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Abstract: Atherosclerosis (AS) is a common clinical sickness and the major pathological basis of
ischemic cardiocerebrovascular diseases (CCVDs). The pathogenesis of AS involves a variety of risk
factors, and there is a lack of effective preventive and curative drugs that can completely treat AS.
In recent years, with the improvement of people’s living standards and changes in dietary habits,
the morbidity and mortality rates of AS are on the rise, and the age of onset tends to be younger.
The formation of AS is closely related to a variety of factors, and the main factors include lipid
metabolism disorders, endothelial damage, inflammation, unstable plaques, etc. Epigallocatechin
gallate (EGCG), as one of the main components of catechins, has a variety of pharmacological
effects, and its role in the prevention of AS and the protection of cardiovascular and cerebral blood
vessels has been highly valued. Recent epidemiological investigations and various in vivo and ex
vivo experiments have shown that EGCG is capable of resisting atherosclerosis and reducing the
morbidity and mortality of AS. In this paper, we reviewed the anti-AS effects of EGCG and its
mechanisms in recent years, including the regulation of lipid metabolism, regulation of intestinal
flora disorders, improvement of vascular endothelial cell functions, inhibition of inflammatory factors
expression, regulation of inflammatory signaling pathways, inhibition of matrix metalloproteinase
(MMP) expression, and inhibition of platelet aggregation, which are helpful for the prevention of
cardiocerebrovascular diseases.
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1. Introduction

Cardiocerebrovascular diseases are the manifestation of systemic vascular lesions in
the heart and brain. Its etiology mainly includes atherosclerosis, hypertension, hyperlipi-
demia, diabetes mellitus, thrombocytosis, and other factors, and its morbidity, disability,
and mortality rates are extremely high, causing serious damage to the life and health of
patients, especially for middle-aged and elderly people [1]. Even with the most advanced
and sophisticated medical treatments, more than 50% of cerebrovascular disease survivors
are still unable to live adequately on their own. Each year, approximately 15 million people
worldwide die from cardiocerebrovascular diseases, ranking them among the top causes
of death [2]. Atherosclerosis (AS) is the underlying pathological manifestation of many
cardiocerebrovascular diseases and is characterized by classical inflammatory degeneration,
exudation, and proliferation [3]. Atherosclerotic plaques are not stable, and when ruptured,
they block blood vessels in a short period, causing a predisposition to acute cardiovascular
disease, which can be life-threatening [4]. Many people believe that to fight AS is to protect
health and life, that the fundamental measure to combat the onset of cardiocerebrovascular
diseases is to prevent AS from occurring, and that the prevention of AS is conducive to
curbing the continued increase in mortality from cardiocerebrovascular diseases world-
wide. Currently, the main therapeutic drugs for AS are statins (lipid-regulating drugs),
ticagrelor (antiplatelet drugs), calcium antagonists (CCBs), etc. [5,6]. The causes of AS are
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complex, and it is difficult to prevent and control with drugs. Most of them have side
effects, so early prevention and control are very important. EGCG is the main body of the
components in catechins, which is known to have antihypertensive, lipid-lowering, hypo-
glycemic, weight-loss, anti-inflammatory, anti-oxidation, anti-aging, and other multiple
functions. In recent years, epidemiological studies have shown that EGCG can prevent
cardiocerebrovascular diseases, and it has a prominent role in anti-AS, which can reduce
the risk of cardiocerebrovascular diseases [7]. In this paper, we will review the ameliorative
effects of EGCG, a natural compound in tea, on atherosclerosis; explore its source, structure,
and physiological functions; and focus on its ameliorative mechanisms on AS to provide a
systematic reference for future research on EGCG in cardiocerebrovascular diseases.

2. Sources, Structure, and Physiological Functions of EGCG
2.1. Sources and Structure of EGCG

EGCG is found in abundance, mainly in tea, especially green tea, and it can contain up
to 7380 mg per 100 g of dried tea according to the United States Department of Agriculture
(USDA) [8]. In addition, small amounts of EGCG can also be detected in a wide range
of plants, such as apples, cranberries, hazelnuts, carob beans, etc. The food sources
and content of EGCG are shown in Table 1. EGCG is the most abundant component
of catechins, accounting for about 50% to 70% of total catechins, and it is also the major
component of the tea polyphenols that exert a variety of biological activities. Catechin is
a phenolic active ingredient extracted from natural plants, such as tea. It belongs to the
flavanols and is the most important tea polyphenol [9]. Catechins mainly consist of eight
monomer types: epigallocatechin gallate (EGCG), epicatechin (EC), epicatechin gallate
(ECG), epigallocatechin (EGC), catechin (C), gallocatechin (GC), catechin gallate (CG),
and gallocatechin gallate (GCG) [10]. EGCG has the highest content in catechins. Due
to its special structure, its efficacy is also more prominent, in the field of medicine, and
functional food has broad prospects for application [11]. The molecular structure of EGCG
is shown in Figure 1. EGCG can be formed by the esterification of EGC and GA (gallic
acid), and it is more stable under weakly acidic conditions and unstable under neutral and
alkaline conditions [12]. The EGCG molecule contains three aromatic rings, one pyran ring,
and eight phenolic hydroxyls, and the phenolic hydroxyls in the structure can provide
hydrogen atoms for the redox reaction. And the generated radicals contain the structure
of catechols with a high degree of stability [13]. In addition, the o-dihydroxy catechol
structure of the B-ring and the 2,3-double bond of dihydropyran in EGCG may be the site
for accepting reactive oxygen species, and thus, it has a stronger antioxidant capacity than
other catechins.

Nutrients 2024, 16, 2074 2 of 16 
 

 

statins (lipid-regulating drugs), ticagrelor (antiplatelet drugs), calcium antagonists 
(CCBs), etc. [5,6]. The causes of AS are complex, and it is difficult to prevent and control 
with drugs. Most of them have side effects, so early prevention and control are very im-
portant. EGCG is the main body of the components in catechins, which is known to have 
antihypertensive, lipid-lowering, hypoglycemic, weight-loss, anti-inflammatory, anti-ox-
idation, anti-aging, and other multiple functions. In recent years, epidemiological studies 
have shown that EGCG can prevent cardiocerebrovascular diseases, and it has a promi-
nent role in anti-AS, which can reduce the risk of cardiocerebrovascular diseases [7]. In 
this paper, we will review the ameliorative effects of EGCG, a natural compound in tea, 
on atherosclerosis; explore its source, structure, and physiological functions; and focus on 
its ameliorative mechanisms on AS to provide a systematic reference for future research 
on EGCG in cardiocerebrovascular diseases. 

2. Sources, Structure, and Physiological Functions of EGCG 
2.1. Sources and Structure of EGCG 

EGCG is found in abundance, mainly in tea, especially green tea, and it can contain 
up to 7380 mg per 100 g of dried tea according to the United States Department of Agri-
culture (USDA) [8]. In addition, small amounts of EGCG can also be detected in a wide 
range of plants, such as apples, cranberries, hazelnuts, carob beans, etc. The food sources 
and content of EGCG are shown in Table 1. EGCG is the most abundant component of 
catechins, accounting for about 50% to 70% of total catechins, and it is also the major com-
ponent of the tea polyphenols that exert a variety of biological activities. Catechin is a 
phenolic active ingredient extracted from natural plants, such as tea. It belongs to the fla-
vanols and is the most important tea polyphenol [9]. Catechins mainly consist of eight 
monomer types: epigallocatechin gallate (EGCG), epicatechin (EC), epicatechin gallate 
(ECG), epigallocatechin (EGC), catechin (C), gallocatechin (GC), catechin gallate (CG), and 
gallocatechin gallate (GCG) [10]. EGCG has the highest content in catechins. Due to its 
special structure, its efficacy is also more prominent, in the field of medicine, and func-
tional food has broad prospects for application [11]. The molecular structure of EGCG is 
shown in Figure 1. EGCG can be formed by the esterification of EGC and GA (gallic acid), 
and it is more stable under weakly acidic conditions and unstable under neutral and al-
kaline conditions [12]. The EGCG molecule contains three aromatic rings, one pyran ring, 
and eight phenolic hydroxyls, and the phenolic hydroxyls in the structure can provide 
hydrogen atoms for the redox reaction. And the generated radicals contain the structure 
of catechols with a high degree of stability [13]. In addition, the o-dihydroxy catechol 
structure of the B-ring and the 2,3-double bond of dihydropyran in EGCG may be the site 
for accepting reactive oxygen species, and thus, it has a stronger antioxidant capacity than 
other catechins. 

 
Figure 1. Molecular structure of EGCG. Figure 1. Molecular structure of EGCG.



Nutrients 2024, 16, 2074 3 of 16

Table 1. Table of food sources and content of EGCG.

Food Sources Types EGCG Content (mg/100 g)

Tea

Green
7380 (dry leaves)

64.15 (brew)

White
4245 (dry leaves)

46.00 (brew)
Oolong 34.48 (brew)
Black 9.36 (brew)

Nuts

Hazelnuts 1.06
Pistachio nuts 0.40

Pecans 2.30
Carob flour 109.46

Fruit

Apples 1.93
Blackberries 0.68
Cranberries 0.97

Kiwifruit 0.09
Peaches 0.30

Pears 0.17
Plums 0.40

Strawberries 0.11

Vegetables Onions 0.08

2.2. Physiological Functions of the EGCG

Many studies have shown that there are diverse pharmacological effects of EGCG
(Figure 2), such as anti-inflammatory, antioxidant, antidiabetic, anti-obesity, and blood-
pressure lowering, etc., among which the anti-inflammatory and antioxidant effects are
considered to be the most important ones of EGCG. EGCG, as a natural antioxidant, has
an antioxidant activity even higher than that of vitamin E. It also scavenges free radicals
produced by the human body, protects cell membranes, and has a delayed-aging effect [14].
In terms of anti-inflammation, they can prevent vascular inflammation by decreasing
the adhesion of leukocytes to endothelial cells and the production factors and adhesion
molecules of cytochrome C mediated by nuclear transcription factors [15]. Some clinical
trials have shown that EGCG can significantly reduce dental plaque and delay periodontal
disease [16]. EGCG also has some antimicrobial effects, inhibiting pathogenic bacteria
without affecting the reproduction of beneficial bacteria, and has inhibitory effects on
both bacteria and fungi [17]. In addition, it can inhibit the bacteria that cause human
skin diseases and is effective in the treatment of eczema. EGCG removes the odor of
methanethiol and, therefore, reduces the smell of cigarette smoke in the mouths of smokers
and has a deodorizing effect by resisting odor-producing bacteria in the human intestinal
tract. In addition, EGCG can induce anti-angiogenic and anti-proliferative effects in cancer
cells and has been helpful in the prevention of cancers, such as hepatocellular carcinoma,
gastric cancer, lung cancer, and breast cancer. Its possible mechanisms of action include
anti-proliferative, anti-migratory, pro-apoptotic, and anti-angiogenic effects [18].
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3. Studies on the Mechanisms of EGCG against AS
3.1. Regulation of Lipid Metabolism

Dyslipidemia is one of the important predisposing factors of AS, and regulating blood
lipid levels can prevent AS [19]. Low-density lipoprotein cholesterol (LDL-C), cholesterol
(TC), and triglycerides (TG) are the main factors in the formation of atherosclerosis. His-
tomorphometric studies of early atherosclerotic injury have shown that the deposition of
cholesterol, as well as other lipids within the vessel wall, is the initiating event in the overall
process of atherosclerosis. And, these lipid deposits are derived primarily from blood
lipoproteins, particularly LDL. Low-density lipoprotein (LDL) is the major lipoprotein in
plasma for the transport of cholesterol and is converted from very low-density lipoprotein
(VLDL), which consists mainly of apolipoprotein B-100 (apoB-100) and lipids. LDL mainly
transports cholesterol from the liver to the outside of the body. If the LDL metabolism is
disturbed, it will lead to an enhancement of plasma LDL, which in turn, affects cholesterol
levels. Cholesterol accumulation in the walls of the tubes tends to lead to atherosclerosis.
High levels of plasma LDL-C are an important factor leading to AS, and the reduction of
LDL-C can degrade the early stages of atherosclerosis, which can reduce the incidence of
cardiovascular events [20]. It has been shown that by feeding oolong tea and green tea
leaves to rats, their body weight and their plasma triglycerides, cholesterol, and LDL were
markedly reduced, with EGCG playing a major role [21]. Momose et al. [22] conducted a
study on the ability of EGCG to lower LDL-C, made subjects ingest 107–856 mg/d EGCG
for 4 to 14 weeks, and showed that EGCG intake led to a prominent reduction in LDL-C. In
addition, it has been shown that catechins can inhibit cholesterol synthesis and promote
cholesterol excretion, normalizing cholesterol levels and reducing lipid deposition [23].
Chen et al. [24] showed that, after 12 weeks of therapy with a high dose of EGCG (856.8 mg)
administered daily to obese females, the weight of the treatment group was significantly
reduced, total cholesterol decreased to 5.33%, and LDL plasma levels decreased. Ge Hu
et al. [25] showed that EGCG inhibited cholesterol synthesis by down-regulating the activi-
ties of mevalonate kinase (MVK), mevalonate 5-pyrophosphate decarboxylase (MDD), and
farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. In addition, EGCG can
reduce TG by directly inhibiting fatty acid synthase (FAS) activity or by down-regulating
peroxisome proliferator-activated receptor γ (PPARγ) and FAS expression levels through
the PI3K-AKT signaling [26].

LDL is a significant cause of AS plaque formation and secondary cardiovascular dis-
ease [27]. Oxidative stress, which causes reactive oxygen species (ROS) to accumulate in
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the body or cells and predispose to tissue damage, plays a key role in the occurrence of
AS and is a key factor in the formation of AS, and it plays a critical role in the oxidation
of LDL in the early stages of AS [28]. According to the oxidative stress theory of AS,
ROSs can give rise to the oxidation of LDL to produce oxidized low-density lipoprotein
(ox-LDL) [29]. Oxidative stress causes oxidative modification of a large number of LDLs,
and ox-LDL plays a critical role in the development of AS. Studies have shown that ox-
LDL is an independent risk factor for AS and is closely related to all stages of AS. It is
capable of damaging vascular endothelial cells and promotes monocyte adhesion; VSMC
migration; value-added, foam cell, and thrombus formation; and AS plaque lysis. The
oxidative product ox-LDL is phagocytosed by monocyte macrophages, and lipid-carrying
macrophages are converted to foam cells and accumulate, which can lead to the occurrence
of AS [30]. Goto et al. [31] found that 25 µMol·L−1 of EGCG up-regulated the expression of
the LDL receptor and lowered the apoB100 level to improve the metabolism and thus the
metabolism of cholesterol. In vitro biochemical assays, catechins, especially EGCG, inhib-
ited the oxidation of plasma LDL. Choi et al. [32] found that EGCG (25 µMol·L−1) inhibited
ox-LDL-induced ROS production, thereby protecting human vascular endothelial cells. Li
et al. [33] demonstrated that EGCG (10–100 µMol·L−1) decreased AngII-induced NADPH
oxidase expression, lowered ROS generation, and repressed AngII-induced activation of
NF-κB and activator protein-1 (AP-1). These results suggest that EGCG can reduce the
incidence of AS by regulating blood lipids and inhibiting the oxidation of LDL, which is
important for the prevention and therapy of AS (Figure 3).
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3.2. Regulation of Intestinal Flora Disorders

Gut microbes can break down dietary fiber and metabolize it to produce diverse
metabolites, which play a prominent role in regulating host digestion, absorption, and
immune response. Changes in the composition and dysfunction of the gut flora have a
meaningful impact on the occurrence and progression of AS [34]. The main probiotic bacte-
ria in the intestinal flora include 23 genera of lactic acid bacteria, such as Lactobacillus spp.,
Streptococcus spp., and Bifidobacterium spp., as well as Faecalibacterium prausnitzii and Akker-
mansia muciniphila. Among them, Akkermansia muciniphila has important roles in immune
modulation and anti-tumor, obesity suppression, and inflammation relief, and it is a new
type of probiotic [35]. Intestinal flora can influence the development of atherosclerotic
plaques by regulating cholesterol and lipid metabolism in the host. Numerous studies
have shown that obesity and related metabolic diseases are associated with gut microbial
disorders [36]. The gut flora of obese individuals can efficiently obtain energy from food
and store it as fat, which tends to increase blood lipids, and long-term hyperlipidemia is
very prone to the formation of AS. The digestive and catabolic function of gut microor-
ganisms on high-fat foods tends to affect lipid metabolism, which further affects blood
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lipid levels and the occurrence of AS. EGCG plays a role in regulating the activity of gut
microorganisms, which can reduce energy intake, lower body weight, regulate blood lipid
levels, improve liver tissue damage and gut flora disorders, and have a good effect on
weight loss [37]. EGCG has a good effect on regulating the cholesterol metabolite bile
acids (BAs), which reduce the reabsorption of BAs, and this effect is mediated by intestinal
microbes. It was shown that 0.32% EGCG increased the levels of cholesterol 7α-carboxylase
(5.6-fold increase), HMG-CoA reductase, LDL receptor mRNA expression levels, decreased
BAs reabsorption, and total fecal BAs excretion increased 1.5 fold, resulting in lower levels
of intestinal BAs [38]. Sheng et al. [39] analyzed the impacts of EGCG on obesity in terms
of bile acid signaling and adjusting intestinal flora. The results suggested that EGCG
increased Verrucomicrobiaceae, promoted the proliferation of Akkermansia muciniphila in the
gut, and raised the levels of farnesoid X receptor (FXR) and Takeda G protein receptor
(TGR)-5 agonists and their regulatory signaling in the liver, affecting the metabolism of fat
and glucose in vivo. It is evident that catechins decrease the levels of TG and TC in vivo
by regulating the species and abundance of the associated flora to achieve hypolipidemic
effects, thereby preventing the development of AS diseases. In addition, intestinal dysbiosis
may lead to an inflammatory response that exacerbates the development of atherosclerotic
plaques or leads to plaque rupture. It has been shown that GTPs (containing EGC, EGCG,
etc.) lower the abundance of Bacteroidetes and Fusobacteria and add to the abundance of
Firmicutes, decrease the expression of the inflammatory factors IL-6, TNF-α, and IL-1β,
and restrain the induction level of the inflammatory signaling pathway toll-like receptor
4 (TLR4) [40]. Metabolites of gut flora can also exert positive (e.g., short-chain fatty acids
(SCFAs)) or negative (e.g., trimethylamine oxide (TMAO)) effects on the development of
atherosclerosis. Faecalibacterium prausnitzii of Firmicutes can generate the anti-inflammatory
metabolites SCFAs, which are one of the key bacteria for the therapy of inflammation. Oral
EGCG can also realize the same impact by enriching SCFA-producing bacteria [41].

3.3. Improvement of Vascular Endothelial Cells Functions

Vascular endothelial cells (ECs) are momentous for healthy cardiovascular home-
ostasis, and they also have a significant role in the pathological mechanisms of AS [42].
Apoptosis of vascular ECs is an early event in the occurrence of AS and promotes AS lesion
formation, plaque erosion, and acute coronary syndromes [43]. Multiple risk factors for
endothelial cell injury and pre-AS formation can induce endothelial cell apoptosis. EGCG
can delay the progression of AS by restraining EC apoptosis, which is connected with the
inhibition of activation and aberrant expression of the caspase family, which are key com-
ponents in the apoptotic process, and whose activation and aberrant expression can lead to
apoptosis. The B-cell lymphoma-2 (BCL-2) family of genes is associated with apoptosis,
and they can inhibit it by regulating the release of cytochrome C and other proteins in
mitochondria apoptosis. But, its BCL2-associated X (BAX) gene component can promote
apoptosis [44]. Ox-LDL can lead to the overexpression of BAX genes, reduce the expression
of BCL-2 and BCL-XL, and promote apoptosis [45]. EGCG can effectively restrain ox-LDL-
mediated apoptosis in vascular ECs. In the H2O2-induced apoptosis model of rat smooth
muscle cells, EGCG (10–150 µMol·L−1) significantly decreased the expression of the BAX
gene, raised the expression of the BCL-2 gene, and declined the H2O2-induced expression
of caspase-3, caspase-8, and caspase-9 [46]. Meng [47] et al. investigated the effect of EGCG
on the hydrogen peroxide (H2O2)-induced endothelial injury model. Human vascular
endothelial cells (HUVECs) were pretreated with different concentrations of EGCG and
then exposed to H2O2. Cell viability was determined by an MTS assay. Apoptosis was
detected by TUNEL staining, and apoptosis-related proteins were detected by Western
blot. The results showed that EGCG pretreatment markedly increased the survival of HU-
VEC in H2O2-induced cell death. After exposure to H2O2, EGCG up-regulated the levels
of Atg5, Atg7, LC3 II/I, and Atg5-Atg12 complexes in HUVEC, while down-regulating
apoptosis-related proteins to achieve the efficacy of inhibiting apoptosis.
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Vascular endothelial dysfunction strongly induces cardiovascular disease, which is
common in AS. Nitric oxide (NO), as a momentous endothelium-derived diastolic factor, is
associated with many key factors in the AS process, such as LDL oxidation, endothelial
leukocyte adhesion, and VSMC proliferation, and plays a role in cardiocerebrovascular pro-
tection and anti-AS function. However, in pathological states, endothelial-type nitric oxide
synthase (eNOS) disturbances lead to aberrant NO production, which impairs endothelial
functions and triggers AS [48]. Regulating the balance of NO and endothelin helps to main-
tain normal vascular function and reduce the incidence of AS. EGCG can lead to an increase
in endothelial-type nitric oxide synthase (eNOS) activity, an increase in NO production,
and a diminution in blood pressure. Increasing the release of NO delays the hemodynamic
changes in the endothelium in vivo, thus avoiding the strong stress response induced by
the endothelium [49]. It has been shown that EGCG increases the bioavailability of normal
NO by decreasing the levels of the endogenous NO inhibitor, asymmetric dimethylarginine.
In addition, EGCG inhibits enhanced oxidative stress through the Nrf2/HO-1 pathway.
These effects suggest that it may block the production of ROS, inhibit inflammation, and
diminish EC apoptosis in the early stages of AS [50]. EGCG protects vascular endothelial
cells from oxidative stress-induced injury by targeting the autophagy-dependent PI3K-
AKT-mTOR pathway [47]. Xuan et al. [51] found that EGCG (10 mg·L−1) could protect ECs
by activating the PI3K/Akt signaling pathway, increasing the NO level of vascular ECs
and decreasing the level of caspase-3 in the cells. Other studies have shown that EGCG
improves endothelial function by increasing eNOS production in vascular ECs through
the PI3K/Akt signaling pathway, increasing the amount of NO in the cells and improving
insulin sensitivity. Liu et al. [52] found that homocysteine (Hcy) inhibited the production
of eNOS in HUVECs, whereas EGCG (3–30 µMol·L−1) could significantly ameliorate this
phenomenon and inhibit intracellular caspase-3 and caspase-9 expression. In conclusion,
EGCG can improve the function of vascular endothelial cells and further inhibit the oc-
currence of atherosclerosis by inhibiting EC apoptosis and up-regulating the level of NO
in ECs.

3.4. Inhibition of Inflammatory Factors Expression

Chronic inflammation is one of the most significant causes of atherosclerosis [53].
A large number of experimental studies and clinical observations have confirmed that
damaged endothelial cells secrete a variety of inflammatory factors as well as growth factors,
which induce monocyte macrophages to adhere to ECs through the immunoglobulin
superfamily and integrin family and then enter under the ECs, which is the causative factor
of AS. Many lipids can act as signaling molecules that bind to receptors on ECs and activate
the gene expression of many pro-inflammatory cytokines, such as monocyte chemotactic
protein-l (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1), and endothelial cell leukocyte adhesion molecule (E-selectin), which
play a significant role in the inflammatory process [54]. Activated macrophages secrete pro-
inflammatory cytokines, such as TNF-α, IL-1β, IL-6, IL-4, and CRP, which are involved in
the formation of inflammation and further contribute to the development of AS. One of the
main mechanisms of anti-inflammation is the down-regulation of pro-inflammatory factors,
which reduces the degree of inflammation or inhibits the development of inflammation.
Studies have shown that inflammatory factors, such as IL-4 and IL-6, can be significantly
suppressed by the oral administration of catechins in a rat model of atherosclerosis [55].
MCP-1 is a potent chemotactic protein for monocytes, basophils, and memory T cells and is
also a potent chemotactic protein for endothelial leukocytes. Cells and elevated serum levels
of MCP-1 are some of the inflammatory hallmarks leading to coronary heart illness. Wang
et al. [56] showed that EGCG (10, 25, and 50 µMol·L−1) inhibited TNF-α-induced MCP-1
production in HUVEC cells, and the inhibitory effect showed a dose-dependent relationship.
CRP, as an inflammatory cytokine, is directly involved in atherosclerotic plaque formation.
Ramesh et al. [57] found that feeding rats an AS-causing diet and EGCG (100 mg/kg) for
45 days significantly inhibited CRP expression and decreased the erythrocyte sedimentation
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rate, total leukocyte count, and other inflammatory hematological parameters, suggesting
that EGCG can inhibit AS formation by suppressing inflammation. VCAM-1 and ICAM-1
play a critical role in the adhesion of leukocytes to the surface of vascular endothelial
cells and their entry beneath the endothelium, as well as in the proliferation of smooth
muscle cells. Chae et al. [58] found that a 10–50 µMol·L−1 EGCG treatment significantly
inhibited Angiotensin II (Ang II)-induced VCAM-1 and ICAM-1-related mRNA synthesis
in HUVECs, as well as reduced VCAM-1 and ICAM-1 molecules in HUVECs membranes.
Ludwig et al. [59] found that EGCG (10~100 µMol·L−1) dose-dependently inhibited VCAM-
1 expression in HUVEC cells induced by IL-1β and inhibited TNF-α-induced adhesion of
THP-1 monocytes to vascular ECs.

3.5. Regulation of Inflammatory Signaling Pathways

EGCG can affect many intracellular inflammatory signaling pathways associated
with AS (Figure 4). Current research has shown that EGCG mainly acts on the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, mitogen-
activated protein kinase (MAPK) signaling pathway, notch signaling pathway, and so
on. Research has shown that the NF-κB signaling pathway is a central link and common
pathway that regulates the transcription of a variety of inflammatory factors, and NF-κB
plays a key role in inflammatory diseases, as well as in inflammation-related disorders
such as AS [60]. EGCG can partially inhibit the NF-κB signaling pathway, markedly down-
regulate the expression of inflammatory factors, including adhesion molecules, cytokines,
and MMPs, and exert an anti-AS effect. Wang et al. [56] found that EGCG blocked the
67 kDa laminin receptor (67LR)-mediated NF-κB signaling pathway in HUVEC cells,
thereby inhibiting the production of the inflammatory factor MCP-1 in HUVEC cells. The
MAPK signaling pathway plays a significant role in the regulation of cell proliferation,
differentiation, transformation, and apoptosis, and the three kinases in the pathway play
key roles in endothelial damage and protection These include extracellular signal-regulated
kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated
protein kinases (p38 MAPK). ERK can be activated by the phosphorylation of the upstream
molecule MEK to further regulate cell differentiation and proliferation. P38 MAPK and JNK
kinase activation, on the other hand, originate from the stress response and mediate cellular
stress and apoptosis, with a mutual activation network formed between p38 MAPK and NF-
κB regulating the gene expression of various inflammatory mediators and promoting the
development of AS. EGCG interacts with 67LR and inhibits the activation of the ERK1/2,
p38, and JNK signaling pathways. Yang et al. [61] found that, in an AngII-induced HUVEC
cell model, EGCG (5–25 µMol·L−1) restrained the Ang II-induced activation of p38 MAPK
and JNK1/2 kinases and reduced AngII-induced endothelial dysfunction. Chae et al. [58]
found that EGCG (10–50 µMol·L−1) inhibited the phosphorylation of p38 MAPK and ERK
in the MAPK pathway by inhibiting the p38 MAPK signaling pathway against HUVEC
inflammation and adhesion.

Toll-like receptor 4 (TLR4) is a member of the TLR family, which participates in the
inflammatory response of the body and is associated with the expression of inflammatory
factors. TLR4 is expressed throughout the AS process, mainly in diseased macrophages and
endothelial cells, and is involved in all stages of AS [62]. Studies have shown that, when
TLR receptors are activated, they can express and secrete a variety of pro-inflammatory
cytokines, such as TNF-α, IL-6, etc., and activate NF-κB through signaling. Therefore,
inhibiting the TLR pathway can also prevent the activation of the NF-κB pathway and
play an anti-inflammatory role. Hong et al. [63] found that 1 µMol·L−1 EGCG decreased
the expression of TLR4 in macrophages. The downstream signaling pathway activation
induced by EGCG on LPS was significantly attenuated by 67LR inhibitor or RNAi-mediated
67LR silencing. EGCG induced a significant up-regulation of Toll interaction protein (Tollip),
a negative regulator of TLR signaling, which suggests an anti-inflammatory effect of EGCG.
The notch signaling pathway plays an important role in the inflammatory response in AS,
and it has a cross action with the PI3K/Akt and NF-κB signaling pathways, which can



Nutrients 2024, 16, 2074 9 of 16

mediate cellular communication and regulate the immune response in AS [64]. Studies have
shown that the number of notch ligands and receptors is increased in damaged myocardium
and blood vessels, and EGCG can directly bind to notch receptors and inhibit the activation
of the notch signaling pathway [65]. Yin et al. [66] demonstrated that in high-fat diet (HFD)-
induced atherosclerosis, EGCG restrained the high-fat diet-induced inflammatory response
in apolipoprotein E (ApoE) knockout (ApoEKO) mice via the jagged-1/notch pathway.
Xie et al. [67] investigated the effect of EGCG on uric acid-induced HUVEC inflammation
and found that EGCG (20 µMol·L−1) effectively inhibited the intracellular notch signaling
pathway; markedly inhibited the secretion of IL-6, MCP-1, and TNF-α; and reduced ROS
generation, which further inhibited inflammation. Huang et al. [68] evidenced that EGCG
could directly bind to mouse notch-1; found that EGCG inhibited macrophage aggregation,
inflammatory responses, and notch signaling in mice; and found that EGCG in mouse
macrophages inhibited LPS-induced inflammatory responses, including over-activated
notch signaling.
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3.6. Inhibition of Matrix Metalloproteinase (MMP) Expression

Vascular smooth muscle cells (VSMCs) are the main cell type in all stages of AS plaques,
and the pathological proliferation of VSMCs is a significant factor in the occurrence of AS.
Thus, smooth muscle cell injury plays a critical role in AS [69]. Numerous studies have
shown that some growth factors, such as PDGF, VEGF, and Ang II, can promote the growth
of VSMCs and play a significant role in the course of AS. Matrix metalloproteinase (MMP),
a superfamily of proteases with extracellular matrix-degrading activity, can increase the
instability of AS plaques and further accelerate the development of AS [70]. During AS,
inflammatory cell infiltration, VSMC migration, and proliferation are often accompanied by
elevated matrix metalloproteinase activity. MMP-2 and MMP-9 are two major members of
the MMP family [71]. Matrix metalloproteinase-2 (MMP-2), also known as gelatinase A, is
capable of degrading a variety of collagen, gelatin, and basement membrane components,
and plays a key role in the migration and proliferation of VSMCs. Matrix metalloproteinase-
9 (MMP-9), also known as gelatinase B, is one of the major enzymes that degrades the
extracellular matrix. MMP-9 is expressed mainly in smooth muscle cells, vascular en-
dothelial cells, and macrophages at the base of plaques, AS plaques, and atherosclerotic
injuries. In addition, extracellular MMP-inducible factor (EMMPRIN) is a transmembrane
glycoprotein belonging to the immunoglobulin superfamily, which is widely expressed in
a variety of cells in the human body [72]. EMMPRIN is closely related to the development
of unstable plaques and acute coronary syndromes, and the expression of EMMPRIN in
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macrophages and VSMCs in plaques of patients with acute coronary syndromes is signifi-
cantly increased [73]. Studies have shown that EGCG can prevent the migration of VSMCs
by repressing the expression of MMP, and EGCG therapy markedly reduces the expression
levels of MMP-2, MMP-9, and EMMPRIN [74]. Li et al. [75] investigated the effect of EGCG
at a concentration of 1µM on lipopolysaccharide (LPS)-induced MMP-9 and MCP-1 expres-
sion in macrophages and its potential mechanism of action and showed that EGCG (1 µM)
inhibited the TLR4/MAPK/NF-κB signaling pathway, reducing plaque instability and
inhibiting the expression of MMP-9 and MCP-1, further stabilizing atherosclerotic plaques.
Kim et al. [76] found that epigallocatechin gallate resulted in p21/WAF1-mediated cell cycle
G(1) phase arrest and inhibited TNF-α-induced matrix metalloproteinase-9 expression in
vascular smooth muscle cells. Bolduc et al. [77] used drinking-water-containing catechins
(30 mg·kg−1-d−1) to feed spontaneous atherosclerotic (ATX) LDLr-/-: hApoB+/+ mice
for 3 months and found that the catechins inhibited the effects of ROS in ATX mice. ROS
induced MMP-9 activation and VSMC proliferation in ATX mice. Cheng et al. found that
EGCG (1–10 µMol·L−1) inhibited the activation of MMP-2 in human aortic vascular smooth
muscle cells and up-regulated the expression of the tissue inhibitory factor of MMP-2,
TIMP-2 protein [78].

3.7. Inhibition of Platelet Aggregation

Platelets are the smallest blood cells in the blood and are the main component of the
body for normal hemostatic function, and they are also essential for the activation of the
coagulation system [79]. However, excessive platelet activation underlies the pathogenesis
of many cardiocerebrovascular diseases and is a trigger for inflammation and atheroscle-
rosis, so inhibition of platelet activation is very critical in the prevention and therapy of
AS [80]. Platelet activation includes three processes: platelet adhesion, aggregation, and
release. Among them, platelet aggregation is the key to hemostasis and thrombosis, and
nowadays, many drugs that inhibit platelet aggregation have been used to treat thrombotic
diseases [81]. Platelet glycoprotein GP IIb/IIIa binds to fibrinogen in response to certain
stimulatory factors (e.g., thrombin, epinephrine, and thromboxane A2) and promotes
platelet aggregation, leading to thrombosis and fibrin deposition. Antiplatelet therapy can
reduce local thrombosis and inhibit vascular inflammation, thereby stabilizing vulnera-
ble AS plaques. Studies have demonstrated that EGCG has antiplatelet aggregation and
antithrombotic functions [82]. Lill et al. [83] investigated the effects of platelets with six
catechins, including C, EC, EGC, CG, ECG, and EGCG, and found that only EGCG inhibited
platelet aggregation induced by thrombin in vitro, while the other five catechins failed
to restrain platelet aggregation. Ok et al. [84] found that ingestion of EGCG significantly
restrained the increase of platelet thromboxane A2 in rats, which led to the suppression
of collagen-induced platelet aggregation and modulation of inflammation. Most cells in
the body, including platelets, metabolize arachidonic acid (AA), which in vivo produces
the endoperoxides of prostaglandins PGG2 and PGH2 in response to platelet COX-1, the
latter of which is capable of forming thromboxane A2 in response to thromboxane syn-
thase. Studies have shown that EGCG inhibits cyclooxygenase-1 (COX-1) activity more
strongly than aspirin, and in platelet aggregation experiments in collagen-induced rats,
EGCG inhibited the production of thromboxane A2 by decreasing the activity of COX-1
and exhibited antiplatelet agglutination [85]. EGCG has been reported to inhibit platelet
activity by several mechanisms, including the inhibition of collagen-mediated phospho-
lipase (PL) Cgamma2, blockade of protein tyrosine phosphorylation, and enhancement
of Ca2(+)-ATPase activity, thereby reducing platelet aggregation and attenuating thrombo-
sis [86]. In addition, Joo et al. [87] activated and induced platelet aggregation by different
platelet agonists, which increased platelet shear stress and caused platelet adhesion and
simultaneously researched the antiplatelet effects of EGCG and antiplatelet drugs in vitro,
and found that EGCG dose-dependently reduced platelet shear stress and inhibited platelet
aggregation and adhesion.
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4. Summary of EGCG Anti-AS Mechanisms and Shortcomings

EGCG can protect cardiocerebrovascular function by resisting atherosclerosis in sev-
eral ways (Figure 5). Figure 5 clearly summarizes the mechanisms of action of EGCG
against AS. These mechanisms include the reduction of blood lipid levels and LDL oxi-
dation, regulation of intestinal flora disorders, improvement of vascular endothelial cells
functions, reduction of inflammatory factors expression, regulation of signaling pathways,
and suppression of MMP expression and platelet aggregation, suggesting that EGCG can
resist atherosclerosis through multiple pathways, which is of great significance for the
protection against cardiocerebrovascular diseases. Nowadays, many in vitro studies have
shown that EGCG plays a significant role in cardiocerebrovascular diseases, especially in
anti-atherosclerosis. However, as far as the current data are concerned, there are still a
lot of issues that need to be addressed. For example, few products have been developed
with EGCG as an active ingredient or as a food functional factor, as well as whether the
ameliorative function of EGCG in AS is still controversial in populations of different ages
and genders. In terms of toxicity, EGCG is safe as a natural product, having low toxicity,
low side effects, and good water solubility [88]. However, the application of EGCG in the
therapy of diseases has many problems. First, the chemical structure of EGCG is unstable
and easily affected by conditions such as high temperature, pH, light, and metal ions [89].
Second, the bioavailability of EGCG in the body is low, making it difficult to maximize the
efficacy of the drug, and the bioavailability of EGCG varies between species [90]. Third, the
absorption rate of EGCG is easily affected by other foods or drugs [91]. Fourth, EGCG has
a relatively short duration of action in the body; therefore, it cannot perform its function
well [92]. However, in general, the study of the mechanism of EGCG anti-AS has positive
research significance and value. Studies have shown that nanocarriers have proven to be
excellent materials for encapsulating phenolic compounds and enhancing their bioavail-
ability, including lipid nanoparticles, protein nanoparticles, micelles, emulsions, and metal
nanoparticles [93]. By loading phenolic compounds into nanoparticles, not only can their
bioavailability be improved, but also targeted release and protection of the active substance
can be achieved [94]. Despite the fact that nanoparticles are almost a perfect carrier, there is
still a need to consider and minimize their toxicity and side effects. In order to better use cat-
echins for the prevention of cardiocerebrovascular diseases, it is necessary to further study
the mechanisms of EGCG anti-AS and to increase the research on chemical modification of
EGCG or changing its administration mode, so as to make it function optimally.
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5. Conclusions

AS is a lipid-associated chronic inflammatory immune illness in which a large number
of inflammatory immune cells accumulate in atheromatous plaques, thereby causing
vasculopathy, microcirculatory disorders, and changes in blood rheology, which ultimately
leading to cardiovascular and cerebral vascular lesions, severely affecting the health and
quality of life of human beings. EGCG, as an active ingredient in natural plants, is of great
research value. A growing number of reports suggest that EGCG can prevent and treat the
development of AS, mainly due to its potential antioxidant and anti-inflammatory effects.
However, caution needs to be exercised in its clinical use, and much in-depth research is
required to fully understand its molecular role in various cells. In addition, the synergistic
effect of EGCG with other drugs can also exert a certain anti-disease function, and in future
research, it should also be further investigated whether its combined effect with other drugs
can reduce the side effects and so on. At present, EGCG has been generally used in food,
daily necessities, and other fields, and there are also reports on its antibacterial, deodorant,
antiradiation, and antimutagenic properties, but its mechanism of action needs to be further
studied. With the in-depth study of the pharmacological mechanisms of EGCG in vivo and
in vitro, more and more functions of EGCG have been explored, and the application field
can be further expanded, which has considerable social benefits for the development and
therapy of a variety of illnesses.
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