Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MRI Experiments
2.3. Calculation of QSM and GMV Metrics
2.4. Plasma Ferritin Measurements
2.5. The Fusion of QSM and GMV Metrics
2.6. SVM for Classification
2.7. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. The Fusion of QSM and GMV Metrics
3.3. The SVM Model Distinguished MDD Patients from HCs Well
3.4. Comparison Results of pF and ROI Analysis of Brain Iron Levels and GMV Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, Q.; He, Y. Depression, Neuroimaging and Connectomics: A Selective Overview. Biol. Psychiatry 2015, 77, 223–235. [Google Scholar] [CrossRef]
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major Depressive Disorder. Nat. Rev. Dis. Prim. 2023, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, M.; Wei, Y.; Sun, L.; Zhang, J.; Zhang, H.; Li, B. Dietary Patterns and Depression Risk: A Meta-Analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, B.; Song, X.; Zhang, D. Dietary Zinc and Iron Intake and Risk of Depression: A Meta-Analysis. Psychiatry Res. 2017, 251, 41–47. [Google Scholar] [CrossRef]
- Ripamonti, M. Iron Imbalance in Neurodegeneration. Mol. Psychiatry 2024, 29, 1139–1152. [Google Scholar] [CrossRef]
- Ferreira, A.; Neves, P. Multilevel Impacts of Iron in the Brain: The Cross Talk between Neurophysiological Mechanisms, Cognition, and Social Behavior. Pharmaceuticals 2019, 12, 126. [Google Scholar] [CrossRef]
- Shah, H.E.; Bhawnani, N.; Ethirajulu, A.; Alkasabera, A.; Onyali, C.B. Iron Deficiency-Induced Changes in the Hippocampus, Corpus Striatum, and Monoamines Levels That Lead to Anxiety, Depression, Sleep Disorders, and Psychotic Disorders. Cureus 2021, 13, e18138. [Google Scholar] [CrossRef] [PubMed]
- Gozzelino, R.; Arosio, P. The Importance of Iron in Pathophysiologic Conditions. Front. Pharmacol. 2015, 6, 26. [Google Scholar] [CrossRef]
- Hare, D.; Ayton, S.; Bush, A.; Lei, P. A Delicate Balance: Iron Metabolism and Diseases of the Brain. Front. Aging Neurosci. 2013, 5, 34. [Google Scholar] [CrossRef]
- Emerit, J.; Beaumont, C.; Trivin, F. Iron Metabolism, Free Radicals, and Oxidative Injury. Biomed. Pharmacother. 2001, 55, 333–339. [Google Scholar] [CrossRef]
- Deficiency, I.; Brain, A. Iron Deficiency Alters Brain Development and Functioning. J. Nutr. 2003, 133, 1468S–1472S. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.; Xie, L.; Dong, Z.; Chen, Q.; Huang, S.; Xie, S.; Lai, Y.; Li, J.; Yan, W.; et al. Nrf2 Regulates Iron-Dependent Hippocampal Synapses and Functional Connectivity Damage in Depression. J. Neuroinflamm. 2023, 20, 212. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Najm, A.H.; Al-Dujaili, A.H.; Maes, M. Major Depression in Children with Transfusion-Dependent Thalassemia Is Strongly Associated with the Combined Effects of Blood Transfusion Rate, Iron Overload, and Increased Pro-Inflammatory Cytokines. Neurotox. Res. 2020, 38, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Cutler, P. Iron Overload and Psychiatric Illness. Can. J. Psychiatry 1994, 39, 8–11. [Google Scholar] [CrossRef]
- Yi, S.; Nanri, A.; Poudel-tandukar, K.; Nonaka, D.; Matsushita, Y. Association between Serum Ferritin Concentrations and Depressive Symptoms in Japanese Municipal Employees. Psychiatry Res. 2011, 189, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Gandy, K.; Salas, R.; Devaraj, S.; Calarge, C.A. Iron Deficiency and Internalizing Symptom Severity in Unmedicated Adolescents: A Pilot Study. Psychol. Med. 2023, 53, 2274–2284. [Google Scholar] [CrossRef]
- Wassef, A.; Nguyen, Q.D.; St-andré, M. Anaemia and Depletion of Iron Stores as Risk Factors for Postpartum Depression: A Literature Review. J. Psychosom. Obstet. Gynecol. 2019, 40, 19–28. [Google Scholar] [CrossRef]
- Qian, Z.; Ke, Y. Brain Iron Transport. Biol. Rev. Camb. Philos. Soc. 2019, 94, 1672–1684. [Google Scholar] [CrossRef]
- Vinayagamani, S.; Sheelakumari, R.; Sabarish, S.; Senthilvelan, S.; Ros, R.; Thomas, B.; Kesavadas, C. Quantitative Susceptibility Mapping: Technical Considerations and Clinical Applications in Neuroimaging. J. Magn. Reson. Imaging 2021, 53, 23–37. [Google Scholar] [CrossRef]
- Chen, Y.; Su, S.; Dai, Y.; Zou, M.; Lin, L.; Qian, L.; Zhou, Q.; Zhang, H. Quantitative Susceptibility Mapping Reveals Brain Iron Deficiency in Children with Attention—Deficit / Hyperactivity Disorder: A Whole—Brain Analysis. Eur. Radiol. 2022, 32, 3726–3733. [Google Scholar] [CrossRef]
- Guan, X.; Lancione, M.; Ayton, S.; Dusek, P.; Langkammer, C.; Zhang, M. NeuroImage Neuroimaging of Parkinson’s Disease by Quantitative Susceptibility Mapping. Neuroimage 2024, 289, 120547. [Google Scholar] [CrossRef]
- Tang, S.; Xu, Y.; Liu, X.; Chen, Z.; Zhou, Y.; Nie, L.; He, L. Quantitative Susceptibility Mapping Shows Lower Brain Iron Content in Children with Autism. Eur. Radiol. 2021, 31, 2073–2083. [Google Scholar] [CrossRef]
- Duan, X.; Xie, Y.; Zhu, X.; Chen, L.; Li, F.; Feng, G.; Li, L. Quantitative Susceptibility Mapping of Brain Iron Deposition in Patients With Recurrent Depression. Psychiatry Investig. 2022, 19, 668–675. [Google Scholar] [CrossRef]
- Yao, S.; Zhong, Y.; Xu, Y.; Qin, J.; Zhang, N.; Zhu, X. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity. Front. Hum. Neurosci. 2017, 11, 442. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Li, Q.; Xu, J.; Yan, S.; Cai, J.; Jiaerken, Y.; Lou, M. Brain Iron Deposits in Thalamus Is an Independent Factor for Depressive Symptoms Based on Quantitative Susceptibility Mapping in an Older Adults Community Population. Front. Psychiatry 2019, 10, 734. [Google Scholar] [CrossRef]
- Weissman, D.G.; Lambert, H.K.; Rodman, A.M.; Peverill, M.; Sheridan, M.A.; Mclaughlin, K.A. Reduced Hippocampal and Amygdala Volume as a Mechanism Underlying Stress Sensitization to Depression Following Childhood Trauma. Depress. Anxiety 2020, 37, 916–925. [Google Scholar] [CrossRef]
- Cong, E.; Li, Q.; Chen, H.; Cai, Y.; Ling, Z.; Wang, Y.; Wen, H.; Zhang, H.; Li, Y.; Hu, Y.; et al. Association between the Volume of Subregions of the Amygdala and Major Depression with Suicidal Thoughts and Anxiety in a Chinese Cohort. J. Affect. Disord. 2022, 312, 39–45. [Google Scholar] [CrossRef]
- Grieve, S.M.; Korgaonkar, M.S.; Koslow, S.H.; Gordon, E.; Williams, L.M. Widespread Reductions in Gray Matter Volume in Depression. NeuroImage Clin. 2013, 3, 332–339. [Google Scholar] [CrossRef]
- Medicine, P.; Kingdom, U. Enlarged Amygdala Volume and Reduced Hippocampal Volume in Young Women with Major Depression. Psychol. Med. 2004, 34, 1059–1064. [Google Scholar]
- Baumgartner, J.; Smuts, C.M.; Zimmermann, M.B. Providing Male Rats Deficient in Iron and N-3 Fatty Acids with Iron and Alpha-Linolenic Acid Alone Affects Brain Serotonin and Cognition Differently from Combined Provision. Lipids Health Dis. 2014, 13, 97. [Google Scholar] [CrossRef]
- Baumgartner, J.; Smuts, C.M.; Malan, L.; Arnold, M.; Yee, B.K.; Bianco, L.E.; Boekschoten, M.V.; Mu, M.; Langhans, W.; Hurrell, R.F.; et al. In Male Rats with Concurrent Iron and (n-3) Fatty Acid Deficiency, Provision of Either Iron or (n-3) Fatty Acids Alone Alters Monoamine Metabolism and Exacerbates the Cognitive Deficits Associated with Combined Deficiency 1–3. J. Nutr. 2012, 142, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; He, H.; Pearlson, G.D.; Adali, T.; Kiehl, K.A.; Yu, Q.; Clark, V.P.; Castro, E.; White, T.; Mueller, B.A.; et al. Three-Way (N-Way) Fusion of Brain Imaging Data Based on MCCA+jICA and Its Application to Discriminating Schizophrenia. Neuroimage 2013, 66, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Avram, A.V.; Wu, B.; Xiao, X.; Liu, C. Integrated Laplacian-Based Phase Unwrapping and Background Phase Removal for Quantitative Susceptibility Mapping. NMR Biomed. 2014, 27, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Unified Segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Pearlson, G.; Adali, T.; Kiehl, K.A.; Caprihan, A.; Liu, J.; Yamamoto, J.; Calhoun, V.D. Discriminating Schizophrenia and Bipolar Disorder by Fusing FMRI and DTI in A Multimodal CCA+ Joint ICA Model. Neuroimage 2011, 57, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.O.; Adali, T.; Calhoun, V.D. Estimating the Number of Independent Components for Functional Magnetic Resonance Imaging Data. Hum. Brain Mapp. 2007, 28, 1251–1266. [Google Scholar] [CrossRef]
- Tang, F.; Yang, H.; Li, L.; Ji, E.; Fu, Z.; Zhang, Z. Fusion Analysis of Gray Matter and White Matter in Bipolar Disorder by Multimodal CCA-Joint ICA. J. Affect. Disord. 2020, 263, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zalesky, A.; Yue, W.; Howes, O.; Yan, H.; Liu, Y.; Fan, L.; Whitaker, K.J.; Xu, K.; Rao, G.; et al. A Neuroimaging Biomarker for Striatal Dysfunction in Schizophrenia. Nat. Med. 2020, 26, 558–565. [Google Scholar] [CrossRef]
- Kim, J.; Wessling-Resnick, M. Iron and Mechanisms of Emotional Behavior. J. Nutr. Biochem. 2014, 25, 1101–1107. [Google Scholar] [CrossRef]
- Hill, J.M. Iron Concentration Reduced in Ventral Pallidum, Globus Pallidus, and Substantia Nigra by GABA-Transaminase Inhibitor, Gamma-Vinyl GABA. Brain Res. 1985, 342, 18–25. [Google Scholar] [CrossRef]
- Youdim, M.B.; Green, A.R. Iron Deficiency and Neurotransmitter Synthesis and Function. Proc. Nutr. Soc. 1978, 37, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.L.; Ph, D.; Connor, J.R.; Ph, D.; Jones, B.C.; Ph, D. Iron in the Brain. Nutr. Rev. 1993, 51, 157–170. [Google Scholar] [CrossRef]
- Felt, B.T.; Beard, J.L.; Schallert, T.; Shao, J.; Aldridge, J.W.; Connor, J.R.; Georgieff, M.K.; Lozoff, B. Persistent Neurochemical and Behavioral Abnormalities in Adulthood despite Early Iron Supplementation for Perinatal Iron Deficiency Anemia in Rats. Behav. Brain Res. 2006, 171, 261–270. [Google Scholar] [CrossRef]
- Beard, J.L.; Felt, B.; Schallert, T.; Burhans, M.; Connor, J.R.; Georgieff, M.K. Moderate Iron Deficiency in Infancy: Biology and Behavior in Young Rats. Behav. Brain Res. 2006, 170, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Tkac, I.; Townsend, E.L.; Gruetter, R.; Georgieff, M.K. Perinatal Iron Deficiency Alters the Neurochemical Profile of the Developing. Nutr. Neurosci. Perinat. 2003, 133, 3215–3221. [Google Scholar]
- Rao, R.; Wobken, J.D.; Luciana, M.; Nelson, C.A.; Georgieff, M.K. Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr. Res. 2000, 48, 169–176. [Google Scholar]
- Lozoff, B.; Jimenez, E.; Hagen, J.; Mollen, E.; Wolf, A.W.; Objective, A.; Periurban, S.; Jose, S. Poorer Behavioral and Developmental Outcome More Than 10 Years After Treatment for Iron Deficiency in Infancy Betsy. Pediatrics 2000, 105, E51. [Google Scholar] [CrossRef]
- Pino, J.M.; da Luz, M.H.; Antunes, H.K.; Giampá, S.Q.D.C.; Martins, V.R.; Lee, K.S. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner. Front. Mol. Neurosci. 2017, 10, 145. [Google Scholar] [CrossRef]
- Groman, S.M.; Morales, A.M.; Lee, B.; London, E.D.; Jentsch, J.D. Methamphetamine-Induced Increases in Putamen Gray Matter Associate with Inhibitory Control. Psychopharmacology 2013, 229, 527–538. [Google Scholar] [CrossRef]
MDD (n = 95) Mean ± SD | HC (n = 66) Mean ± SD | t/χ2 | p | |
---|---|---|---|---|
Age (years) | 24.33 ± 4.630 | 24.59 ± 2.637 | 0.4192 | 0.6756 |
Sex (male/female) | 50/45 | 30/36 | 0.8024 | 0.3704 |
a BMI (kg/m2) | 22.06 ± 4.114 | 21.83 ± 3.151 | 0.3739 | 0.7090 |
b HAMD-17 | 25.68 ± 5.547 | 3.409 ± 3.930 | 28.08 | **** <0.0001 |
c BDI-II | 34.19 ± 10.82 | 4.864 ± 5.891 | 20.04 | **** <0.0001 |
d HAMA | 27.81 ± 8.458 | 3.242 ± 4.413 | 21.63 | **** <0.0001 |
Self-injury behavior (yes/no) | 36/59 | 1/65 | 27.10 | **** <0.0001 |
Suicidal thoughts (yes/no) | 80/15 | 8/58 | 81.66 | **** <0.0001 |
Suicidal behavior (yes/no) | 22/73 | 0/66 | 15.79 | **** <0.0001 |
Childhood trauma (yes/no) | 20/75 | 2/64 | 9.249 | ** 0.0024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Zhou, B.; Miao, Z.; Liu, X.; Liu, S. Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder. Nutrients 2024, 16, 2073. https://doi.org/10.3390/nu16132073
Liang W, Zhou B, Miao Z, Liu X, Liu S. Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder. Nutrients. 2024; 16(13):2073. https://doi.org/10.3390/nu16132073
Chicago/Turabian StyleLiang, Wenjia, Bo Zhou, Zhongyan Miao, Xi Liu, and Shuwei Liu. 2024. "Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder" Nutrients 16, no. 13: 2073. https://doi.org/10.3390/nu16132073
APA StyleLiang, W., Zhou, B., Miao, Z., Liu, X., & Liu, S. (2024). Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder. Nutrients, 16(13), 2073. https://doi.org/10.3390/nu16132073