Higher Plasma Myo-Inositol in Pregnancy Associated with Reduced Postpartum Blood Loss: Secondary Analyses of the NiPPeR Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Laboratory Analyses
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Associations between Nutrients and Postpartum Blood Loss
3.3. Sensitivity Analyses
4. Discussion
4.1. Comparisons with Published Literature
4.2. Clinical Implications
4.3. Postulated Mechanisms of Effect
4.4. Strengths and Weaknesses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, J.B.; Patterson, J.A.; Seeho, S.K.; Roberts, C.L. Trends and outcomes of postpartum haemorrhage, 2003–2011. BMC Pregnancy Childbirth 2015, 15, 334. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Patel, A.; Van Hook, J.W. Uterine Atony. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kramer, M.S.; Dahhou, M.; Vallerand, D.; Liston, R.; Joseph, K.S. Risk factors for postpartum hemorrhage: Can we explain the recent temporal increase? J. Obstet. Gynaecol. Can. 2011, 33, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Parry Smith, W.R.; Papadopoulou, A.; Thomas, E.; Tobias, A.; Price, M.J.; Meher, S.; Alfirevic, Z.; Weeks, A.D.; Hofmeyr, G.J.; Gulmezoglu, A.M.; et al. Uterotonic agents for first-line treatment of postpartum haemorrhage: A network meta-analysis. Cochrane Database Syst. Rev. 2020, 11, CD012754. [Google Scholar] [CrossRef] [PubMed]
- Prata, N.; Bell, S.; Weidert, K. Prevention of postpartum hemorrhage in low-resource settings: Current perspectives. Int. J. Womens Health 2013, 5, 737–752. [Google Scholar] [CrossRef]
- World Health Organization. A Roadmap to Combat Postpartum Haemorrhage between 2023 and 2030; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Li, W.J.; Chen, K.H.; Huang, L.W.; Tsai, Y.L.; Seow, K.M. Low Maternal Serum 25-Hydroxyvitamin D Concentration Is Associated With Postpartum Hemorrhage: A Retrospective Observational Study. Front. Endocrinol. 2022, 13, 816480. [Google Scholar] [CrossRef]
- Thomsen, C.R.; Milidou, I.; Hvidman, L.; Khalil, M.R.; Rejnmark, L.; Uldbjerg, N. Vitamin D and the risk of dystocia: A case-control study. PLoS ONE 2020, 15, e0240406. [Google Scholar] [CrossRef]
- Tous, M.; Villalobos, M.; Iglesias, L.; Fernandez-Barres, S.; Arija, V. Vitamin D status during pregnancy and offspring outcomes: A systematic review and meta-analysis of observational studies. Eur. J. Clin. Nutr. 2020, 74, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Dura Trave, T.; Puig Abuli, M.; da Cunha Ferreira, R.M.; Villa Elizaga, I. Effect of zinc nutrition on parturition and postpartum in the rat. Gynecol. Obstet. Investig. 1984, 18, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, N.; Kuhnert, B.R.; Kuhnert, P.M.; Thompson, K.L. Zinc status, pregnancy complications, and labor abnormalities. Am. J. Obstet. Gynecol. 1988, 158, 161–166. [Google Scholar] [CrossRef]
- Cooper, C.; Harvey, N.C.; Bishop, N.J.; Kennedy, S.; Papageorghiou, A.T.; Schoenmakers, I.; Fraser, R.; Gandhi, S.V.; Carr, A.; D’Angelo, S.; et al. Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): A multicentre, double-blind, randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2016, 4, 393–402. [Google Scholar] [CrossRef]
- Palacios, C.; Kostiuk, L.K.; Pena-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 7, CD008873. [Google Scholar] [CrossRef] [PubMed]
- Carducci, B.; Keats, E.C.; Bhutta, Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2021, 3, CD000230. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, M.; Girard, C.L.; Santschi, D.E.; Laforest, J.P.; Durocher, J.; Pellerin, D. Effects of folic acid and vitamin B12 supplementation on culling rate, diseases, and reproduction in commercial dairy herds. J. Dairy Sci. 2014, 97, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Watkins, O.C.; Yong, H.E.J.; Sharma, N.; Chan, S.Y. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit. Rev. Food Sci. Nutr. 2022, 62, 1626–1673. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shi, H. Inositol supplementation for the prevention and treatment of gestational diabetes mellitus: A meta-analysis of randomized controlled trials. Arch. Gynecol. Obstet. 2023, 309, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Motuhifonua, S.K.; Lin, L.; Alsweiler, J.; Crawford, T.J.; Crowther, C.A. Antenatal dietary supplementation with myo-inositol for preventing gestational diabetes. Cochrane Database Syst. Rev. 2023, 2, CD011507. [Google Scholar] [CrossRef]
- Kavak, E.Ç.; Kacar, E.; Kavak, S.B.; Bulmus, O.; Serhatlioglu, I.; Tektemur, A. Myoinositol Causes Myometrial Contractions in Isolated Non-Pregnant Rat Myometrium. East. J. Med. 2018, 23, 65–70. [Google Scholar] [CrossRef]
- Chan, S.Y.; Yong, H.E.J.; Chang, H.F.; Barton, S.J.; Galani, S.; Zhang, H.; Wong, J.T.; Ong, J.; Ebreo, M.; El-Heis, S.; et al. Peripartum outcomes after combined myo-inositol, probiotics, and micronutrient supplementation from preconception: The NiPPeR randomized controlled trial. Am. J. Obstet. Gynecol. MFM 2022, 4, 100714. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, K.M.; Barton, S.J.; El-Heis, S.; Kenealy, T.; Nield, H.; Baker, P.N.; Chong, Y.S.; Cutfield, W.; Chan, S.Y.; Ni, P.S.G. Myo-Inositol, Probiotics, and Micronutrient Supplementation From Preconception for Glycemia in Pregnancy: NiPPeR International Multicenter Double-Blind Randomized Controlled Trial. Diabetes Care 2021, 44, 1091–1099. [Google Scholar] [CrossRef]
- Godfrey, K.M.; Cutfield, W.; Chan, S.Y.; Baker, P.N.; Chong, Y.S.; Ni, P.S.G. Nutritional Intervention Preconception and During Pregnancy to Maintain Healthy Glucose Metabolism and Offspring Health (“NiPPeR”): Study protocol for a randomised controlled trial. Trials 2017, 18, 131. [Google Scholar] [CrossRef]
- Cole, T.J.; Williams, A.F.; Wright, C.M.; Group, R.G.C.E. Revised birth centiles for weight, length and head circumference in the UK-WHO growth charts. Ann. Hum. Biol. 2011, 38, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Midttun, O.; Hustad, S.; Ueland, P.M. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2009, 23, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, K.M.; Titcombe, P.; El-Heis, S.; Albert, B.B.; Tham, E.H.; Barton, S.J.; Kenealy, T.; Chong, M.F.; Nield, H.; Chong, Y.S.; et al. Maternal B-vitamin and vitamin D status before, during, and after pregnancy and the influence of supplementation preconception and during pregnancy: Prespecified secondary analysis of the NiPPeR double-blind randomized controlled trial. PLoS Med. 2023, 20, e1004260. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Zhang, H.; Wong, J.T.; Chang, H.F.; Chen, L.W.; Barton, S.J.; Nield, H.; El-Heis, S.; Kenealy, T.; Lavalle, L.; et al. Higher early pregnancy plasma myo-inositol associates with increased postprandial glycaemia later in pregnancy: Secondary analyses of the NiPPeR randomized controlled trial. Diabetes Obes. Metab. 2024, 26, 1658–1669. [Google Scholar] [CrossRef]
- Moon, R.J.; D’Angelo, S.; Crozier, S.R.; Curtis, E.M.; Fernandes, M.; Kermack, A.J.; Davies, J.H.; Godfrey, K.M.; Bishop, N.J.; Kennedy, S.H.; et al. Does antenatal cholecalciferol supplementation affect the mode or timing of delivery? Post hoc analyses of the MAVIDOS randomized controlled trial. J. Public Health 2023, 45, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kwek, M.E.; Tagore, S.; Wright, A.; Ku, C.W.; Teong, A.C.A.; Tan, A.W.M.; Lim, S.W.C.; Yen, D.Y.T.; Ang, C.Y.X.; et al. Tranexamic acid, as an adjunct to oxytocin prophylaxis, in the prevention of postpartum haemorrhage in women undergoing elective caesarean section: A single-centre double-blind randomised controlled trial. BJOG 2023, 130, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Calvert, C.; Thomas, S.L.; Ronsmans, C.; Wagner, K.S.; Adler, A.J.; Filippi, V. Identifying regional variation in the prevalence of postpartum haemorrhage: A systematic review and meta-analysis. PLoS ONE 2012, 7, e41114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, J.; Feng, X.; Lash, G.E. Unraveling the mysteries of spiral artery remodeling. Placenta 2023, 141, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Shukla, D.; Suman, K.; Lakshmi, B.J.; Manorama, R.; Kumar, S.; Bhandari, R. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013, 122, 1478–1486. [Google Scholar] [CrossRef]
- Morrissey, J.H. One inositol ring to rule thrombosis. Blood 2013, 122, 1331–1332. [Google Scholar] [CrossRef]
Characteristics | Total (N = 583) | ||
---|---|---|---|
Maternal | |||
Age [years; mean (SD)] | 30.3 (3.3) | ||
Pre-pregnancy BMI [kg/m2; median (IQR)] | 23.7 (21.3–26.9) | ||
Ethnicity, n (%) | |||
White Caucasian | 345 (59.2) | ||
Chinese | 146 (25.0) | ||
South Asian (Indian, Pakistani, Bangladeshi) | 30 (5.2) | ||
Malay | 23 (3.9) | ||
Other (Mixed, Black, Polynesian) | 39 (6.7) | ||
Site, n (%) | |||
UK | 189 (32.4) | ||
SG | 166 (28.5) | ||
NZ | 228 (39.1) | ||
Household income for country, n (%) | |||
1st quintile (lowest) | 7 (1.2) | ||
2nd quintile | 43 (7.4) | ||
3rd quintile | 124 (21.3) | ||
4th quintile | 202 (34.7) | ||
5th quintile (highest) | 184 (31.6) | ||
Unavailable | 23 (3.8) | ||
Preconception smoking, n (%) | |||
Previous smoker | 93 (16.1) | ||
Active smoker | 23 (4.0) | ||
Nulliparous, n (%) | 369 (63.3) | ||
Previous cesarean (denominator—all parous women), n (%) | 61 (28.5) | ||
Mode of delivery, n (%) | |||
Vaginal delivery | 414 (71.0) | ||
Cesarean section in labor | 94 (16.1) | ||
Cesarean section without labor | 75 (12.9) | ||
Neonatal | |||
Gestational age at birth [weeks; median (IQR)] | 39.4 (38.5–40.3) | ||
Birthweight [kg; median (IQR)] | 3.3 (3.0–3.7) | ||
Size at birth 1, n (%) | |||
LGA > 90th centile | 43 (7.4) | ||
AGA | 495 (84.9) | ||
SGA < 10th centile | 45 (7.7) | ||
Nutrient | Median concentration at pre-pregnancy baseline (IQR) | Low status at pre-pregnancy baseline, n (%) | Low status definition |
Vitamin B2 (nmol/L) | 13.0 (8.0–20.9) | 45 (7.7%) | <5 |
Vitamin B6 (nmol/L) | 60.4 (43.7–97) | 10 (1.7%) | <20 |
Vitamin B12 (pmol/L) | 352.2 (276.1–435.5) | 62 (10.6%) | <221 |
Vitamin D (nmol/L) | 53.8 (40.2–68.9) | 244 (41.9%) | <50 |
Myo-inositol (µmol/L) | 21.9 (19.2–25.5) | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.F.; Yong, H.E.J.; Zhang, H.; Wong, J.-T.; Barton, S.J.; Titcombe, P.; Albert, B.B.; El-Heis, S.; Nield, H.; Ong, J.; et al. Higher Plasma Myo-Inositol in Pregnancy Associated with Reduced Postpartum Blood Loss: Secondary Analyses of the NiPPeR Trial. Nutrients 2024, 16, 2054. https://doi.org/10.3390/nu16132054
Chang HF, Yong HEJ, Zhang H, Wong J-T, Barton SJ, Titcombe P, Albert BB, El-Heis S, Nield H, Ong J, et al. Higher Plasma Myo-Inositol in Pregnancy Associated with Reduced Postpartum Blood Loss: Secondary Analyses of the NiPPeR Trial. Nutrients. 2024; 16(13):2054. https://doi.org/10.3390/nu16132054
Chicago/Turabian StyleChang, Hsin F., Hannah E. J. Yong, Han Zhang, Jui-Tsung Wong, Sheila J. Barton, Philip Titcombe, Benjamin B. Albert, Sarah El-Heis, Heidi Nield, Judith Ong, and et al. 2024. "Higher Plasma Myo-Inositol in Pregnancy Associated with Reduced Postpartum Blood Loss: Secondary Analyses of the NiPPeR Trial" Nutrients 16, no. 13: 2054. https://doi.org/10.3390/nu16132054
APA StyleChang, H. F., Yong, H. E. J., Zhang, H., Wong, J. -T., Barton, S. J., Titcombe, P., Albert, B. B., El-Heis, S., Nield, H., Ong, J., Lavelle, L., Ramos-Nieves, J. M., Godin, J. -P., Silva-Zolezzi, I., Cutfield, W. S., Godfrey, K. M., Chan, S. -Y., & the NiPPeR Study Group. (2024). Higher Plasma Myo-Inositol in Pregnancy Associated with Reduced Postpartum Blood Loss: Secondary Analyses of the NiPPeR Trial. Nutrients, 16(13), 2054. https://doi.org/10.3390/nu16132054