Factor Associated with Adherence to the Protein and Fat Counting Strategy by Adults with Type 1 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Participants
2.3. Instrument
- Carbohydrate counting knowledge: This section includes questions related to knowledge of carbohydrate counting (CC), such as when CC is performed, the method used to determine the quantity of carbohydrates in foods, whether a kitchen scale is used for CC, and the reasons for using a kitchen scale.
- Clinical and anthropometric data: This section contains questions related to Body Mass Index (BMI), BMI classification, HbA1c examination, the value of HbA1c in the participants’ last examination, and the duration of T1DM diagnosis.
- Sociodemographic and socioeconomic: This section includes questions about age, biological sex, place of residence (state, city, and neighborhood), level of education, and family income.
- Health professionals’ follow-up (considering the three months prior to the survey): These questions cover multiprofessional assistance, whether participants have followed up with any healthcare professional, the mode of attendance (in-person, virtual, both, or none), the method of follow-up (through health insurance, public health system, both, or private), whether participants perform protein and lipid counting, who taught them to perform protein and lipid counting, and when they perform protein and lipid counting.
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodacki, M.; Teles, M.; Gabbay, M.; Lamounier, R. Classificação do diabetes. In Diretriz Oficial da Sociedade Bras Diabetes; Montenegro, R., Bertolucci, M., Eds.; Brazilian Society of Diabetes: Sao Paulo, Brazil, 2023; ISBN 978-85-5722-906-8. [Google Scholar] [CrossRef]
- Sociedade Brasileira de Diabetes (SBD). Diretrizes da Sociedade Brasileira de Diabetes 2019–2020; Clannad: Sao Paulo, Brazil, 2019; 105p. [Google Scholar]
- Sociedade Brasileira de Diabetes (SBD) (Brazilian Society of Diabetes). Manual de Contagem de Carboidratos Para Pessoas Com Diabetes (Carbohydrate Counting Manual for People with Diabetes); Departamento de Nutrição da Sociedade Brasileira de Diabetes (Department of Nutrition of the Brazilian Society of Diabetes): São Paulo, Brazil, 2023; pp. 1–192. Available online: https://materiais.diabetes.org.br/e-book-manual-de-contagem-de-carboidratos?fbclid=PAAabupt8rwH_Lls9GcjE4UkEGT8TYete2WiDHLzjvuoOTVt2wanaMO9oDrI_aem_AbivYzPCfGz3EQHwpvxCCrky0zI7HaL-lawoSVIWmGsHM4uDi3SRNergLHgI0uuW7cE (accessed on 20 April 2024).
- Tascini, G.; Berioli, M.G.; Cerquiglini, L.; Santi, E.; Mancini, G.; Rogari, F.; Toni, G.; Esposito, S. Contagem de carboidratos em crianças e adolescentes com diabetes tipo 1. Nutrientes 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Pańkowska, E.; Błazik, M.; Groele, L. Does the fat-protein meal increase postprandial glucose level in type 1 diabetes patients on insulin pump: The conclusion of a randomized study. Diabetes Techno.l Ther. 2012, 14, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.E.; Evans, M.; O’connell, S.M.; Mcelduff, P.; Lopez, P.E.; Jones, T.W.; Davis, E.A.; King, B.R. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care 2013, 36, 3897–3902. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.A.; Smart, C.E.; Lopez, P.E.; McElduff, P.; Attia, J.; Morbey, C.; King, B.R. Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Diabetic Med. 2016, 33, 592–598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smart, C.E.M.; King, B.R.; Lopez, P.E. Insulin Dosing for Fat and Protein: Is it Time? Diabetes Care 2020, 43, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Alderisio, A.; Giorgini, M.; Barone, F.; Giacco, A.; Riccardi, G.; Rivellese, A.A.; Annuzzi, G. Extra-Virgin Olive Oil Reduces Glycemic Response to a High–Glycemic Index Meal in Patients With Type 1 Diabetes: A Randomized Controlled Trial. Diabetes Care 2016, 39, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Ježek, P.; Jabůrek, M.; Holendová, B.; Plecitá-Hlavatá, L. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules. 2018, 23, 1483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cutruzzolà, A.; Parise, M.; Vallelunga, R.; Lamanna, F.; Gnasso, A.; Irace, C. Effect of Extra Virgin Olive Oil and Butter on Endothelial Function in Type 1 Diabetes. Nutrients 2021, 13, 2436. [Google Scholar] [CrossRef] [PubMed]
- Whisner, C.M.; Angadi, S.S.; Weltman, N.Y.; Weltman, A.; Rodriguez, J.; Patrie, J.T.; Gaesser, G.A. Effects of Low-Fat and High-Fat Meals, with and without Dietary Fiber, on Postprandial Endothelial Function, Triglyceridemia, and Glycemia in Adolescents. Nutrients 2019, 11, 2626. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.; Bell, K.J.; O’connell, S.M.; Smart, C.E.; Shafat, A.; King, B. The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management. Curr. Diabetes Rep. 2015, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.J.; Smart, C.E.; Steil, G.M.; Brand-Miller, J.C.; King, B.; Wolpert, H.A. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: Implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care 2015, 38, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Uliana, G.C.; Carvalhal, M.M.D.L.; Berino, T.N.; Reis, A.L.; Felício, K.M.; Felício, J.S.; Gomes, D.G. Adherence to carbohydrate counting improved diet quality in adults with type 1 diabetes mellitus during social distancing due to COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 9776. [Google Scholar] [CrossRef] [PubMed]
- De Souza, G.S.; De Paula Bueno, P.H.L.; Santos, P.R. Knowledge of carbohydrate counting in the treatment of type 1 diabetes mellitus: An integrative literature review. Vita Sanitas 2023, 17, 102–115. [Google Scholar]
- Gabriel, B.D.; Albuquerque, C.T.; Consoli, M.L.D.; Menezes, P.A.F.C.; Reis, J.S. Training Adolescents with Type 1 Diabetes to Carbohydrate Counting without parents’ Help. Rev. Nutr. 2016, 29, 77–84. [Google Scholar] [CrossRef]
- Uliana, G.C.; Camara, L.N.; Paracampo, C.C.P.; Da Costa, J.C.; Gomes, D.L. Characteristics of carbohydrate counting practice associated with glycated hemoglobin adequacy in adults with type 1 diabetes mellitus in Brazil. Front. Endocrinol. 2023, 14, 1215792. [Google Scholar] [CrossRef] [PubMed]
- Centro de Diabetes de Belo Horizonte [CDBH]. Manual de Contagem de Carboidratos, 5th ed.; Novo Nordisk: Belo Horizonte, Brazil, 2020; Available online: https://cdbh.com.br/wp-content/uploads/2020/03/Manual-de-contagem-de-carboidrato-2020.pdf (accessed on 17 April 2023).
- Ewers, B.; Vilsbøll, T.; Andersen, H.U.; Bruun, J.M. The Dietary Education in Carbohydrate Counting trial (DIET-CARB study): Study protocol for a randomized, parallel, open-label intervention study comparing different approaches to dietary self-management in patients with type 1 diabetes. BMJ Open 2019, 9, e029859. [Google Scholar] [CrossRef] [PubMed]
- Pititto, B.A.; Dias, M.L.; Moura, F.F.; Lamounier, R.; Vencio, S.; Calliari, L.E.; Metas no Tratamento do Diabetes. Diretriz Oficial da Sociedade Bras Diabetes. 2021. Available online: https://diretriz.diabetes.org.br/metas-no-tratamento-do-diabetes/ (accessed on 20 September 2023).
- American Diabetes Association Professional Practice Committee. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, 583–596. [Google Scholar] [CrossRef] [PubMed]
n | % | |
---|---|---|
Adherence to Protein and/or Lipid Counting | ||
I’ve done Protein and/or Lipid Counting for a while, but I’m not doing it at the moment | 22 | 12.6 |
Yes, I do the Protein and/or Lipid Count | 39 | 22.5 |
I know how to do it, but I’ve never done a Protein and/or Lipid Count | 20 | 11.6 |
I know what Protein and/or Lipid Counting is, but I don’t know how to do it | 56 | 32.4 |
I don’t know what Protein and/or Lipid Count is | 36 | 20.8 |
Health professional who taught Protein and/or Lipid Counting | ||
Endocrinologist | 20 | 11.6 |
Nutritionist | 45 | 26 |
Protein and/or lipid counting at mealtimes | ||
Breakfast | 26 | 15.0 |
Morning snack | 19 | 11.0 |
Lunch | 39 | 22.5 |
Afternoon snack | 19 | 11.0 |
Dinner | 41 | 23.7 |
Supper | 20 | 11.6 |
Protein and Lipid Count | p-Value * | ||
---|---|---|---|
Yes n (%) | No n (%) | ||
Education | |||
No higher education | 10 (5.8) (−) | 72 (41.6) (+) | 0.002 † |
With higher education | 29 (16.8) (+) | 62 (35.8) (−) | |
Family income | |||
Up to 3 minimum wages | 9 (5.2) (−) | 68 (39.3) (+) | 0.002 † |
More than 3 minimum wages | 30 (17.3) (+) | 66 (38.2) (−) | |
Biological sex | |||
Male | 3 (1.7) | 24 (13.8) | 0.122 |
Female | 36 (20.8) | 110 (63.6) |
Protein and Lipid Count | p-Value * | ||
---|---|---|---|
Yes n (%) | No n (%) | ||
BMI classification | |||
Adequate | 27 (15.6) | 77 (44.5) | 0.187 |
Not adequate | 12 (6.9) | 57 (32.8) | |
HbA1c classification | |||
Adequate | 28 (15.6) (+) | 47 (27.2) | <0.0001 † |
Increased | 12 (6.9) | 87 (50.3) | |
Diagnostic time | |||
<10 years | 12 (6.9) | 37 (21.4) | 0.700 |
>10 years | 27 (15.6) | 97 (56.1) | |
Accompanied by an endocrinologist | |||
Yes | 37 (21.4) | 130 (75.1) | 0.520 |
No | 2 (1.2) | 4 (2.3) | |
Accompanied by a nutritionist | |||
Yes | 19 (11.0) | 55 (31.8) | 0.394 |
No | 20 (11.6) | 79 (45.7) | |
Consultation in recent months | |||
In person | 25 (14.5) | 75 (43.4) | 0.079 |
Via the internet | 4 (2.3) | 5 (2.9) | |
In person and online | 7 (4.0) | 22 (12.7) | |
No appointments | 3 (1.7) | 32 (18.5) |
B | S.E. | Wald | df | Sig. | EXP (B) | 95% C.I. for EXP (B) | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Adherence to protein and lipid counting | 0.967 | 0.425 | 5.178 | 1 | 0.023 | 2.630 | 1.143 | 6.047 |
Having learned to counting proteins and lipids with a nutritionist | 1.306 | 0.403 | 10.520 | 1 | 0.001 | 3.692 | 1.677 | 8.131 |
Constant | −3.696 | 0.899 | 16.892 | 1 | 0.000 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uliana, G.C.; da Costa, J.C.; Quaresma, A.R.; da Fonseca, A.A.; Ohaze, K.B.; Alves, L.S.C.; Gomes, D.L. Factor Associated with Adherence to the Protein and Fat Counting Strategy by Adults with Type 1 Diabetes Mellitus. Nutrients 2024, 16, 1930. https://doi.org/10.3390/nu16121930
Uliana GC, da Costa JC, Quaresma AR, da Fonseca AA, Ohaze KB, Alves LSC, Gomes DL. Factor Associated with Adherence to the Protein and Fat Counting Strategy by Adults with Type 1 Diabetes Mellitus. Nutrients. 2024; 16(12):1930. https://doi.org/10.3390/nu16121930
Chicago/Turabian StyleUliana, Gabriela Correia, Juliana Carvalho da Costa, Ayla Rocha Quaresma, Arthur Andrade da Fonseca, Kaory Brito Ohaze, Layla Sandia Cezário Alves, and Daniela Lopes Gomes. 2024. "Factor Associated with Adherence to the Protein and Fat Counting Strategy by Adults with Type 1 Diabetes Mellitus" Nutrients 16, no. 12: 1930. https://doi.org/10.3390/nu16121930
APA StyleUliana, G. C., da Costa, J. C., Quaresma, A. R., da Fonseca, A. A., Ohaze, K. B., Alves, L. S. C., & Gomes, D. L. (2024). Factor Associated with Adherence to the Protein and Fat Counting Strategy by Adults with Type 1 Diabetes Mellitus. Nutrients, 16(12), 1930. https://doi.org/10.3390/nu16121930