figure 3. Effect of extruded sorghum BRS 305 plus Bifidobacterium longum on α-diversity index.
(A) Chao1 index at baseline and endpoint, (B) Shannon–Weiner index at baseline and endpoint,
(C) Simpson index at baseline and endpoint. CG: control group; SG: symbiotic group. The data were
subjected to a paired t-test or unpaired t-test (α = 0.05) in GraphPad version 9.0.
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The β-diversity was assessed at four points. The principal coordinate analysis (PCoA)
represented approximately 33.31% and 30.18% of the dissimilarity in bacterial species
composition for SG and CG, respectively (Figure 4A,B). At baseline, PCoA represented
approximately 30.40% of the dissimilarity in bacterial species composition (Figure 4C). At
the endpoint, PCoA represented 30.6% of dissimilarity in bacterial species composition
(Figure 4D). The clustering of the bacterial community did not differ between groups at the
phyla, class, order, family or genera levels (p > 0.05).

Nutrients 2024, 16, x FOR PEER REVIEW 11 of 17 
 

 

the endpoint, PCoA represented 30.6% of dissimilarity in bacterial species composition 
(Figure 4D). The clustering of the bacterial community did not differ between groups at 
the phyla, class, order, family or genera levels (p > 0.05).  

 
Figure 4. Effect of extruded sorghum BRS 305 plus Bifidobacterium longum on the β-diversity esti-
mated by principal coordinate analysis (PcoA), based on the Jaccard similarity distance of gut mi-
crobial communities in chronic kidney disease patients. (A) PCoA of the symbiotic group at baseline 
and endpoint; (B) PCoA of the control group at baseline and endpoint; (C) PCoA of the control and 
symbiotic groups at baseline; (D) PCoA of the control and symbiotic groups at endpoint. Permuta-
tional multivariate analysis of variance (PERMANOVA) was conducted using the STAMP software 
system version 2.0.2 considering α = 5%. 

The samples presented 18 phyla, 30 classes, 73 orders, 1141 families, and 373 genera. 
All groups exhibited eight predominant phyla, including Firmicutes (CG: 73.81 ± 3.89%; 
SG: 76.71 ± 3.39%), followed by Bacteroidetes (CG: 14.03 ± 3.25%; SG: 11.73 ± 2.33%), Ac-
tinobacteria (CG: 6.67 ± 2.20%; SG: 5.59 ± 1.91%), Desulfobacterium (CG: 0.95 ± 0.50%; SG: 
0.90 ± 0.48%), and Verrucomicrobia (CG: 0.89 ± 1.05%; SG: 0.92 ± 0.64%) (Supplementary 
Figure S1). In the intergroup comparison, the Firmicutes/Bacteroidetes ratio was similar 
(p > 0.05), but in the intragroup comparison, the Firmicutes/Bacteroidetes ratio of CG dif-
fered (Supplementary Figure S1).  

According to the KEGG metabolic pathway analysis, SG increased GPD-D-glycerol-
alpha content, D-manno-heptose biosynthesis (p = 0.02), L-lysine biosynthesis (p = 0.04), 
methanogenesis from H2 and CO2 (p = 0.04), pantothenate content, coenzyme A biosyn-
thesis I (p = 0.04), phosphopantotenate biosynthesis I (p = 0.01), pyrimidine deoxyribonu-
cleotide biosynthesis from CTP (p = 0.01), and pyrimidine deoxyribonucleotide de novo 
biosynthesis IV (p = 0.01), while reducing the reductive TCA cycle I (p = 0.04) metabolic 
pathway intragroup (Supplementary Figure S2A). 

In the comparison of intergroup differences for metabolic pathways by KEGG anal-
ysis, the SG reduced 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I (p = 
0.04), 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia) (p = 
0.02), the Calvin–Benson–Bassham cycle (p = 0.01), chorismate biosynthesis from 3-

Figure 4. Effect of extruded sorghum BRS 305 plus Bifidobacterium longum on the β-diversity estimated
by principal coordinate analysis (PcoA), based on the Jaccard similarity distance of gut microbial
communities in chronic kidney disease patients. (A) PCoA of the symbiotic group at baseline and
endpoint; (B) PCoA of the control group at baseline and endpoint; (C) PCoA of the control and sym-
biotic groups at baseline; (D) PCoA of the control and symbiotic groups at endpoint. Permutational
multivariate analysis of variance (PERMANOVA) was conducted using the STAMP software system
version 2.0.2 considering α = 5%.

The samples presented 18 phyla, 30 classes, 73 orders, 1141 families, and 373 genera.
All groups exhibited eight predominant phyla, including Firmicutes (CG: 73.81 ± 3.89%;
SG: 76.71 ± 3.39%), followed by Bacteroidetes (CG: 14.03 ± 3.25%; SG: 11.73 ± 2.33%),
Actinobacteria (CG: 6.67 ± 2.20%; SG: 5.59 ± 1.91%), Desulfobacterium (CG: 0.95 ± 0.50%;
SG: 0.90 ± 0.48%), and Verrucomicrobia (CG: 0.89 ± 1.05%; SG: 0.92 ± 0.64%)
(Supplementary Figure S1). In the intergroup comparison, the Firmicutes/Bacteroidetes
ratio was similar (p > 0.05), but in the intragroup comparison, the Firmicutes/Bacteroidetes
ratio of CG differed (Supplementary Figure S1).

According to the KEGG metabolic pathway analysis, SG increased GPD-D-glycerol-
alpha content, D-manno-heptose biosynthesis (p = 0.02), L-lysine biosynthesis (p = 0.04),
methanogenesis from H2 and CO2 (p = 0.04), pantothenate content, coenzyme A biosyn-
thesis I (p = 0.04), phosphopantotenate biosynthesis I (p = 0.01), pyrimidine deoxyribonu-
cleotide biosynthesis from CTP (p = 0.01), and pyrimidine deoxyribonucleotide de novo
biosynthesis IV (p = 0.01), while reducing the reductive TCA cycle I (p = 0.04) metabolic
pathway intragroup (Supplementary Figure S2A).
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In the comparison of intergroup differences for metabolic pathways by KEGG analysis,
the SG reduced 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I (p = 0.04),
6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia) (p = 0.02), the
Calvin–Benson–Bassham cycle (p = 0.01), chorismate biosynthesis from 3-dehydroquinate
(p = 0.04), flavin biosynthesis I (bacteria and plants) (p = 0.03), L-lysine biosynthesis I
(p = 0.01), L-ornithine biosynthesis (p = 0.02), N10-formyl-tetrahydrofolate biosynthe-
sis (p = 0.04), NAD biosynthesis I (from aspartate) (p = 0.01), NAD salvage pathway I
(p = 0.04), pyrimidine deoxyribonucleotide de novo biosynthesis IV (p = 0.008), sucrose
degradation III (sucrose invertase) (p = 0.01), the superpathway of N-acetylglucosamine,
N-acetylmannosamine and N-acetylneuraminate degradation (p = 0.03), thiamin salvage II
(p = 0.03), and thiazole biosynthesis I (E. coli) (p = 0.03) metabolic pathways
(Supplementary Figure S2B).

4. Discussion

The present study investigated the effects of the consumption of a symbiotic meal
containing extruded BRS 305 hybrid sorghum and extruded corn on the modulation of
gut microbiota and the markers associated with uremic parameters in patients with CKD.
Symbiotic meal consumption reduced indoxyl sulfate, indole-3 acetic acid (IAA), and p-
cresyl sulfate serum concentration intragroup. No differences were observed intergroup.
Further, the symbiotic drink ameliorated the intestinal function, enhanced evacuation
frequency, reduced gastrointestinal symptoms, and enhanced the number of species at
endpoint without altering the Firmicutes/Bacteroidetes ratio or varying genus composition.
In this context, the symbiotic meal offered improved the Chao1 index, gastrointestinal
symptoms, and SCFA production, in addition to reducing the blood level of uremic toxins
in CKD patients.

Symbiotic meal consumption increased acetic, propionic, and butyric acid levels
intragroup. Probiotics like Bifidobacterium longum helped to re-establish a healthy gut
microbiota by enhancing the growth of beneficial bacteria and reducing the levels of
pathogenic bacteria and uremic toxins. The sorghum, a source of dietary fiber, acts like a
prebiotic, providing the necessary nutrients to support the growth and activity of these
probiotics, promoting colonic fermentation, resulting in an increase in SCFA synthesis
and concentration. In this context, the combined action of probiotics and prebiotics in a
symbiotic meal can enhance the production of short-chain fatty acids (SCFAs), helping
to maintain gut barrier integrity and reduce inflammation. This symbiotic approach not
only improves gut health but also potentially mitigates CKD progression by reducing
systemic inflammation and uremic toxin levels [28,29]. In the intestinal environment,
SCFAs provide energy for colonocytes, thus modulating their proliferation, differentiation,
and the inhibition of pathogenic bacteria growth, in addition to strengthening the intestinal
barrier, reducing luminal pH and intestinal permeability, and improving the immune
function of CKD patients [30,31].

Symbiotic meal consumption reduced uremic toxins, such as indole-3-acetic acid
(IAA) and p-cresyl sulfate (p-CS). Uremic toxins are usually increased in CKD patients.
They can alter the intestinal microbiota and promote dysbiosis by increasing intestinal
permeability [32] and pH, which facilitates the growth of pathogenic microorganisms [33,34]
and favors the progression of CKD [34,35]. However, the symbiotic meal increased SCFA
content, which probably inactivated the bacterial families associated with the production
of uremic toxins, such as p-CS and IAA. Further, probiotic intake can increase acetic acid
production, to which Bifidobacteria are mainly associated [36]. In addition, no increase in
the number of lactic acid bacteria was observed in our study, since the production of butyric
and propionic acids increased and may be associated with the amount of dietary fiber,
resistant starch [37], and other bioactive compounds present in extruded sorghum [12], such
as 3-deoxyanthocyanins and condensed tannins. It is known that butyric acid improves the
intestinal barrier function and inhibits the generation of p-CS and the activation of marker
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inflammation [29,38]. In addition, the consumption of resistant starch was associated with
reduced uremic toxin serum levels [35,38].

The bioactive compounds, such as condensed tannins and 3-deoxyanthocyanins and
dietary fibers from sorghum, are related to the lower digestibility of the cereal when com-
pared to corn [39], which can favor BMI reduction intergroup. Although no differences in
intergroup food intake were observed in the present study, the administration of Bifidobac-
terium longum has been associated with other microorganisms and weight loss in obese
individuals due to reduced microbiome lipopolysaccharides and a consequent increase in
satiety [40,41].

In our study, the presence of dietary fiber and resistant starch through the consumption
of the symbiotic meal increased the frequency of bowel movements. The fermentation
of soluble fiber is associated with increased SCFA production, while the fermentation of
insoluble fiber accelerates intestinal transit and increases the fecal bolus [32,35], which
improves stool consistency and reduces intestinal constipation [42]. Beneficial effects on
gastrointestinal symptoms were observed by Cruz-Mora et al. (2014) in CKD patients
receiving a probiotic and inulin [43]. In addition, symbiotics containing Bifidobacterium
longum are associated with reduced gastrointestinal symptoms, including constipation and
ameliorated life quality, according to the Patient Assessment of Constipation Quality of
Life (PAC-QOL) questionnaire [16]. Therefore, this symbiotic meal can promote a favorable
intestinal condition.

In CKD patients, dysbiosis is frequent and characterized by reduced beneficial com-
mensal bacteria and increased uremic toxin-producing bacteria [44,45]. In our study, the
symbiotic meal improved α-diversity, thus increasing the abundance of microbial genera.
Other indices related to α-diversity, such as Shannon and Simpson indices, indicated no
changes in the number or dominance of species. The β-diversity supported this result,
without inter- or intragroup differences. Other factors, such as stress, aging [46], obesity/fat
accumulation [47], diet quality [48], and occurrence of other diseases, can alter gut micro-
biota composition [49,50], which may hinder the observation of positive changes during
7 weeks of symbiotic meal intervention. In agreement with our results, the consumption
of a diet rich in dietary fiber provided by whole grains did not change α-diversity or
β-diversity [51,52].

The increase in the Chao1 index without changes in Shannon and Simpson indices
suggests that the symbiotic meal had a specific impact on the alpha diversity of the intestinal
microbiota of chronic kidney disease patients on hemodialysis, increasing the number of
rare or less abundant species—that is, increasing their wealth. The results obtained for
the Shannon and Simpson indices suggest that although more species may have been
introduced or flourished due to treatment with the symbiotic meal, the abundance of
the dominant species was not significantly changed. Therefore, the symbiotic meal may
have contributed to a greater diversity of rare species in the intestinal microbiota without
modifying the general structure of the microbial community [53].

The KEGG analysis demonstrated that the symbiotic meal improved pathways related
to energy metabolism, amino sugar metabolism [54], essential amino acid production and
metabolism [55], degradation of sucrose [56], and the biosynthesis of ribonucleotides [57].
The predictive effects observed in amino acid and amino sugar pathways are related to
improved immune function, oxidative stress, and immune response [11]. Further, the
predictive analysis revealed an increased L-ornithine pathway, an intermediate compound
in L-arginine biosynthesis, which, in turn, is used to synthesize glutamate. Glutamate is an
amino acid with beneficial effects on intestinal barrier function, which reduces the entrance
of endotoxins [58,59].

The main limitations of this study included CKD patients with long hemodialysis
treatment (more than 50 months, on average, for both groups), the time of the intervention,
only one type of probiotic used, and the lack of control groups with sorghum and Bifi-
dobacterium longum. Thus, our study revealed that the consumption of symbiotic meal with
extruded BRS 305 grains associated with Bifidobacterium longum was effective in improving
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gastrointestinal symptoms, stool consistency, and SCFA production, in addition to reducing
uremic toxins, such as p-CS and IAA, possibly favoring enterocyte proliferation. Despite the
favorable results of this symbiotic meal consumption, further studies are necessary to evalu-
ate the long-term effect of symbiotic meal consumption on the biochemical (creatinine, urea,
and uric acid) and intestinal health (gut microbiota composition, intestinal permeability,
feces pH, and stool consistency) parameters of CKD patients undergoing hemodialysis.

5. Conclusions

The symbiotic meal containing extruded sorghum BRS 305 associated with Bifidobac-
terium longum was able to improve SCFA production, reduce uremic toxin serum levels,
and decrease BMI in CKD patients. Furthermore, the beverage increased bacterial richness
and metabolic pathways related to energy metabolism and the biosynthesis of amino acids.
Therefore, the symbiotic meal improved intestinal and systemic health status in chronic
kidney disease patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16121852/s1, Table S1. Nutritional composition of the control
and test meals by 100 g/portion. Table S2. Nutritional composition of sorghum and corn used in test
meals. Table S3. Stool classification of treatment groups according Bristol Scale. Table S4. Sequencing
data at baseline and at the end of 7 weeks of treatment, according to each group. Figure S1. Analysis
report on the cellular prediction of the probiotic drink containing Bifidobacterium longum. Figure S2.
Effect of extruded sorghum BRS305 plus Bifidobacterium longum on gut microbiota relative abundance
at phylum level at the end of treatment. Figure S3. Effect of extruded sorghum BRS305 plus
Bifidobacterium longum in microbial metabolic pathways in feces of CKD patients.
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