Association of Methyl Donor Nutrients’ Dietary Intake and Cognitive Impairment in the Elderly Based on the Intestinal Microbiome
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Assessment of Methyl Donor Nutrients Dietary Intake
2.3. Analysis of Intestinal Flora Test
2.3.1. 16S rRNA Gene Sequencing Analysis
2.3.2. Bioinformatics Analysis
2.3.3. Statistical Analysis
3. Results
3.1. Demographic Data for D Group and DF Group
3.2. Correlation between Dietary Intake of MDNs and Cognitive Function
3.3. Potential Role of Intestinal Flora in the Association between MDNs and Cognitive Function
3.3.1. Differences in Intestinal Flora between Groups D and DF
3.3.2. Relationship between MDNs’ Intake and Intestinal Flora
3.3.3. Screening for Specific Genera That May Mediate the Association of MDNs with Cognitive Function
3.3.4. Predicting Possible Mechanisms by which the Screened Genera Play a Role in Mediating the Association of MDNs with Cognitive Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OCM | one-carbon metabolism |
D | dementia |
DF | dementia-free |
MCI | mild cognitive impairment |
AD | Alzheimer’s disease |
MNQI | methyl-donor nutritional quality index |
MDNs | methyl donor nutrients |
PAD | photo-assisted dietary intake assessment |
HQ | high methyl-donor nutritional quality |
LQ | low methyl-donor nutritional quality |
MoCA | Montreal Cognitive Assessment |
OTUs | operational taxonomic units |
BMI | body mass index |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
rRNA | ribosomal ribonucleic acid |
VB | vitamin B |
PCR | polymerase chain reaction |
PLS-DA | partial least squares discrimination analysis |
Aβ | amyloid-β |
SHMT1 | hydroxymethyltransferase 1 |
References
- Prince, M.J.; Guerchet, M.; Prina, M.A. The Global Impact of Dementia 2013–2050. Available online: https://www.alzint.org/resource/policy-brief-the-global-impact-of-dementia-2013-2050/ (accessed on 6 May 2024).
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimers Dis. Other Dement. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Amouyel, P.; Andrieu, S.; Ballard, C.; Brayne, C.; Brodaty, H.; Cedazo-Minguez, A.; Dubois, B.; Edvardsson, D.; Feldman, H.; et al. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol. 2016, 15, 455–532. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef]
- WHO. International Statistical Classification of Diseases and Related Health Problems (11th Revision). Available online: https://www.who.int/classifications/icd/en/ (accessed on 27 May 2024).
- Cooper, C.; Sommerlad, A.; Lyketsos, C.G.; Livingston, G. Modifiable predictors of dementia in mild cognitive impairment: A systematic review and meta-analysis. Am. J. Psychiatry 2015, 172, 323–334. [Google Scholar] [CrossRef]
- Ravaglia, G.; Forti, P.; Maioli, F.; Martelli, M.; Servadei, L.; Brunetti, N.; Pantieri, G.; Mariani, E. Conversion of mild cognitive impairment to dementia: Predictive role of mild cognitive impairment subtypes and vascular risk factors. Dement. Geriatr. Cogn. Disord. 2006, 21, 51–58. [Google Scholar] [CrossRef]
- Blasko, I.; Hinterberger, M.; Kemmler, G.; Jungwirth, S.; Krampla, W.; Leitha, T.; Heinz Tragl, K.; Fischer, P. Conversion from mild cognitive impairment to dementia: Influence of folic acid and vitamin B12 use in the VITA cohort. J. Nutr. Health Aging 2012, 16, 687–694. [Google Scholar] [CrossRef]
- Hansson, O.; Zetterberg, H.; Buchhave, P.; Londos, E.; Blennow, K.; Minthon, L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: A follow-up study. Lancet Neurol. 2006, 5, 228–234. [Google Scholar] [CrossRef]
- Gavrilova, S.I.; Fedorova, Y.B.; Roshchina, I.F.; Korovaitseva, G.I. Prognosis of mild cognitive impairment syndrome: Data from a two-year clinical follow-up study. Neurosci. Behav. Physiol. 2008, 38, 129–134. [Google Scholar] [CrossRef]
- Lionaki, E.; Ploumi, C.; Tavernarakis, N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022, 11, 214. [Google Scholar] [CrossRef]
- Bou Ghanem, A.; Hussayni, Y.; Kadbey, R.; Ratel, Y.; Yehya, S.; Khouzami, L.; Ghadieh, H.E.; Kanaan, A.; Azar, S.; Harb, F. Exploring the complexities of 1C metabolism: Implications in aging and neurodegenerative diseases. Front. Aging Neurosci. 2023, 15, 1322419. [Google Scholar] [CrossRef]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef]
- McKee, S.E.; Reyes, T.M. Effect of supplementation with methyl-donor nutrients on neurodevelopment and cognition: Considerations for future research. Nutr. Rev. 2018, 76, 497–511. [Google Scholar] [CrossRef]
- Wu, M.M.; Yang, F. Research Advances in the Association between Maternal Intake of Methyl Donor Nutrients during Pregnancy and DNA Methylation in Offspring. Zhongguo Dang Dai Er Ke Za Zhi 2017, 19, 601–606. [Google Scholar] [CrossRef]
- Brachet, P.; Chanson, A.; Demigné, C.; Batifoulier, F.; Alexandre-Gouabau, M.C.; Tyssandier, V.; Rock, E. Age-associated B vitamin deficiency as a determinant of chronic diseases. Nutr. Res. Rev. 2004, 17, 55–68. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Ge, B.; Zhou, D.; Li, M.; Li, W.; Ma, F.; Liu, Z.; Ji, Y.; Huang, G. Effects of Folic Acid and Vitamin B12 Supplementation on Cognitive Impairment and Inflammation in Patients with Alzheimer’s Disease: A Randomized, Single-Blinded, Placebo-Controlled Trial. J. Prev. Alzheimers Dis. 2021, 8, 249–256. [Google Scholar] [CrossRef]
- Han, H.; Wang, F.; Chen, J.; Li, X.; Fu, G.; Zhou, J.; Zhou, D.; Wu, W.; Chen, H. Changes in Biothiol Levels Are Closely Associated with Alzheimer’s Disease. J. Alzheimers Dis. 2021, 82, 527–540. [Google Scholar] [CrossRef]
- Blusztajn, J.K.; Slack, B.E.; Mellott, T.J. Neuroprotective Actions of Dietary Choline. Nutrients 2017, 9, 815. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, J. Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells. J. Alzheimers Dis. 2023, 94, S9–S19. [Google Scholar] [CrossRef]
- Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The Gut Microbiota and Alzheimer’s Disease. J. Alzheimers Dis. 2017, 58, 1–15. [Google Scholar] [CrossRef]
- Frausto, D.M.; Forsyth, C.B.; Keshavarzian, A.; Voigt, R.M. Dietary Regulation of Gut-Brain Axis in Alzheimer’s Disease: Importance of Microbiota Metabolites. Front. Neurosci. 2021, 15, 736814. [Google Scholar] [CrossRef]
- Goyal, D.; Ali, S.A.; Singh, R.K. Emerging Role of Gut Microbiota in Modulation of Neuroinflammation and Neurodegeneration with Emphasis on Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 106, 110112. [Google Scholar] [CrossRef] [PubMed]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef] [PubMed]
- Rubini, E.; Schenkelaars, N.; Rousian, M.; Sinclair, K.D.; Wekema, L.; Faas, M.M.; Steegers-Theunissen, R.P.M.; Schoenmakers, S. Maternal obesity during pregnancy leads to derangements in one-carbon metabolism and the gut microbiota: Implications for fetal development and offspring wellbeing. Am. J. Obstet. Gynecol. 2022, 227, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Song, L.; Fan, R.; Chen, Q.; You, M.; Cai, M.; Wu, Y.; Li, Y.; Xu, M. Targeting Aging and Longevity with Exogenous Nucleotides (TALENTs): Rationale, Design, and Baseline Characteristics from a Randomized Controlled Trial in Older Adults. Nutrients 2024, 16, 1343. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xie, H.; Wang, L.; Wang, Y.; Wang, H.; Shi, J.; Qin, B.; Fan, D.; Ni, J.; Sun, Y.; et al. Chinese guideline for the diagnosis and treatment of Alzheimer’s disease dementia (2020). Chin. J. Geriatr. 2021, 40, 269–283. [Google Scholar] [CrossRef]
- Fan, R.; Chen, Q.; Song, L.; Wang, S.; You, M.; Cai, M.; Wang, X.; Li, Y.; Xu, M. The Validity and Feasibility of Utilizing the Photo-Assisted Dietary Intake Assessment among College Students and Elderly Individuals in China. Nutrients 2024, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Teng, Y.; Dong, S.; Lu, L.; Hu, R.; Sun, J.; Zhu, W.; Pan, L.; Jiang, W.; Zeng, X.; et al. Development and assessment of methyl-donor nutritional quality index in pregnant women. Zhongguo Sheng Yu Jian Kang Za Zhi 2022, 33, 407–414. [Google Scholar]
- Coleman, D.N.; Alharthi, A.S.; Liang, Y.; Lopes, M.G.; Lopreiato, V.; Vailati-Riboni, M.; Loor, J.J. Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J. Anim. Sci. Biotechnol. 2021, 12, 27. [Google Scholar] [CrossRef]
- Lin, L.; Zheng, L.J.; Zhang, L.J. Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 8243–8250. [Google Scholar] [CrossRef]
- Scheperjans, F.; Derkinderen, P.; Borghammer, P. The Gut and Parkinson’s Disease: Hype or Hope? J. Park. Dis. 2018, 8, S31–S39. [Google Scholar] [CrossRef]
- Castillo-Álvarez, F.; Marzo-Sola, M.E. Role of intestinal microbiota in the development of multiple sclerosis. Neurologia 2017, 32, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, T.; Jin, F. Alzheimer’s disease and gut microbiota. Sci. China Life Sci. 2016, 59, 1006–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; He, Y.; Ma, J.; Huang, P.; Du, J.; Cao, L.; Wang, Y.; Xiao, Q.; Tang, H.; Chen, S. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement. 2019, 15, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wen, J.; Guan, B.; Li, J.; Luo, J.; Li, J.; Wei, M.; Qiu, H. Folic acid and zinc improve hyperuricemia by altering the gut microbiota of rats with high-purine diet-induced hyperuricemia. Front. Microbiol. 2022, 13, 907952. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Zheng, J.; Zhu, Z.; Sang, L.; Zhu, J.; Luo, S.; Zhao, Y.; Wang, R.; Zhang, Y.; Hao, K.; et al. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front. Nutr. 2022, 9, 1031502. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 3066–3090. [Google Scholar] [CrossRef] [PubMed]
- Prajjwal, P.; Inban, P.; Sai, V.P.; Shiny, K.S.; Lam, J.R.; John, J.; Sulaimanov, M.; Tekuru, Y.; Wasi Ul Haq, M.; Marsool, M.D.M.; et al. The effects of the interplay between vitamins, antibiotics, and gut microbiota on the pathogenesis and progression of dementia: A systematic review and meta-analysis. Health Sci. Rep. 2024, 7, e1808. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Kim, G.; Byun, M.S.; Lee, J.H.; Yi, D.; Park, H.; Lee, D.Y. Gut microbiome alterations in preclinical Alzheimer’s disease. PLoS ONE 2022, 17, e0278276. [Google Scholar] [CrossRef] [PubMed]
- Hatayama, K.; Ebara, A.; Okuma, K.; Tokuno, H.; Hasuko, K.; Masuyama, H.; Ashikari, I.; Shirasawa, T. Characteristics of Intestinal Microbiota in Japanese Patients with Mild Cognitive Impairment and a Risk-Estimating Method for the Disorder. Biomedicines 2023, 11, 1789. [Google Scholar] [CrossRef]
- MahmoudianDehkordi, S.; Arnold, M.; Nho, K.; Ahmad, S.; Jia, W.; Xie, G.; Louie, G.; Kueider-Paisley, A.; Moseley, M.A.; Thompson, J.W.; et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimers Dement. 2019, 15, 76–92. [Google Scholar] [CrossRef]
- Lynch, J.B.; Gonzalez, E.L.; Choy, K.; Faull, K.F.; Jewell, T.; Arellano, A.; Liang, J.; Yu, K.B.; Paramo, J.; Hsiao, E.Y. Gut microbiota Turicibacter strains differentially modify bile acids and host lipids. Nat. Commun. 2023, 14, 3669. [Google Scholar] [CrossRef] [PubMed]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef] [PubMed]
- Haditsch, U.; Roth, T.; Rodriguez, L.; Hancock, S.; Cecere, T.; Nguyen, M.; Arastu-Kapur, S.; Broce, S.; Raha, D.; Lynch, C.C.; et al. Alzheimer’s Disease-Like Neurodegeneration in Porphyromonas gingivalis Infected Neurons with Persistent Expression of Active Gingipains. J. Alzheimers Dis. 2020, 75, 1361–1376. [Google Scholar] [CrossRef] [PubMed]
- Dowd, S.E.; Sun, Y.; Secor, P.R.; Rhoads, D.D.; Wolcott, B.M.; James, G.A.; Wolcott, R.D. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 2008, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.L.; Yang, M.; Fu, X.D.; Chen, M.; Su, Q.; Zhao, Y.H.; Mou, H.J. Evaluation of Prebiotic Potential of Three Marine Algae Oligosaccharides from Enzymatic Hydrolysis. Mar. Drugs 2019, 17, 173. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.; Park, S.N.; Kim, H.K.; Kim, D.S.; Jung, J.; Baek, J.H.; Lim, Y.K.; Jo, E.; Choi, M.H.; Chang, Y.H.; et al. Draft Genome Sequence of the Novel Peptoniphilus sp. Strain ChDC B134, Isolated from a Human Periapical Abscess Lesion. Genome. Announc. 2013, 1, e00822-13. [Google Scholar] [CrossRef] [PubMed]
- Onisiforou, A.; Christodoulou, C.C.; Zamba-Papanicolaou, E.; Zanos, P.; Georgiou, P. Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer’s disease. Front. Endocrinol. 2024, 15, 1345498. [Google Scholar] [CrossRef] [PubMed]
- Houldsworth, A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2024, 6, fcad356. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, J.; Wu, Q.; Wang, S.; Yang, S.; Li, X.; Chen, N.; Li, L.; Zhang, L. Tetrahydroxy stilbene glycoside ameliorates Alzheimer’s disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. Int. Immunopharmacol. 2021, 99, 108002. [Google Scholar] [CrossRef]
- Araújo, J.R.; Martel, F.; Borges, N.; Araújo, J.M.; Keating, E. Folates and aging: Role in mild cognitive impairment, dementia and depression. Ageing Res. Rev. 2015, 22, 9–19. [Google Scholar] [CrossRef]
- Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015, 6, 148. [Google Scholar] [CrossRef] [PubMed]
- Tuska, R.M.; Helm, S.M.; Graf, C.F.; James, C.; Kong, G.; Stiemsma, L.T.; Green, D.B.; Helm, S.E. Surfeit folic acid, protein, and exercise modify oncogenic inflammatory biomarkers and fecal microbiota. Front. Nutr. 2022, 9, 1060212. [Google Scholar] [CrossRef] [PubMed]
- Petrova, B.; Maynard, A.G.; Wang, P.; Kanarek, N. Regulatory mechanisms of one-carbon metabolism enzymes. J. Biol. Chem. 2023, 299, 105457. [Google Scholar] [CrossRef] [PubMed]
- Abarinov, E.V.; Beaudin, A.E.; Field, M.S.; Perry, C.A.; Allen, R.H.; Stabler, S.P.; Stover, P.J. Disruption of shmt1 impairs hippocampal neurogenesis and mnemonic function in mice. J. Nutr. 2013, 143, 1028–1035. [Google Scholar] [CrossRef]
- Pérez Palmer, N.; Trejo Ortega, B.; Joshi, P. Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatr. Clin. N. Am. 2022, 45, 639–661. [Google Scholar] [CrossRef]
Characteristics | D (n = 45) | DF (n = 245) | p-Value |
---|---|---|---|
Gender, male (%) | 13 (28.9) | 74 (30.2) | 0.860 |
Age (years) x ± s | 65.44 ± 2.72 | 65.67 ± 2.66 | 0.604 |
Highest educational level (n) % | |||
Primary school or below | 4 (8.9) | 18 (7.3) | 0.958 |
Junior high or above | 41 (91.1) | 227 (92.7) | |
Living alone or not (n) % | |||
Yes | 6 (13.3) | 19 (7.8) | 0.245 |
No | 39 (86.7) | 226 (92.2) | |
BMI (n) % | |||
Normal | 16 (35.6) | 119 (48.6) | 0.108 |
Overweight or obese | 29 (64.4) | 126 (51.4) | |
Chronic diseases history (n)% | |||
Detected | 9 (20) | 68 (27.8) | 0.279 |
Not detected | 36 (80) | 177 (72.2) |
D (n = 45) | DF (n = 245) | p-Value | |
---|---|---|---|
MNQI | 5.84 ± 3.13 | 6.86 ± 3.21 | 0.030 * |
Protein | 59.38 ± 25.40 | 71.64 ± 36.97 | 0.033 * |
Folate | 319.53 ± 194.05 | 375.93 ± 246.79 | 0.093 |
Choline | 287.36 ± 123.06 | 327.51 ± 141.19 | 0.016 * |
Riboflavin | 0.88 ± 0.47 | 1.01 ± 0.52 | 0.017 * |
VB6 | 2.02 ± 0.86 | 2.17 ± 1.08 | 0.342 |
VB12 | 1.80 ± 1.21 | 2.05 ± 2.28 | 0.595 |
Betaine | 73.86 ± 63.31 | 75.44 ± 68.96 | 0.922 |
Zinc | 7.31 ± 3.99 | 8.71 ± 4.94 | 0.028 * |
CLR-Transformed Abundance | vs. Quality Score or Nutrient Intake | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MoCA | MNQI | Protein | Folate | Choline | Riboflavin | VB6 | VB12 | Betaine | Zinc | ||
Victivallis | r | 0.127 | 0.048 | 0.060 | 0.074 | 0.116 | −0.023 | 0.070 | −0.047 | 0.130 | 0.018 |
p value | 0.030 * | 0.410 | 0.312 | 0.208 | 0.048 * | 0.696 | 0.236 | 0.422 | 0.028 * | 0.766 | |
Turicibacter | r | 0.100 | 0.086 | 0.084 | 0.132 | 0.068 | 0.019 | 0.049 | −0.047 | 0.237 | −0.001 |
p value | 0.088 * | 0.144 | 0.152 | 0.024 * | 0.248 | 0.744 | 0.404 | 0.420 | <0.001 * | 0.982 | |
Porphyromonas | r | −0.172 | −0.092 | −0.061 | 0.025 | −0.019 | −0.123 | −0.079 | −0.114 | 0.011 | −0.071 |
p value | 0.004 * | 0.118 | 0.304 | 0.668 | 0.744 | 0.036 * | 0.182 | 0.052 * | 0.848 | 0.228 | |
Peptoniphilus | r | −0.103 | −0.094 | −0.122 | −0.066 | −0.116 | −0.110 | −0.074 | −0.173 | −0.073 | −0.060 |
p value | 0.082 * | 0.108 | 0.038 * | 0.266 | 0.048 * | 0.060 * | 0.212 | 0.004 * | 0.214 | 0.308 | |
Howardella | r | −0.103 | −0.094 | −0.017 | −0.025 | −0.085 | −0.043 | −0.101 | −0.108 | −0.066 | −0.027 |
p value | 0.080 * | 0.110 | 0.778 | 0.666 | 0.150 | 0.464 | 0.086 * | 0.068 * | 0.264 | 0.646 | |
Phascolarctobacterium | r | 0.102 | 0.075 | 0.060 | 0.060 | 0.019 | 0.037 | −0.015 | 0.038 | 0.097 | 0.013 |
p value | 0.082 * | 0.200 | 0.306 | 0.308 | 0.744 | 0.526 | 0.794 | 0.524 | 0.098 * | 0.820 | |
Snodgrassella | r | 0.135 | 0.076 | 0.120 | 0.055 | 0.077 | 0.106 | 0.031 | 0.049 | 0.075 | 0.058 |
p value | 0.022 * | 0.200 | 0.040 * | 0.348 | 0.190 | 0.072 * | 0.596 | 0.404 | 0.204 | 0.324 | |
Terrimonas | r | 0.126 | −0.001 | 0.094 | 0.106 | −0.035 | −0.003 | 0.031 | −0.102 | 0.036 | 0.046 |
p value | 0.032 * | 0.986 | 0.110 | 0.070 * | 0.550 | 0.954 | 0.600 | 0.084 * | 0.544 | 0.432 | |
Planomicrobium | r | 0.109 | 0.014 | 0.105 | −0.019 | 0.104 | −0.003 | 0.051 | 0.039 | 0.080 | 0.091 |
p value | 0.064 * | 0.810 | 0.076 * | 0.746 | 0.078 * | 0.960 | 0.390 | 0.512 | 0.174 | 0.122 | |
Centipeda | r | 0.098 | 0.035 | 0.124 | 0.039 | 0.070 | 0.088 | 0.090 | −0.024 | 0.082 | 0.097 |
p value | 0.098 * | 0.548 | 0.034 * | 0.512 | 0.234 | 0.132 | 0.126 | 0.680 | 0.166 | 0.100 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Fan, R.; Song, L.; Wang, S.; You, M.; Cai, M.; Wu, Y.; Li, Y.; Xu, M. Association of Methyl Donor Nutrients’ Dietary Intake and Cognitive Impairment in the Elderly Based on the Intestinal Microbiome. Nutrients 2024, 16, 2061. https://doi.org/10.3390/nu16132061
Chen Q, Fan R, Song L, Wang S, You M, Cai M, Wu Y, Li Y, Xu M. Association of Methyl Donor Nutrients’ Dietary Intake and Cognitive Impairment in the Elderly Based on the Intestinal Microbiome. Nutrients. 2024; 16(13):2061. https://doi.org/10.3390/nu16132061
Chicago/Turabian StyleChen, Qianqian, Rui Fan, Lixia Song, Shuyue Wang, Mei You, Meng Cai, Yuxiao Wu, Yong Li, and Meihong Xu. 2024. "Association of Methyl Donor Nutrients’ Dietary Intake and Cognitive Impairment in the Elderly Based on the Intestinal Microbiome" Nutrients 16, no. 13: 2061. https://doi.org/10.3390/nu16132061
APA StyleChen, Q., Fan, R., Song, L., Wang, S., You, M., Cai, M., Wu, Y., Li, Y., & Xu, M. (2024). Association of Methyl Donor Nutrients’ Dietary Intake and Cognitive Impairment in the Elderly Based on the Intestinal Microbiome. Nutrients, 16(13), 2061. https://doi.org/10.3390/nu16132061