Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms
Abstract
:1. Introduction
2. Chemical Properties
3. Biological Effects
3.1. Proteolytic Activity
3.2. Fibrinolytic Activity
3.3. Antioxidant Effects
3.4. Immune Modulation
3.5. Regulation of Specific Cell Signaling Pathways
3.6. Down-Regulation of Plasma Kininogen
3.7. Inhibition of Prostaglandin E2 Expression
3.8. Degradation of Advanced Glycation End Product Receptors
3.9. Regulation of Angiogenesis
4. Medical Indications
4.1. Inflammation, Edema, and Swelling
4.2. Digestive Health
4.3. Aging
4.4. Dermatology
4.5. Infectious Disorders
4.6. Cancer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, R.G.; Henry, G.W.; Civin, W.H. The action of papain and bromelain on the uterus. Am. J. Obstet. Gynecol. 1957, 73, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.J. Papain, ficin and bromelain in the detection of incomplete Rhesus antibodies. Br. J. Haematol. 1957, 3, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Simmons, C.A. The relief of pain in spasmodic dysmenorrhoea by bromelain. Lancet 1958, 2, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.L.; Lawrie, J.H.; Maclennan, H.R. Bromelain and the cervix uteri. Lancet 1960, 2, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Murachi, T.; Neurath, H. Fractionation and specificity studies on stem bromelain. J. Biol. Chem. 1960, 235, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.F. The uterine isthmus and its sphincter mechanism: A clinical and radiographic study. III. The effect of bromelain on the uterine isthmus. Am. J. Obstet. Gynecol. 1960, 79, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Fu, T.H.; Hirohata, R. Studies on bromelain. II. Its activation and fractionation. J. Biochem. 1961, 49, 532–537. [Google Scholar] [CrossRef] [PubMed]
- El-Gharbawi, M.; Whitaker, J.R. Fractionation and Partial Characterization of the Proteolytic Enzymes of Stem Bromelain. Biochemistry 1963, 2, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Inagami, T.; Murachi, T. Kinetic Studies of Bromelain Catalysis. Biochemistry 1963, 2, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.P.; Greer, P.K.; Trinh, C.T.; James, C.L. Proteinase activity and stability of natural bromelain preparations. Int. Immunopharmacol. 2005, 5, 783–793. [Google Scholar] [CrossRef]
- Azarkan, M.; Maquoi, E.; Delbrassine, F.; Herman, R.; M’Rabet, N.; Calvo Esposito, R.; Charlier, P.; Kerff, F. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci. Rep. 2020, 10, 19570. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Hsia, C.C.; Hu, P.A.; Yeh, C.H.; Chen, C.T.; Peng, C.L.; Wang, C.H.; Lee, T.S. Bromelain Ameliorates Atherosclerosis by Activating the TFEB-Mediated Autophagy and Antioxidant Pathways. Antioxidants 2022, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Gupta, N.; Pandey, E. Implications of nasal delivery of bromelain on its pharmacokinetics, tissue distribution and pharmacodynamic profile-A preclinical study. PLoS ONE 2022, 17, e0277849. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.V.; Goncharova, S.S.; Lavlinskaya, M.S.; Holyavka, M.G.; Faizullin, D.A.; Zuev, Y.F.; Kondratyev, M.S.; Artyukhov, V.G. Complexation of Bromelain, Ficin, and Papain with the Graft Copolymer of Carboxymethyl Cellulose Sodium Salt and N-Vinylimidazole Enhances Enzyme Proteolytic Activity. Int. J. Mol. Sci. 2023, 24, 11246. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Hang, S.; Zhou, Y.; Liu, Q.; Yang, H. Bromelain Kinetics and Mechanism on Myofibril from Golden Pomfret (Trachinotus blochii). J. Food Sci. 2018, 83, 2148–2158. [Google Scholar] [CrossRef] [PubMed]
- Ningrum, A.; Wardani, D.W.; Vanidia, N.; Sarifudin, A.; Kumalasari, R.; Ekafitri, R.; Kristanti, D.; Setiaboma, W.; Munawaroh, H.S.H. In Silico Approach of Glycinin and Conglycinin Chains of Soybean By-Product (Okara) Using Papain and Bromelain. Molecules 2022, 27, 6855. [Google Scholar] [CrossRef] [PubMed]
- Rajan, P.K.; Dunna, N.R.; Venkatabalasubramanian, S. A comprehensive overview on the anti-inflammatory, antitumor, and ferroptosis functions of bromelain: An emerging cysteine protease. Expert. Opin. Biol. Ther. 2022, 22, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Vimal, A. Bromelain: An Enzyme Expanding its Horizon from Food to Pharmaceutical Industry. Curr. Pharm. Biotechnol. 2023, 24, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.R. Bromelain: Biochemistry, pharmacology and medical use. Cell. Mol. Life Sci. 2001, 58, 1234–1245. [Google Scholar] [CrossRef]
- Smyth, R.D.; Brennan, R.; Martin, G.J. Systemic biochemical changes following the oral administration of a proteolytic enzyme, bromelain. Arch. Int. Pharmacodyn. Ther. 1962, 136, 230–236. [Google Scholar]
- Yamada, F.; Takahashi, N.; Murachi, T. Purification and characterization of a proteinase from pineapple fruit, fruit bromelain FA2. J. Biochem. 1976, 79, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Muta, E.; Katahira, Y.; Okamoto, Y. Reinvestigation of fractionation and some properties of the proteolytically active components of stem and fruit bromelains. J. Biochem. 1985, 98, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Rowan, A.D.; Buttle, D.J.; Barrett, A.J. The cysteine proteinases of the pineapple plant. Biochem. J. 1990, 266, 869–875. [Google Scholar]
- Ramli, A.N.; Aznan, T.N.; Illias, R.M. Bromelain: From production to commercialisation. J. Sci. Food Agric. 2017, 97, 1386–1395. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Feng, P.; Yin, L.; Wang, C.; Zhi, S.; Dong, J.; Wang, J.; Lin, Y.; Chen, D.; et al. Inhibition of Epithelial TNF-alpha Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis. Front. Immunol. 2017, 8, 1468. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Manas, N.H.A.; Hamid, A.A.A.; Hamid, H.A.; Illias, R.M. Comparative structural analysis of fruit and stem bromelain from Ananas comosus. Food Chem. 2018, 266, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, W.; Liu, Y.; Zhi, W.; Han, J.; Wang, Y.; Ni, L. Green separation of bromelain in food sample with high retention of enzyme activity using recyclable aqueous two-phase system containing a new synthesized thermo-responsive copolymer and salt. Food Chem. 2019, 282, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Varilla, C.; Marcone, M.; Paiva, L.; Baptista, J. Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods 2021, 10, 2249. [Google Scholar] [CrossRef]
- Razali, R.; Fahrudin, F.A.; Subbiah, V.K.; Takano, K.; Budiman, C. Heterologous Expression and Catalytic Properties of Codon-Optimized Small-Sized Bromelain from MD2 Pineapple. Molecules 2022, 27, 6031. [Google Scholar] [CrossRef]
- Yow, A.G.; Bostan, H.; Young, R.; Valacchi, G.; Gillitt, N.; Perkins-Veazie, P.; Xiang, Q.J.; Iorizzo, M. Identification of bromelain subfamily proteases encoded in the pineapple genome. Sci. Rep. 2023, 13, 11605. [Google Scholar] [CrossRef]
- Looby, C.I.; Eaton, W.D. Effects of Bromelia pinguin (Bromeliaceae) on soil ecosystem function and fungal diversity in the lowland forests of Costa Rica. BMC Ecol. 2014, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Meza-Espinoza, L.; de Los Angeles Vivar-Vera, M.; de Lourdes Garcia-Magana, M.; Sayago-Ayerdi, S.G.; Chacon-Lopez, A.; Becerrea-Verdin, E.M.; Montalvo-Gonzalez, E. Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases. Food Sci. Biotechnol. 2018, 27, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Azarkan, M.; Gonzalez, M.M.; Esposito, R.C.; Errasti, M.E. Stem Bromelain Proteolytic Machinery: Study of the Effects of its Components on Fibrin (ogen) and Blood Coagulation. Protein Pept. Lett. 2020, 27, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Kritis, P.; Karampela, I.; Kokoris, S.; Dalamaga, M. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabol. Open 2020, 8, 100066. [Google Scholar] [CrossRef] [PubMed]
- Hikisz, P.; Bernasinska-Slomczewska, J. Beneficial Properties of Bromelain. Nutrients 2021, 13, 4313. [Google Scholar] [CrossRef] [PubMed]
- Maher, H.M.; Almomen, A.; Alzoman, N.Z.; Shehata, S.M.; Alanazi, A.A. Development and validation of UPLC-MS/MS method for the simultaneous quantification of anaplastic lymphoma kinase inhibitors, alectinib, ceritinib, and crizotinib in Wistar rat plasma with application to bromelain-induced pharmacokinetic interaction. J. Pharm. Biomed. Anal. 2021, 204, 114276. [Google Scholar] [CrossRef] [PubMed]
- Rafiei-Asl, S.; Khadjeh, G.; Jalali, S.M.; Jamshidian, J.; Rezaie, A. Protective Effects of Bromelain against Cadmium-Induced Pulmonary Intoxication in Rats: A Histopathologic and Cytologic Study. Arch. Razi Inst. 2021, 76, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.A.; Wang, S.H.; Chen, C.H.; Guo, B.C.; Huang, J.W.; Lee, T.S. New Mechanisms of Bromelain in Alleviating Non-Alcoholic Fatty Liver Disease-Induced Deregulation of Blood Coagulation. Nutrients 2022, 14, 2329. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.C.; Satiro Vieira, E.E.; de Oliveira Torres, L.R.; Carneiro da Silva, F.C.; de Castro, E.S.J.M.; Torres-Leal, F.L. Bromelain supplementation and inflammatory markers: A systematic review of clinical trials. Clin. Nutr. ESPEN 2023, 55, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Rasheedi, S.; Haq, S.K.; Khan, R.H. Guanidine hydrochloride denaturation of glycosylated and deglycosylated stem bromelain. Biochemistry 2003, 68, 1097–1100. [Google Scholar] [CrossRef]
- Sawano, Y.; Hatano, K.; Tanokura, M. Susceptibility of the interchain peptide of a bromelain inhibitor precursor to the target proteases bromelain, chymotrypsin, and trypsin. Biol. Chem. 2005, 386, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Bakare, A.O.; Owoyele, B.V. Antinociceptive and neuroprotective effects of bromelain in chronic constriction injury-induced neuropathic pain in Wistar rats. Korean J. Pain. 2020, 33, 13–22. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, F.M.; Baghdadi, H.H.; Ghanem, N.F.; Mhanna, A.B.A. Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats. Environ. Toxicol. Pharmacol. 2020, 80, 103509. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.A.; Chen, C.H.; Guo, B.C.; Kou, Y.R.; Lee, T.S. Bromelain Confers Protection against the Non-Alcoholic Fatty Liver Disease in Male C57bl/6 Mice. Nutrients 2020, 12, 1458. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Chen, G.; Li, Y. Production and Characterization of Antioxidative Hydrolysates and Peptides from Corn Gluten Meal Using Papain, Ficin, and Bromelain. Molecules 2020, 25, 4091. [Google Scholar] [CrossRef] [PubMed]
- Jebur, A.B.; El-Demerdash, F.M.; Kang, W. Bromelain from Ananas comosus stem attenuates oxidative toxicity and testicular dysfunction caused by aluminum in rats. J. Trace Elem. Med. Biol. 2020, 62, 126631. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Pedrouso, M.; Borrajo, P.; Pateiro, M.; Lorenzo, J.M.; Franco, D. Antioxidant activity and peptidomic analysis of porcine liver hydrolysates using alcalase, bromelain, flavourzyme and papain enzymes. Food Res. Int. 2020, 137, 109389. [Google Scholar] [CrossRef] [PubMed]
- Mekkawy, M.H.; Fahmy, H.A.; Nada, A.S.; Ali, O.S. Study of the Radiosensitizing and Radioprotective Efficacy of Bromelain (a Pineapple Extract): In Vitro and In Vivo. Integr. Cancer Ther. 2020, 19, 1534735420950468. [Google Scholar] [CrossRef]
- Mekkawy, M.H.; Fahmy, H.A.; Nada, A.S.; Ali, O.S. Radiosensitizing Effect of Bromelain Using Tumor Mice Model via Ki-67 and PARP-1 Inhibition. Integr. Cancer Ther. 2021, 20, 15347354211060369. [Google Scholar] [CrossRef]
- El-Demerdash, F.M.; Hussien, D.M.; Ghanem, N.F.; Al-Farga, A.M. Bromelain Modulates Liver Injury, Hematological, Molecular, and Biochemical Perturbations Induced by Aluminum via Oxidative Stress Inhibition. Biomed. Res. Int. 2022, 2022, 5342559. [Google Scholar] [CrossRef]
- Parasuraman, R.; Jayamurali, D.; Manoharan, N.; Govindarajulu, S.N. Effect of Bromelain on Chronic Unpredictable Stress-induced Behavioral, Biochemical, and Monoamine Changes in Wistar Albino Rat Model of Depression. Protein Pept. Lett. 2023, 30, 411–426. [Google Scholar] [CrossRef]
- Karlsen, M.; Hovden, A.O.; Vogelsang, P.; Tysnes, B.B.; Appel, S. Bromelain treatment leads to maturation of monocyte-derived dendritic cells but cannot replace PGE2 in a cocktail of IL-1beta, IL-6, TNF-alpha and PGE2. Scand. J. Immunol. 2011, 74, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Bakare, A.O.; Owoyele, B.V. Bromelain reduced pro-inflammatory mediators as a common pathway that mediate antinociceptive and anti-anxiety effects in sciatic nerve ligated Wistar rats. Sci. Rep. 2021, 11, 289. [Google Scholar] [CrossRef]
- Brochard, S.; Pontin, J.; Bernay, B.; Boumediene, K.; Conrozier, T.; Bauge, C. The benefit of combining curcumin, bromelain and harpagophytum to reduce inflammation in osteoarthritic synovial cells. BMC Complement. Med. Ther. 2021, 21, 261. [Google Scholar] [CrossRef]
- Hong, J.H.; Kim, M.R.; Lee, B.N.; Oh, W.M.; Min, K.S.; Im, Y.G.; Hwang, Y.C. Anti-Inflammatory and Mineralization Effects of Bromelain on Lipopolysaccharide-Induced Inflammation of Human Dental Pulp Cells. Medicina 2021, 57, 591. [Google Scholar] [CrossRef] [PubMed]
- Insuan, O.; Janchai, P.; Thongchuai, B.; Chaiwongsa, R.; Khamchun, S.; Saoin, S.; Insuan, W.; Pothacharoen, P.; Apiwatanapiwat, W.; Boondaeng, A.; et al. Anti-Inflammatory Effect of Pineapple Rhizome Bromelain through Downregulation of the NF-kappaB- and MAPKs-Signaling Pathways in Lipopolysaccharide (LPS)-Stimulated RAW264.7 Cells. Curr. Issues Mol. Biol. 2021, 43, 93–106. [Google Scholar] [CrossRef]
- Pothacharoen, P.; Chaiwongsa, R.; Chanmee, T.; Insuan, O.; Wongwichai, T.; Janchai, P.; Vaithanomsat, P. Bromelain Extract Exerts Antiarthritic Effects via Chondroprotection and the Suppression of TNF-alpha-Induced NF-kappaB and MAPK Signaling. Plants 2021, 10, 2273. [Google Scholar] [CrossRef] [PubMed]
- Sehirli, A.O.; Sayiner, S.; Savtekin, G.; Velioglu-Ogunc, A. Protective effect of bromelain on corrosive burn in rats. Burns 2021, 47, 1352–1358. [Google Scholar] [CrossRef]
- Quarta, S.; Santarpino, G.; Carluccio, M.A.; Calabriso, N.; Scoditti, E.; Siculella, L.; Damiano, F.; Maffia, M.; Verri, T.; De Caterina, R.; et al. Analysis of the Anti-Inflammatory and Anti-Osteoarthritic Potential of Flonat Fast((R)), a Combination of Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum), Evaluated in In Vitro Models of Inflammation Relevant to Osteoarthritis. Pharmaceuticals 2022, 15, 1263. [Google Scholar] [CrossRef]
- Sharma, M.; Chaudhary, D. In vitro and in vivo implications of rationally designed bromelain laden core-shell hybrid solid lipid nanoparticles for oral administration in thrombosis management. Nanomedicine 2022, 42, 102543. [Google Scholar] [CrossRef]
- Lu, H.C.; Ng, M.Y.; Liao, Y.W.; Maekawa, S.; Lin, T.; Yu, C.C. Bromelain inhibits the inflammation and senescence effect in diabetic periodontitis: A preliminary in vitro study. J. Dent. Sci. 2023, 18, 659–665. [Google Scholar] [CrossRef]
- Madkhali, J.Y.; Hussein, R.H.; Alnahdi, H.S. Therapeutic effect of bromelain and papain on intestinal injury induced by indomethacin in male rats. Int. J. Health Sci. 2023, 17, 23–30. [Google Scholar]
- Mousavi Maleki, M.S.; Ebrahimi Kiasari, R.; Seyed Mousavi, S.J.; Hashemi-Moghaddam, H.; Shabani, A.A.; Madanchi, H.; Sardari, S. Bromelain-loaded nanocomposites decrease inflammatory and cytotoxicity effects of gliadin on Caco-2 cells and peripheral blood mononuclear cells of celiac patients. Sci. Rep. 2023, 13, 21180. [Google Scholar] [CrossRef]
- Paksoy, T.; Ustaoglu, G.; Sehirli, A.O.; Unsal, R.B.K.; Sayiner, S.; Orhan, K.; Ayci, N.B.; Cetinel, S.; Aksoy, U.; Ogunc, A.V. Effect of bromelain on periodontal destruction and alveolar bone in rats with experimental periodontitis. Int. Immunopharmacol. 2023, 121, 110446. [Google Scholar] [CrossRef]
- Mynott, T.L.; Ladhams, A.; Scarmato, P.; Engwerda, C.R. Bromelain, from pineapple stems, proteolytically blocks activation of extracellular regulated kinase-2 in T cells. J. Immunol. 1999, 163, 2568–2575. [Google Scholar] [CrossRef]
- Secor, E.R., Jr.; Singh, A.; Guernsey, L.A.; McNamara, J.T.; Zhan, L.; Maulik, N.; Thrall, R.S. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro. Int. Immunopharmacol. 2009, 9, 340–346. [Google Scholar] [CrossRef]
- Gambardella, J.; Sorriento, D.; Bova, M.; Rusciano, M.; Loffredo, S.; Wang, X.; Petraroli, A.; Carucci, L.; Mormile, I.; Oliveti, M.; et al. Role of Endothelial G Protein-Coupled Receptor Kinase 2 in Angioedema. Hypertension 2020, 76, 1625–1636. [Google Scholar] [CrossRef]
- Hou, R.C.; Chen, Y.S.; Huang, J.R.; Jeng, K.C. Cross-linked bromelain inhibits lipopolysaccharide-induced cytokine production involving cellular signaling suppression in rats. J. Agric. Food Chem. 2006, 54, 2193–2198. [Google Scholar] [CrossRef]
- Kalra, N.; Bhui, K.; Roy, P.; Srivastava, S.; George, J.; Prasad, S.; Shukla, Y. Regulation of p53, nuclear factor kappaB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin. Toxicol. Appl. Pharmacol. 2008, 226, 30–37. [Google Scholar] [CrossRef]
- Bhui, K.; Prasad, S.; George, J.; Shukla, Y. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett. 2009, 282, 167–176. [Google Scholar] [CrossRef]
- Bhui, K.; Tyagi, S.; Prakash, B.; Shukla, Y. Pineapple bromelain induces autophagy, facilitating apoptotic response in mammary carcinoma cells. Biofactors 2010, 36, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, B.; Thirunavukkarasu, M.; Pant, R.; Zhan, L.; Penumathsa, S.V.; Secor, E.R., Jr.; Srivastava, S.; Raychaudhuri, U.; Menon, V.P.; Otani, H.; et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H1365–H1370. [Google Scholar] [CrossRef] [PubMed]
- Bhui, K.; Tyagi, S.; Srivastava, A.K.; Singh, M.; Roy, P.; Singh, R.; Shukla, Y. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis. Mol. Carcinog. 2012, 51, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Dave, S.; Kaur, N.J.; Nanduri, R.; Dkhar, H.K.; Kumar, A.; Gupta, P. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes. PLoS ONE 2012, 7, e30831. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.; Ehteda, A.; Masoumi Moghaddam, S.; Akhter, J.; Pillai, K.; Morris, D.L. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). Onco Targets Ther. 2013, 6, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.; Masoumi-Moghaddam, S.; Ehteda, A.; Morris, D.L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: Significance of combination therapy. J. Exp. Clin. Cancer Res. 2014, 33, 92. [Google Scholar] [CrossRef] [PubMed]
- Arshad, Z.I.; Amid, A.; Yusof, F.; Jaswir, I.; Ahmad, K.; Loke, S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol. 2014, 98, 7283–7297. [Google Scholar] [CrossRef] [PubMed]
- Fouz, N.; Amid, A.; Hashim, Y.Z. Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain. Appl. Biochem. Biotechnol. 2014, 173, 1618–1639. [Google Scholar] [CrossRef] [PubMed]
- Romano, B.; Fasolino, I.; Pagano, E.; Capasso, R.; Pace, S.; De Rosa, G.; Milic, N.; Orlando, P.; Izzo, A.A.; Borrelli, F. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Mol. Nutr. Food Res. 2014, 58, 457–465. [Google Scholar] [CrossRef]
- Muller, A.; Barat, S.; Chen, X.; Bui, K.C.; Bozko, P.; Malek, N.P.; Plentz, R.R. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines. Int. J. Oncol. 2016, 48, 2025–2034. [Google Scholar] [CrossRef]
- Oh-ishi, S. Fluid phase activation of Hageman factor (factor XII) in citrated human plasma by bromelain: An application to the indirect enzymatic assay for Hageman factor. Thromb. Res. 1982, 27, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Lotz-Winter, H. On the pharmacology of bromelain: An update with special regard to animal studies on dose-dependent effects. Planta Med. 1990, 56, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Felton, G.E. Does kinin released by pineapple stem bromelain stimulate production of prostaglandin E1-like compounds? Hawaii. Med. J. 1977, 36, 39–47. [Google Scholar] [PubMed]
- Mineshita, S.; Nagai, Y. Hydrolysis of bradykinin by stem bromelain. Jpn. J. Pharmacol. 1977, 27, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, S.; Yamashita, M.; Tsurufuji, S. Effect of bromelain on kaolin-induced inflammation in rats. Eur. J. Pharmacol. 1988, 150, 295–301. [Google Scholar] [CrossRef]
- Bahde, R.; Palmes, D.; Minin, E.; Stratmann, U.; Diller, R.; Haier, J.; Spiegel, H.U. Bromelain ameliorates hepatic microcirculation after warm ischemia. J. Surg. Res. 2007, 139, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Sufian, K.N.; Hira, T.; Nakamori, T.; Furuta, H.; Asano, K.; Hara, H. Soybean beta-conglycinin bromelain hydrolysate stimulates cholecystokinin secretion by enteroendocrine STC-1 cells to suppress the appetite of rats under meal-feeding conditions. Biosci. Biotechnol. Biochem. 2011, 75, 848–853. [Google Scholar] [CrossRef]
- Kasemsuk, T.; Saengpetch, N.; Sibmooh, N.; Unchern, S. Improved WOMAC score following 16-week treatment with bromelain for knee osteoarthritis. Clin. Rheumatol. 2016, 35, 2531–2540. [Google Scholar] [CrossRef]
- Huang, J.R.; Wu, C.C.; Hou, R.C.; Jeng, K.C. Bromelain inhibits lipopolysaccharide-induced cytokine production in human THP-1 monocytes via the removal of CD14. Immunol. Investig. 2008, 37, 263–277. [Google Scholar] [CrossRef]
- Hidayat, M.; Prahastuti, S.; Riany, D.U.; Soemardji, A.A.; Suliska, N.; Garmana, A.N.; Assiddiq, B.F.; Hasan, K. Kidney therapeutic potential of peptides derived from the bromelain hydrolysis of green peas protein. Iran. J. Basic. Med. Sci. 2019, 22, 1016–1025. [Google Scholar] [CrossRef]
- Mohamad, N.E.; Abu, N.; Yeap, S.K.; Alitheen, N.B. Bromelain Enhances the Anti-tumor Effects of Cisplatin on 4T1 Breast Tumor Model In Vivo. Integr. Cancer Ther. 2019, 18, 1534735419880258. [Google Scholar] [CrossRef]
- Foroncewicz, B.; Mucha, K.; Heidland, A.; Ciszek, M.; Imiela, J.; Helle, F.; Paczek, L. Modulation of serum levels of sRAGE by bromelain in patients with chronic kidney disease: A pilot study. Pol. Arch. Med. Wewn. 2012, 122, 514–516. [Google Scholar] [CrossRef]
- Gross, P.; Seelert, H.; Meiser, P.; Muller, R. Characterization of bromelain indicates a molar excess of inhibitor vs. enzyme molecules, a Jacalin-like lectin and Maillard reaction products. J. Pharm. Biomed. Anal. 2020, 181, 113075. [Google Scholar] [CrossRef] [PubMed]
- Shoba, E.; Lakra, R.; Syamala Kiran, M.; Korrapati, P.S. Fabrication of core-shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomed. Mater. 2017, 12, 035005. [Google Scholar] [CrossRef]
- Shoba, E.; Lakra, R.; Kiran, M.S.; Korrapati, P.S. 3 D nano bilayered spatially and functionally graded scaffold impregnated bromelain conjugated magnesium doped hydroxyapatite nanoparticle for periodontal regeneration. J. Mech. Behav. Biomed. Mater. 2020, 109, 103822. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.N.; Babaei, S.; Babaei, S.; Baazm, M.; Sakhaie, H.; Babaei, S. Effect of bromelain on mast cell numbers and degranulation in diabetic rat wound healing. J. Wound Care 2022, 31, S4–S11. [Google Scholar] [CrossRef]
- Weinzierl, A.; Harder, Y.; Schmauss, D.; Menger, M.D.; Laschke, M.W. Bromelain Protects Critically Perfused Musculocutaneous Flap Tissue from Necrosis. Biomedicines 2022, 10, 1449. [Google Scholar] [CrossRef] [PubMed]
- Bhuvan Chandra, R.; Selvarasu, K.; Krishnan, M. Comparison of Efficacy of Combination of Bromelain, Rutocide, and Trypsin With Serratiopeptidase on Postoperative Sequelae Following Mandibular Third Molar Surgery: A Randomized Clinical Trial. Cureus 2023, 15, e48633. [Google Scholar] [CrossRef]
- Zhao, Y.; Dai, X.; Sun, X.; Zhang, Z.; Gao, H.; Gao, R. Combination of Shengji ointment and bromelain in the treatment of exposed tendons in diabetic foot ulcers: Study protocol for a non-blind, randomized, positive control clinical trial. BMC Complement. Med. Ther. 2023, 23, 359. [Google Scholar] [CrossRef]
- Faramarzi, M.; Sadighi, M.; Shirmohamadi, A.; Kazemi, R.; Zohdi, M. Effectiveness of Bromelain in the control of postoperative pain after periodontal surgery: A crossover randomized clinical trial. J. Adv. Periodontol. Implant. Dent. 2023, 15, 22–27. [Google Scholar] [CrossRef]
- Vosahlo, J.; Salus, A.; Smolko, M.; Nemcova, B.; Nordmeyer, V.; Mikles, M.; Rau, S.M.; Erik Johansen, O. Oral enzyme combination with bromelain, trypsin and the flavonoid rutoside reduces systemic inflammation and pain when used pre- and post-operatively in elective total hip replacement: A randomized exploratory placebo-controlled trial. Ther. Adv. Musculoskelet. Dis. 2023, 15, 1759720X231186875. [Google Scholar] [CrossRef] [PubMed]
- Babazade, H.; Mirzaagha, A.; Konarizadeh, S. The effect of bromelain in periodontal surgery: A double-blind randomized placebo-controlled trial. BMC Oral. Health 2023, 23, 286. [Google Scholar] [CrossRef] [PubMed]
- Della Volpe, A.; De Luca, P.; De Lucia, A.; Martines, F.; Piroli, P.; D’Ascanio, L.; Camaioni, A.; La Mantia, I.; Di Stadio, A. Single-Center-Single-Blinded Clinical Trial to Evaluate the Efficacy of a Nutraceutical Containing Boswellia Serrata, Bromelain, Zinc, Magnesium, Honey, Tyndallized Lactobacillus Acidophilus and Casei to Fight Upper Respiratory Tract Infection and Otitis Media. Healthcare 2022, 10, 1526. [Google Scholar] [CrossRef] [PubMed]
- Desideri, I.; Lucidi, S.; Francolini, G.; Meattini, I.; Ciccone, L.P.; Salvestrini, V.; Valzano, M.; Morelli, I.; Angelini, L.; Scotti, V.; et al. Use of an alfa-lipoic, Methylsulfonylmethane, Boswellia serrata and Bromelain dietary supplement (OPERA(R)) for aromatase inhibitors-related arthralgia management (AIA): A prospective phase II trial (NCT04161833). Med. Oncol. 2022, 39, 113. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.A.; Kambala, R.; Bhola, N.; Jadhav, A. Comparative efficacy of bromelain and aceclofenac in limiting post-operative inflammatory sequelae in surgical removal of lower impacted third molar: A randomized controlled, triple blind clinical trial. J. Dent. Anesth. Pain. Med. 2022, 22, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Shoham, Y.; Shapira, E.; Haik, J.; Harats, M.; Egozi, D.; Robinson, D.; Kogan, L.; Elkhatib, R.; Telek, G.; Shalom, A. Bromelain-based enzymatic debridement of chronic wounds: Results of a multicentre randomized controlled trial. Wound Repair. Regen. 2021, 29, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Pekas, E.J.; Shin, J.; Headid, R.J.; Son, W.M.; Layec, G.; Yadav, S.K.; Scott, S.D.; Park, S.Y. Combined anthocyanins and bromelain supplement improves endothelial function and skeletal muscle oxygenation status in adults: A double-blind placebo-controlled randomised crossover clinical trial. Br. J. Nutr. 2021, 125, 161–171. [Google Scholar] [CrossRef]
- Soheilifar, S.; Bidgoli, M.; Hooshyarfard, A.; Shahbazi, A.; Vahdatinia, F.; Khoshkhooie, F. Effect of Oral Bromelain on Wound Healing, Pain, and Bleeding at Donor Site Following Free Gingival Grafting: A Clinical Trial. J. Dent. 2018, 15, 309–316. [Google Scholar]
- Jayachandran, S.; Khobre, P. Efficacy of Bromelain along with Trypsin, Rutoside Trihydrate Enzymes and Diclofenac Sodium Combination Therapy for the treatment of TMJ Osteoarthritis—A Randomised Clinical Trial. J. Clin. Diagn. Res. 2017, 11, ZC09–ZC11. [Google Scholar] [CrossRef]
- Tadikonda, A.; Pentapati, K.C.; Urala, A.S.; Acharya, S. Anti-plaque and anti-gingivitis effect of Papain, Bromelain, Miswak and Neem containing dentifrice: A randomized controlled trial. J. Clin. Exp. Dent. 2017, 9, e649–e653. [Google Scholar] [CrossRef]
- Chandanwale, A.; Langade, D.; Sonawane, D.; Gavai, P. A Randomized, Clinical Trial to Evaluate Efficacy and Tolerability of Trypsin:Chymotrypsin as Compared to Serratiopeptidase and Trypsin:Bromelain:Rutoside in Wound Management. Adv. Ther. 2017, 34, 180–198. [Google Scholar] [CrossRef] [PubMed]
- Ley, C.M.; Ni, Q.; Liao, X.; Gao, H.L.; Robinson, N. Bromelain and cardiovascular risk factors in diabetes: An exploratory randomized, placebo controlled, double blind clinical trial. Chin. J. Integr. Med. 2016, 22, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Majid, O.W.; Al-Mashhadani, B.A. Perioperative bromelain reduces pain and swelling and improves quality of life measures after mandibular third molar surgery: A randomized, double-blind, placebo-controlled clinical trial. J. Oral. Maxillofac. Surg. 2014, 72, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- de la Barrera-Nunez, M.C.; Yanez-Vico, R.M.; Batista-Cruzado, A.; Heurtebise-Saavedra, J.M.; Castillo-de Oyague, R.; Torres-Lagares, D. Prospective double-blind clinical trial evaluating the effectiveness of Bromelain in the third molar extraction postoperative period. Med. Oral. Patol. Oral. Cir. Bucal 2014, 19, e157–e162. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Marz, R.; Schmolz, M.; Drewelow, B.; Eschmann, K.; Meiser, P. Placebo-controlled randomized clinical trial on the immunomodulating activities of low- and high-dose bromelain after oral administration—New evidence on the antiinflammatory mode of action of bromelain. Phytother. Res. 2013, 27, 199–204. [Google Scholar] [CrossRef]
- Inchingolo, F.; Tatullo, M.; Marrelli, M.; Inchingolo, A.M.; Picciariello, V.; Inchingolo, A.D.; Dipalma, G.; Vermesan, D.; Cagiano, R. Clinical trial with bromelain in third molar exodontia. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 771–774. [Google Scholar] [PubMed]
- Howat, R.C.; Lewis, G.D. The effect of bromelain therapy on episiotomy wounds--a double blind controlled clinical trial. J. Obstet. Gynaecol. Br. Commonw. 1972, 79, 951–953. [Google Scholar] [CrossRef]
- Deplazes, B.C.; Hofmaenner, D.A.; Scheier, T.C.; Epprecht, J.; Mayer, M.; Schweizer, T.A.; Buehler, P.K.; Frey, P.M.; Brugger, S.D. Enzymatic debridement with bromelain and development of bacteremia in burn injuries: A retrospective cohort study. Burns 2024, 50, 405–412. [Google Scholar] [CrossRef]
- Castell, J.V.; Friedrich, G.; Kuhn, C.S.; Poppe, G.E. Intestinal absorption of undegraded proteins in men: Presence of bromelain in plasma after oral intake. Am. J. Physiol. 1997, 273, G139–G146. [Google Scholar] [CrossRef]
- Pavan, R.; Jain, S.; Shraddha; Kumar, A. Properties and therapeutic application of bromelain: A review. Biotechnol. Res. Int. 2012, 2012, 976203. [Google Scholar] [CrossRef]
- Sahu, M.; Sharma, A.K.; Sharma, G.; Kumar, A.; Nandave, M.; Babu, V. Facile synthesis of bromelain copper nanoparticles to improve the primordial therapeutic potential of copper against acute myocardial infarction in diabetic rats. Can. J. Physiol. Pharmacol. 2022, 100, 210–219. [Google Scholar] [CrossRef]
- Ferah Okkay, I.; Okkay, U.; Bayram, C.; Cicek, B.; Sezen, S.; Aydin, I.C.; Mendil, A.S.; Hacimuftuoglu, A. Bromelain protects against cisplatin-induced ocular toxicity through mitigating oxidative stress and inflammation. Drug Chem. Toxicol. 2023, 46, 69–76. [Google Scholar] [CrossRef]
- Vellini, M.; Desideri, D.; Milanese, A.; Omini, C.; Daffonchio, L.; Hernandez, A.; Brunelli, G. Possible involvement of eicosanoids in the pharmacological action of bromelain. Arzneimittelforschung 1986, 36, 110–112. [Google Scholar]
- Agostinis, C.; Zorzet, S.; De Leo, R.; Zauli, G.; De Seta, F.; Bulla, R. The combination of N-acetyl cysteine, alpha-lipoic acid, and bromelain shows high anti-inflammatory properties in novel in vivo and in vitro models of endometriosis. Mediat. Inflamm. 2015, 2015, 918089. [Google Scholar] [CrossRef] [PubMed]
- Didamoony, M.A.; Atwa, A.M.; Abd El-Haleim, E.A.; Ahmed, L.A. Bromelain ameliorates D-galactosamine-induced acute liver injury: Role of SIRT1/LKB1/AMPK, GSK3beta/Nrf2 and NF-kappaB p65/TNF-alpha/caspase-8, -9 signalling pathways. J. Pharm. Pharmacol. 2022, 74, 1765–1775. [Google Scholar] [CrossRef] [PubMed]
- Ordesi, P.; Pisoni, L.; Nannei, P.; Macchi, M.; Borloni, R.; Siervo, S. Therapeutic efficacy of bromelain in impacted third molar surgery: A randomized controlled clinical study. Quintessence Int. 2014, 45, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Bormann, K.H.; Weber, K.; Kloppenburg, H.; Staude, P.; Koch, A.; Meiser, P.; Gellrich, N.C. Perioperative Bromelain Therapy after Wisdom Teeth Extraction—A Randomized, Placebo-Controlled, Double-Blinded, Three-Armed, Cross-Over Dose-Finding Study. Phytother. Res. 2016, 30, 2012–2019. [Google Scholar] [CrossRef]
- Singh, T.; More, V.; Fatima, U.; Karpe, T.; Aleem, M.A.; Prameela, J. Effect of proteolytic enzyme bromelain on pain and swelling after removal of third molars. J. Int. Soc. Prev. Community Dent. 2016, 6, S197–S204. [Google Scholar] [CrossRef]
- Ghensi, P.; Cucchi, A.; Creminelli, L.; Tomasi, C.; Zavan, B.; Maiorana, C. Effect of Oral Administration of Bromelain on Postoperative Discomfort After Third Molar Surgery. J. Craniofac Surg. 2017, 28, e191–e197. [Google Scholar] [CrossRef]
- Consorti, G.; Monarchi, G.; Paglianiti, M.; Betti, E.; Balercia, P. Reduction of Post-Surgical Facial Edema Following Bromelain and Coumarin Intake in Traumatology: A Prospective Study with 100 Patients. J. Clin. Med. 2024, 13, 922. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Wang, Y.; Zhao, H.; Ma, C. Oral Bromelain for the Control of Facial Swelling, Trismus, and Pain After Mandibular Third Molar Surgery: A Systematic Review and Meta-Analysis. J. Oral. Maxillofac. Surg. 2019, 77, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Knackstedt, R.; Gatherwright, J. Perioperative Homeopathic Arnica and Bromelain: Current Results and Future Directions. Ann. Plast. Surg. 2020, 84, e10–e15. [Google Scholar] [CrossRef]
- Parrini, S.; De Ambrosi, C.; Chisci, G. The role of oral bromelain on “bad outcome” in mandibular third molar surgery. A split-mouth comparative study. Ann. Ital. Chir. 2023, 94, 332–335. [Google Scholar] [PubMed]
- Meccariello, L.; Bello, A.I.; Bove, G.; Gagliardo, N.; Raffaele, D.; Matera, L. The ion resonance and bromelain-vitamin C vs bromelainvitamin C to prevent ankle complications in post-operative bimalleolar surgery. Med. Glas. 2024, 21, 236–243. [Google Scholar] [CrossRef]
- Engwerda, C.R.; Andrew, D.; Murphy, M.; Mynott, T.L. Bromelain activates murine macrophages and natural killer cells in vitro. Cell. Immunol. 2001, 210, 5–10. [Google Scholar] [CrossRef]
- Barth, H.; Guseo, A.; Klein, R. In vitro study on the immunological effect of bromelain and trypsin on mononuclear cells from humans. Eur. J. Med. Res. 2005, 10, 325–331. [Google Scholar] [PubMed]
- Wen, S.; Huang, T.H.; Li, G.Q.; Yamahara, J.; Roufogalis, B.D.; Li, Y. Bromelain improves decrease in defecation in postoperative rats: Modulation of colonic gene expression of inducible nitric oxide synthase. Life Sci. 2006, 78, 995–1002. [Google Scholar] [CrossRef]
- Mahajan, S.; Chandra, V.; Dave, S.; Nanduri, R.; Gupta, P. Stem bromelain-induced macrophage apoptosis and activation curtail Mycobacterium tuberculosis persistence. J. Infect. Dis. 2012, 206, 366–376. [Google Scholar] [CrossRef]
- Schulz, A.; Fuchs, P.C.; Oplaender, C.; Valdez, L.B.; Schiefer, J.L. Effect of Bromelain-Based Enzymatic Debridement on Skin Cells. J. Burn. Care Res. 2018, 39, 527–535. [Google Scholar] [CrossRef]
- Michelini, S.; Fiorentino, A.; Cardone, M. Melilotus, Rutin and Bromelain in primary and secondary lymphedema. Lymphology 2019, 52, 177–186. [Google Scholar] [CrossRef]
- Sahbaz, A.; Aynioglu, O.; Isik, H.; Ozmen, U.; Cengil, O.; Gun, B.D.; Gungorduk, K. Bromelain: A natural proteolytic for intra-abdominal adhesion prevention. Int. J. Surg. 2015, 14, 7–11. [Google Scholar] [CrossRef]
- Ataide, J.A.; Cefali, L.C.; Rebelo, M.A.; Spir, L.G.; Tambourgi, E.B.; Jozala, A.F.; Chaud, M.V.; Silveira, E.; Gu, X.; Gava Mazzola, P. Bromelain Loading and Release from a Hydrogel Formulated Using Alginate and Arabic Gum. Planta Med. 2017, 83, 870–876. [Google Scholar] [CrossRef]
- Tan, Y.; Li, P. Bromelain has significant clinical benefits after extraction of the third molar during chemotherapy in patients with hematologic tumor. Oncol. Lett. 2018, 15, 2962–2966. [Google Scholar] [CrossRef]
- Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019, 229, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Luna-Vital, D.; de Mejia, E.G. Identification and Comparison of Peptides from Chickpea Protein Hydrolysates Using Either Bromelain or Gastrointestinal Enzymes and Their Relationship with Markers of Type 2 Diabetes and Bitterness. Nutrients 2020, 12, 3843. [Google Scholar] [CrossRef]
- Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Tareq, A.M.; Nainu, F.; Cicia, D.; Dhama, K.; Emran, T.B.; Simal-Gandara, J.; Capasso, R. Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life 2021, 11, 317. [Google Scholar] [CrossRef]
- Mekkawy, A.H.; Pillai, K.; Suh, H.; Badar, S.; Akhter, J.; Kepenekian, V.; Ke, K.; Valle, S.J.; Morris, D.L. Bromelain and acetylcysteine (BromAc((R))) alone and in combination with gemcitabine inhibit subcutaneous deposits of pancreatic cancer after intraperitoneal injection. Am. J. Transl. Res. 2021, 13, 13524–13539. [Google Scholar]
- Ebrahimian, M.; Mahvelati, F.; Malaekeh-Nikouei, B.; Hashemi, E.; Oroojalian, F.; Hashemi, M. Bromelain Loaded Lipid-Polymer Hybrid Nanoparticles for Oral Delivery: Formulation and Characterization. Appl. Biochem. Biotechnol. 2022, 194, 3733–3748. [Google Scholar] [CrossRef]
- Bernkop-Schnurch, A.; Giovanelli, R.; Valenta, C. Peroral administration of enzymes: Strategies to improve the galenic of dosage forms for trypsin and bromelain. Drug Dev. Ind. Pharm. 2000, 26, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Pillai, K.; Akhter, J.; Chua, T.C.; Morris, D.L. Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Investig. 2013, 31, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Higashi, T.; Kogo, T.; Sato, N.; Hirotsu, T.; Misumi, S.; Nakamura, H.; Iohara, D.; Onodera, R.; Motoyama, K.; Arima, H. Efficient Anticancer Drug Delivery for Pancreatic Cancer Treatment Utilizing Supramolecular Polyethylene-Glycosylated Bromelain. ACS Appl. Bio Mater. 2020, 3, 3005–3014. [Google Scholar] [CrossRef] [PubMed]
- Pillai, K.; Mekkawy, A.H.; Akhter, J.; Badar, S.; Dong, L.; Liu, A.I.; Morris, D.L. Enhancing the potency of chemotherapeutic agents by combination with bromelain and N-acetylcysteine—An in vitro study with pancreatic and hepatic cancer cells. Am. J. Transl. Res. 2020, 12, 7404–7419. [Google Scholar] [PubMed]
- Hale, L.P. Proteolytic activity and immunogenicity of oral bromelain within the gastrointestinal tract of mice. Int. Immunopharmacol. 2004, 4, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.P.; Greer, P.K.; Trinh, C.T.; Gottfried, M.R. Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clin. Immunol. 2005, 116, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Fitzhugh, D.J.; Shan, S.; Dewhirst, M.W.; Hale, L.P. Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin. Immunol. 2008, 128, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Onken, J.E.; Greer, P.K.; Calingaert, B.; Hale, L.P. Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro. Clin. Immunol. 2008, 126, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Bottega, R.; Persico, I.; De Seta, F.; Romano, F.; Di Lorenzo, G. Anti-inflammatory properties of a proprietary bromelain extract (Bromeyal) after in vitro simulated gastrointestinal digestion. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211034686. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kang, J.H.; Lee, D.Y.; Jeong, J.W.; Kim, J.H.; Moon, S.S.; Hur, S.J. Methods for improving meat protein digestibility in older adults. J. Anim. Sci. Technol. 2023, 65, 32–56. [Google Scholar] [CrossRef] [PubMed]
- Ajagun-Ogunleye, M.O.; Ebuehi, O.A.T. Evaluation of the anti-aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. J. Food Biochem. 2020, 44, e13426. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.; Muuss, M.; Schickhardt, S.; Scheuerle, A.; Khoramnia, R.; Labuz, G.; Uhl, P.; Auffarth, G.U. Forward Light Scattering of the Vitreous Gel After Enzymatic Aging: An In Vitro Model to Study Vitreous Opacification. Investig. Ophthalmol. Vis. Sci. 2024, 65, 36. [Google Scholar] [CrossRef]
- Abbasi Habashi, S.; Sabouni, F.; Moghimi, A.; Ansari Majd, S. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells. Iran. Biomed. J. 2016, 20, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Kariyone, A. Lipopolysaccharide-induced autoantibody response. II. Age-related change in plaque-forming cell response to bromelain-treated syngeneic erythrocytes. Int. Arch. Allergy Appl. Immunol. 1981, 66, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.S.; Wang, Y.F.; Gueret, R.; Weksler, M.E. Dysregulation of the humoral immune response in old mice. Int. Immunol. 1995, 7, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Bovbjerg, D.H.; Kim, Y.T.; Schwab, R.; Schmitt, K.; DeBlasio, T.; Weksler, M.E. “Cross-wiring” of the immune response in old mice: Increased autoantibody response despite reduced antibody response to nominal antigen. Cell. Immunol. 1991, 135, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Grau, R.; Talens, P. Behaviour of texture-modified meats using proteolytic enzymes during gastrointestinal digestion simulating elderly alterations. Meat Sci. 2023, 206, 109341. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Cui, Y.; Song, M.; Vainstein, A.; Chen, S.; Ma, H. Papain-Like Cysteine Protease Gene Family in Fig (Ficus carica L.): Genome-Wide Analysis and Expression Patterns. Front. Plant Sci. 2021, 12, 681801. [Google Scholar] [CrossRef] [PubMed]
- Baumann, L.S. Less-known botanical cosmeceuticals. Dermatol. Ther. 2007, 20, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Harats, M.; Haik, J.; Cleary, M.; Vashurin, I.; Aviv, U.; Kornhaber, R. A Retrospective Review of an Off-label Bromelain-based Selective Enzymatic Debridement (Nexobrid(R)) in the Treatment of Deep, Partial, and Full Thickness Burns and Hard to Heal Wounds. Isr. Med. Assoc. J. 2020, 22, 83–88. [Google Scholar]
- Wang, S.; Li, J.; Ma, Z.; Sun, L.; Hou, L.; Huang, Y.; Zhang, Y.; Guo, B.; Yang, F. A Sequential Therapeutic Hydrogel With Injectability and Antibacterial Activity for Deep Burn Wounds’ Cleaning and Healing. Front. Bioeng. Biotechnol. 2021, 9, 794769. [Google Scholar] [CrossRef]
- Singer, A.J.; Toussaint, J.; Chung, W.T.; McClain, S.A.; Clark, R.A.F.; Asculai, E.; Geblinger, D.; Rosenberg, L. Development of a contaminated ischemic porcine wound model and the evaluation of bromelain based enzymatic debridement. Burns 2018, 44, 896–904. [Google Scholar] [CrossRef]
- Snyder, R.J.; Singer, A.J.; Dove, C.R.; Heisler, S.; Petusevsky, H.; James, G.; deLancey Pulcini, E.; Yaakov, A.B.; Rosenberg, L.; Grant, E.; et al. An open-label, proof-of-concept study assessing the effects of bromelain-based enzymatic debridement on biofilm and microbial loads in patients with venous leg ulcers and diabetic foot ulcers. Wounds 2023, 35, E414–E419. [Google Scholar] [CrossRef]
- Ataide, J.A.; de Carvalho, N.M.; Rebelo, M.A.; Chaud, M.V.; Grotto, D.; Gerenutti, M.; Rai, M.; Mazzola, P.G.; Jozala, A.F. Bacterial Nanocellulose Loaded with Bromelain: Assessment of Antimicrobial, Antioxidant and Physical-Chemical Properties. Sci. Rep. 2017, 7, 18031. [Google Scholar] [CrossRef] [PubMed]
- Shoham, Y.; Krieger, Y.; Tamir, E.; Silberstein, E.; Bogdanov-Berezovsky, A.; Haik, J.; Rosenberg, L. Bromelain-based enzymatic debridement of chronic wounds: A preliminary report. Int. Wound J. 2018, 15, 769–775. [Google Scholar] [CrossRef]
- Ho, W.; Jones, C.D.; Widdowson, D.; Bahia, H. Bromelain-based enzymatic debridement of e-cigarette burns: A single unit experience. J. Wound Care 2019, 28, 758–761. [Google Scholar] [CrossRef]
- Fathi, A.N.; Sakhaie, M.H.; Babaei, S.; Babaei, S.; Slimabad, F.; Babaei, S. Use of bromelain in cutaneous wound healing in streptozocin-induced diabetic rats: An experimental model. J. Wound Care 2020, 29, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Hirche, C.; Kreken Almeland, S.; Dheansa, B.; Fuchs, P.; Governa, M.; Hoeksema, H.; Korzeniowski, T.; Lumenta, D.B.; Marinescu, S.; Martinez-Mendez, J.R.; et al. Eschar removal by bromelain based enzymatic debridement (Nexobrid(R)) in burns: European consensus guidelines update. Burns 2020, 46, 782–796. [Google Scholar] [CrossRef]
- Ataide, J.A.; Cefali, L.C.; Figueiredo, M.C.; Braga, L.E.O.; Ruiz, A.; Foglio, M.A.; Oliveira-Nascimento, L.; Mazzola, P.G. In vitro performance of free and encapsulated bromelain. Sci. Rep. 2021, 11, 10195. [Google Scholar] [CrossRef]
- Hasannasab, M.; Nourmohammadi, J.; Dehghan, M.M.; Ghaee, A. Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing. Int. J. Pharm. 2021, 610, 121227. [Google Scholar] [CrossRef]
- Shoham, Y.; Sabbag, I.; Singer, A.J. Development of a porcine hard-to-heal wound model: Evaluation of a bromelain-based enzymatic debriding agent. J. Wound Care 2021, 30, VIi–VIx. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, A.; Muthayya, P. Microbial profile of burn wounds managed with enzymatic debridement using bromelain-based agent, NexoBrid(R). Burns 2022, 48, 1618–1625. [Google Scholar] [CrossRef]
- Esen, E.; Bayar Muluk, N.; Vejselova Sezer, C.; Kutlu, H.M.; Cingi, C. Bromelain: A candidate to enhance wound healing after endonasal surgeries. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Shoham, Y.; Gasteratos, K.; Singer, A.J.; Krieger, Y.; Silberstein, E.; Goverman, J. Bromelain-based enzymatic burn debridement: A systematic review of clinical studies on patient safety, efficacy and long-term outcomes. Int. Wound J. 2023, 20, 4364–4383. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.J.; Goradia, E.N.; Grandfield, S.; Zhang, N.; Shah, K.; McClain, S.A.; Sandoval, S.; Shoham, Y. A Comparison of Topical Agents for Eschar Removal in a Porcine Model: Bromelain-enriched vs Traditional Collagenase Agents. J. Burn. Care Res. 2023, 44, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Baumann, L. Botanical ingredients in cosmeceuticals. J. Drugs Dermatol. 2007, 6, 1084–1088. [Google Scholar] [PubMed]
- Sherban, A.; Wang, J.V.; Geronemus, R.G. Growing role for arnica in cosmetic dermatology: Lose the bruise. J. Cosmet. Dermatol. 2021, 20, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Hamman, M.S.; Goldman, M.P. Minimizing bruising following fillers and other cosmetic injectables. J. Clin. Aesthet. Dermatol. 2013, 6, 16–18. [Google Scholar] [PubMed]
- Abbas, S.; Shanbhag, T.; Kothare, A. Applications of bromelain from pineapple waste towards acne. Saudi J. Biol. Sci. 2021, 28, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Jancic, U.; Gorgieva, S. Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine. Pharmaceutics 2021, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Chandwani, N.D.; Maurya, N.; Nikhade, P.; Chandwani, J. Comparative evaluation of antimicrobial efficacy of calcium hydroxide, triple antibiotic paste and bromelain against Enterococcus faecalis: An In Vitro study. J. Conserv. Dent. 2022, 25, 63–67. [Google Scholar] [CrossRef]
- Praveen, N.C.; Rajesh, A.; Madan, M.; Chaurasia, V.R.; Hiremath, N.V.; Sharma, A.M. In vitro Evaluation of Antibacterial Efficacy of Pineapple Extract (Bromelain) on Periodontal Pathogens. J. Int. Oral. Health 2014, 6, 96–98. [Google Scholar]
- dos Anjos, M.M.; da Silva, A.A.; de Pascoli, I.C.; Mikcha, J.M.; Machinski, M., Jr.; Peralta, R.M.; de Abreu Filho, B.A. Antibacterial activity of papain and bromelain on Alicyclobacillus spp. Int. J. Food Microbiol. 2016, 216, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, R.; Ebrahimpour, A. Separation and identification of bromelain-generated antibacterial peptides from Actinopyga lecanora. Food Sci. Biotechnol. 2018, 27, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, X.; Wang, S.; Zhang, X.; Yu, J.; Wang, C. Mussel-inspired polydopamine-assisted bromelain immobilization onto electrospun fibrous membrane for potential application as wound dressing. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110624. [Google Scholar] [CrossRef]
- Avalos-Flores, E.; Lopez-Castillo, L.M.; Wielsch, N.; Hupfer, Y.; Winkler, R.; Magana-Ortiz, D. Protein extract of Bromelia karatas L. rich in cysteine proteases (ananain- and bromelain-like) has antibacterial activity against foodborne pathogens Listeria monocytogenes and Salmonella Typhimurium. Folia Microbiol. 2022, 67, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Aldoski, M.R.N.; Selivany, B.J.; Sulaiman, T. Bromelain-based endodontic irrigant: Preparation, properties, and biocompatibility: An in-vitro study. Aust. Endod. J. 2023, 49 (Suppl. S1), 146–155. [Google Scholar] [CrossRef] [PubMed]
- Saghafi, Y.; Baharifar, H.; Najmoddin, N.; Asefnejad, A.; Maleki, H.; Sajjadi-Jazi, S.M.; Bonkdar, A.; Shams, F.; Khoshnevisan, K. Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels 2023, 9, 672. [Google Scholar] [CrossRef] [PubMed]
- Atiyeh, B.; Makkawi, K.; Beaineh, P. Burn Wounds and Enzymatic Debridement (Ed)—Past, Present, and Future. J. Burn. Care Res. 2024; irae059, (in press). [Google Scholar] [CrossRef]
- Jancic, U.; Trcek, J.; Verestiuc, L.; Vukomanovic, M.; Gorgieva, S. Bacterial nanocellulose loaded with bromelain and nisin as a promising bioactive material for wound debridement. Int. J. Biol. Macromol. 2024, 266, 131329. [Google Scholar] [CrossRef] [PubMed]
- Massimiliano, R.; Pietro, R.; Paolo, S.; Sara, P.; Michele, F. Role of bromelain in the treatment of patients with pityriasis lichenoides chronica. J. Dermatol. Treat. 2007, 18, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Rathinavel, A.K.; Lutz, W.E.; Struble, L.R.; Khurana, S.; Schnaubelt, A.T.; Mishra, N.K.; Guda, C.; Palermo, N.Y.; Broadhurst, M.J.; et al. Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein. Clin. Transl. Med. 2021, 11, e281. [Google Scholar] [CrossRef]
- Akhter, J.; Queromes, G.; Pillai, K.; Kepenekian, V.; Badar, S.; Mekkawy, A.H.; Frobert, E.; Valle, S.J.; Morris, D.L. The Combination of Bromelain and Acetylcysteine (BromAc) Synergistically Inactivates SARS-CoV-2. Viruses 2021, 13, 425. [Google Scholar] [CrossRef]
- Ferreira, G.M.; Clarindo, F.A.; Ribeiro, A.L.; Gomes-de-Pontes, L.; de Carvalho, L.D.; Martins-Filho, O.A.; da Fonseca, F.G.; Teixeira, M.M.; Sabino, A.P.; Eapen, M.S.; et al. Taming the SARS-CoV-2-mediated proinflammatory response with BromAc((R)). Front. Immunol. 2023, 14, 1308477. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Glenn, D.; Lodh, S.; Valle, S.; Morris, D.L. Long-Term Treatment of Unresectable Pseudomyxoma Peritonei with Multiple Treatments of Intratumoural Bromelain and Acetylcysteine (BromAc((R))): A Case Report. Case Rep. Oncol. 2023, 16, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Tallei, T.E.; Fatimawali; Yelnetty, A.; Idroes, R.; Kusumawaty, D.; Emran, T.B.; Yesiloglu, T.Z.; Sippl, W.; Mahmud, S.; Alqahtani, T.; et al. An Analysis Based on Molecular Docking and Molecular Dynamics Simulation Study of Bromelain as Anti-SARS-CoV-2 Variants. Front. Pharmacol. 2021, 12, 717757. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Oh, J.; Kim, M.; Jin, E.J. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis. Anim. Cells Syst. 2018, 22, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.C.; Wei, P.L.; Makondi, P.T.; Chen, W.T.; Huang, C.Y.; Chang, Y.J. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS ONE 2019, 14, e0210274. [Google Scholar] [CrossRef] [PubMed]
- Taskin, A.; Tarakcioglu, M.; Ulusal, H.; Orkmez, M.; Taysi, S. Idarubicin-bromelain combination sensitizes cancer cells to conventional chemotherapy. Iran. J. Basic. Med. Sci. 2019, 22, 1172–1178. [Google Scholar] [CrossRef]
- Amini Chermahini, F.; Raeisi, E.; Aazami, M.H.; Mirzaei, A.; Heidarian, E.; Lemoigne, Y. Does Bromelain-Cisplatin Combination Afford In-Vitro Synergistic Anticancer Effects on Human Prostatic Carcinoma Cell Line, PC3? Galen. Med. J. 2020, 9, e1749. [Google Scholar] [CrossRef]
- Pezzani, R.; Jimenez-Garcia, M.; Capo, X.; Sonmez Gurer, E.; Sharopov, F.; Rachel, T.Y.L.; Ntieche Woutouoba, D.; Rescigno, A.; Peddio, S.; Zucca, P.; et al. Anticancer properties of bromelain: State-of-the-art and recent trends. Front. Oncol. 2022, 12, 1068778. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, P.C.; Serudo, R.L.; Talu, S.; Lamarao, C.V.; da Fonseca Filho, H.D.; de Araujo Bezerra, J.; Sanches, E.A.; Campelo, P.H. Encapsulation of Bromelain in Combined Sodium Alginate and Amino Acid Carriers: Experimental Design of Simplex-Centroid Mixtures for Digestibility Evaluation. Molecules 2022, 27, 6364. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, M.; Wang, H.; Ding, Y.; Liu, Y.; Fu, Z.; Lin, D.; Lu, C.; Tu, X. Multifunctional Hollow MnO(2) @Porphyrin@Bromelain Nanoplatform for Enhanced Photodynamic Therapy. Small 2022, 18, e2204951. [Google Scholar] [CrossRef]
- Kumar, V.; Mangla, B.; Javed, S.; Ahsan, W.; Kumar, P.; Garg, V.; Dureja, H. Bromelain: A review of its mechanisms, pharmacological effects and potential applications. Food Funct. 2023, 14, 8101–8128. [Google Scholar] [CrossRef]
- Skalkos, E.; Chen, K.L.; Wijayawardana, R.; Morris, D.L. Effective Use of Bromelain and Acetylcysteine (BromAc((R))) for Treatment of Perigastric Pseudomyxoma Peritonei: A Case Report. Anticancer. Res. 2023, 43, 4735–4738. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.Y.; Wei, P.L.; Azarkan, M.; M’Rabet, N.; Makondi, P.T.; Chen, H.A.; Huang, C.Y.; Chang, Y.J. Cytotoxic properties of unfractionated and fractionated bromelain alone or in combination with chemotherapeutic agents in colorectal cancer cells. PLoS ONE 2023, 18, e0285970. [Google Scholar] [CrossRef]
- Wen, H.K.; Valle, S.J.; Morris, D.L. Bromelain and acetylcysteine (BromAc((R))): A novel approach to the treatment of mucinous tumours. Am. J. Cancer Res. 2023, 13, 1522–1532. [Google Scholar]
- Amini, A.; Masoumi-Moghaddam, S.; Ehteda, A.; Liauw, W.; Morris, D.L. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: Sequential and combination therapy of gastrointestinal cancer cells. Am. J. Cancer Res. 2016, 6, 350–369. [Google Scholar]
- Mekkawy, A.H.; Breakeit, M.; Pillai, K.; Badar, S.; Akhter, J.; Valle, S.J.; Morris, D.L. Intraperitoneal BromAc((R)) Does Not Interfere with the Healing of Colon Anastomosis. Cancers 2023, 15, 3321. [Google Scholar] [CrossRef]
- Dhandayuthapani, S.; Perez, H.D.; Paroulek, A.; Chinnakkannu, P.; Kandalam, U.; Jaffe, M.; Rathinavelu, A. Bromelain-induced apoptosis in GI-101A breast cancer cells. J. Med. Food 2012, 15, 344–349. [Google Scholar] [CrossRef]
- Pakbin, B.; Dibazar, S.P.; Allahyari, S.; Shariatifar, H.; Bruck, W.M.; Farasat, A. ACE2-Inhibitory Effects of Bromelain and Ficin in Colon Cancer Cells. Medicina 2023, 59, 301. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ortiz, L.; Vazquez-Borrego, M.C.; Bura, F.I.; Granados-Rodriguez, M.; Valenzuela-Molina, F.; Rufian-Andujar, B.; Martinez-Lopez, A.; Ortega-Salas, R.; Espejo-Herrero, J.J.; Romero-Ruiz, A.; et al. Intra-tumoural bromelain and N-acetylcysteine for recurrent and unresectable pseudomyxoma peritonei: Phase I/II trial. Br. J. Surg. 2024, 111, znae045. [Google Scholar] [CrossRef]
Fruit Bromelain (EC 3.4.22.33) | Stem Bromelain (EC 3.4.22.32) | |
---|---|---|
Source and extraction | It is primarily extracted from the fruit (particularly the core) of the pineapple plant. It is obtained by crushing or juicing the fruit and then separating the bromelain enzyme from other components. | It is extracted from the stems of the pineapple plant. The stems contain a higher concentration of bromelain compared to the fruit, and the extraction process involves grinding or macerating the stems to release the enzyme. |
Composition | Typically contains a mix of proteolytic enzymes, including various cysteine proteases, such as stem bromelain, ananain, and comosain. It may also contain other enzymes and bioactive compound. | It consists mainly of cysteine proteases, with the predominant enzyme being bromelain. It may also contain trace amounts of other proteolytic enzymes. |
Enzymatic action | Hydrolysis of proteins with broad specificity for peptide bonds. Bz-Phe-Val-Arg-/-NHMec is a good synthetic substrate, but there is no action on Z-Arg-Arg-NHMec. | Broad specificity for cleavage of proteins but strong preference for Z-Arg-Arg-/-NHMec amongst small molecule substrates. |
Fruit Bromelain (EC 3.4.22.33) | Stem Bromelain (EC 3.4.22.32) | |
---|---|---|
Biological activities |
|
|
Main applications |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kansakar, U.; Trimarco, V.; Manzi, M.V.; Cervi, E.; Mone, P.; Santulli, G. Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients 2024, 16, 2060. https://doi.org/10.3390/nu16132060
Kansakar U, Trimarco V, Manzi MV, Cervi E, Mone P, Santulli G. Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients. 2024; 16(13):2060. https://doi.org/10.3390/nu16132060
Chicago/Turabian StyleKansakar, Urna, Valentina Trimarco, Maria V. Manzi, Edoardo Cervi, Pasquale Mone, and Gaetano Santulli. 2024. "Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms" Nutrients 16, no. 13: 2060. https://doi.org/10.3390/nu16132060
APA StyleKansakar, U., Trimarco, V., Manzi, M. V., Cervi, E., Mone, P., & Santulli, G. (2024). Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients, 16(13), 2060. https://doi.org/10.3390/nu16132060