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Abstract: This study aimed to investigate a synergistic anti-inflammatory effect of a citrus flavonoid
nobiletin and docosahexaenoic acid (DHA), one of n-3 long-chain polyunsaturated fatty acids, in
combination. Simultaneous treatment with nobiletin and DHA synergistically inhibited nitric oxide
production (combination index < 0.9) by mouse macrophage-like RAW 264.7 cells stimulated with
lipopolysaccharide (LPS) without cytotoxicity. On the other hand, the inhibitory effect of nobiletin and
DHA in combination on proinflammatory cytokine production was not synergistic. Neither nobiletin
nor DHA affected the phagocytotic activity of RAW 264.7 cells stimulated with LPS. Immunoblot
analysis revealed that the inhibition potency of DHA on the phosphorylation of ERK and p38 and
nuclear translocation of NF-κB is markedly enhanced by simultaneously treating with nobiletin,
which may lead to the synergistic anti-inflammatory effect. Overall, our findings show the potential
of the synergistic anti-inflammatory effect of nobiletin and DHA in combination.
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1. Introduction

Inflammation is one of the defensive immune reactions, which occurs upon injury
in the body to eliminate pathogens and damaged cells and to regenerate injured tissues.
Macrophages are effector immune cells involved in the promotion and resolution of inflam-
mation [1]. Normally, although the immune system is arranged to be protective, excessive
activation of macrophages may lead to severe inflammatory diseases by enormously pro-
ducing proinflammatory cytokines and chemokines [2]. Generally, inflammation is treated
by medications. In recent years, alleviating or preventing inflammation with a daily diet
has attracted much attention. Several studies have shown that various food ingredients
possess an anti-inflammatory effect [3–6].

Synergy is observed when the combined effect of substances is greater than would have
been expected from individual contributions, and synergistic effects are vitally important
in phytomedicines [7]. Exploiting the synergic effect of food components is also attractive.
Synergistic anti-inflammatory effects of plant-derived food components have recently been
investigated in detail [8]. We have explored the synergistic anti-inflammatory effect of
combined food ingredients because the synergistic action of different food ingredients in
combination can be expected to increase the efficacy of anti-inflammatory activities with
low doses and reduce side effects. We then discovered a synergistic anti-inflammatory
effect of nobiletin (Figure 1) and docosahexaenoic acid or DHA (Figure 1) in combination.
Nobiletin, a polymethoxyflavone particularly abundant in citrus peel, has been reported to
have an anti-inflammatory effect [9,10]. The synergistic anti-inflammatory effect of nobiletin
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combined with sulforaphane, an aliphatic isothiocyanate found in vegetables of the family
Brassicaceae, has been reported [11]. DHA, an n-3 polyunsaturated fatty acid found in oily
fish, has also been reported to possess an anti-inflammatory effect [12,13]. DHA has been
reported to exert a synergistic anti-inflammatory effect in combination with curcumin, an
ingredient of turmeric [14], and with celecoxib, a nonsteroidal anti-inflammatory drug [15].
However, the synergistic anti-inflammatory effect of nobiletin combined with DHA remains
unclear. In this paper, we clarified the synergistic anti-inflammatory effect of nobiletin and
DHA in combination and elucidated the possible mechanism of the synergistic action.
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Figure 1. Chemical structures of nobiletin and docosahexaenoic acid.

2. Materials and Methods
2.1. Reagents

Nobiletin and DHA were obtained from Fujifilm Wako Pure Chemical (Osaka, Japan)
and Cayman Chemical (Ann Arbor, MI, USA), respectively. Nobiletin was dissolved
in dimethyl sulfoxide, while DHA was dissolved in ethanol. Fetal bovine serum (FBS),
lipopolysaccharide (LPS) from Escherichia coli 026/B6, streptomycin, penicillin, and Dul-
becco’s modified Eagle’s medium (DMEM) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Horseradish peroxidase (HRP)-labeled anti-rabbit IgG antibody and rabbit mon-
oclonal antibodies against p38 mitogen-activated protein (MAP) kinase, phosphorylated
p38 MAP kinase (p-p38), c-Jun N-terminal kinases (JNK), phosphorylated JNK (p-JNK),
extracellular signal-regulated kinases (ERK) 1/2, phosphorylated ERK1/2 (p-ERK1/2),
lamin B1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and nuclear factor kappa
B (NF-κB) p65 were obtained from Cell Signaling Technology (Danvers, MA, USA). All
other chemicals were obtained from Nacalai Tesque (Kyoto, Japan) or Fujifilm Wako Pure
Chemical, unless otherwise noted.

2.2. Cell Culture

Mouse macrophage-like cell line RAW 264.7 cells were obtained from the European
Collection of Authenticated Cell Cultures (London, UK) and cultured in DMEM supple-
mented with 10% FBS, 100 µg/mL of streptomycin, and 100 U/mL of penicillin at 37 ◦C
under humidified 5% CO2 in air.

2.3. Griess Assay

RAW 264.7 cells were seeded at 2.0 × 104 cells/well in a 96-well culture plate and
precultured for 18 h. After removing the culture medium, fresh DMEM containing samples
and LPS (final concentration: 10 µg/mL) was added to each well of the plate, and the cells
were cultured for 24 h. The culture medium was then used for measuring the concentration
of nitrite, an oxidized form of nitric oxide, using the Griess Reagent System (Madison, WI,
Promega) according to the manufacturer’s protocol.

2.4. Combination Index (CI) Calculation

The effect of nobiletin and DHA in combination on nitric oxide production by RAW
264.7 cells stimulated with LPS was analyzed by the CI value to define whether the combi-
nation provided a synergistic, additive, or antagonistic effect. The CI value was calculated
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according to previous studies [16,17] based on the Chou–Talalay method [18,19]. The
calculation was conducted using the following formula:

CI =
IC50Nobiletin–comb

IC50Nobiletin

+
IC50DHA–comb

IC50DHA

(1)

A CI of <0.9 was considered synergistic, a CI of ≥0.9 and ≤1.1 was considered additive,
and a CI of >1.1 was considered antagonistic [20–22]. Median inhibitory concentration
(IC50) values of individual and combined compounds were determined based on the
dose–response curve.

2.5. WST-8 Assay

Cytotoxicity of samples to RAW 264.7 cells was evaluated by the WST-8 assay using
Cell Count Reagent (Nacalai Tesque). RAW 264.7 cells were seeded at 2.0 × 104 cells/well
into a 96-well culture plate and precultured for 18 h. After removing the culture medium,
fresh DMEM containing samples and LPS (final concentration: 1 µg/mL) was added to
each well of the plate, and the cells were cultured for 6 h. After removing the culture
medium, fresh DMEM containing 10% Cell Count Reagent was added. The absorbance was
then measured at 450 nm using a microplate reader (iMark, Bio-Rad Laboratories, Hercules,
CA, USA).

2.6. Phagocytosis Assay

A phagocytosis assay was performed as previously reported [23]. RAW 264.7 cells
were seeded at 6.0 × 105 cells/well in a 6-well culture plate and precultured for 18 h. After
removing the culture medium, fresh DMEM containing 13 µM nobiletin and/or 20 µM
DHA was added to each well of the plate, and the cells were stimulated with 1 µg/mL of
and LPS for 15 min. After washing the cells with phosphate-buffered saline (PBS, pH 7.4),
fresh DMEM containing 20 mg/mL of Zymosan A (Saccharomyces cerevisiae) labeled with
Texas Red was added, and the cells were incubated for 1 h in the dark. After removing
the culture medium, the cells were washed with PBS and collected. After centrifugation
at 350× g for 5 min, the collected cells were suspended in 1 mL of PBS containing 2%
FBS, and the percentage of Texas Red-positive cells was measured using a flow cytometer
(FACSCalibur, BD Biosciences, San Jose, CA, USA).

2.7. Cytokine Measurement

RAW 264.7 cells were seeded at 2.0 × 104 cells/well in a 96-well culture plate and
precultured for 18 h. After removing the culture medium, fresh DMEM containing 13 µM
nobiletin and/or 20 µM DHA and LPS (final concentration: 1 µg/mL) was added to each
well of the plate, and the cells were cultured for 24 h. The culture medium was collected,
and proinflammatory cytokine concentrations were determined by enzyme-linked im-
munosorbent assay (ELISA) kits for mouse interleukin (IL)-1β and IL-6 (BioLegend, San
Diego, CA, USA) and for mouse tumor necrosis factor α (TNF-α) (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol.

2.8. Real-Time RT-PCR

RAW 264.7 cells were seeded at 2.0 × 105 cells/well in a 24-well culture plate and
precultured for 18 h. After removing the culture medium, fresh DMEM containing
13 µM nobiletin and/or 20 µM DHA was added to each well of the plate, and the cells
were stimulated with 1 µg/mL of LPS for 3 h. Total RNA was extracted from the cells
using Sepasol-RNA I Super G (Nacalai Tesque). The RNA was used for cDNA syn-
thesis using M-MLV reverse transcriptase (Nippon Gene, Tokyo, Japan) and an oligo
dT20 primer (Toyobo, Osaka, Japan). Real-time PCR was conducted using Thunder-
bird SYBR qPCR Mix (Toyobo), a forward primer, and a reverse primer by repeating
40 cycles of thermal cycling conditions of 95 ◦C for 3 s and 60 ◦C for 30 s after 95 ◦C
for 20 s. PCR products were measured using the StepOnePlus Real-Time PCR System
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(Applied Biosystems, Foster City, CA, USA), and analysis was performed with StepOne
Software v2.1 (Applied Biosystems). Relative gene expression was determined by the
comparative Ct method using β-actin as a reference gene. The nucleotide sequences of
specific primers used are as follows: mouse nitric oxide synthase 2 (NOS2); sense, 5′-
CCAAGGCCTCACCTACTTCC-3′, and antisense, 5′-CTCTGAGGGCTGACACAAGG-3′;
mouse β-actin: sense, 5′-CATCCGTAAAGACCTCTATGCCAAC-3′, and antisense, 5′-
ATGGAGCCACCGATCCACA-3′.

2.9. Immunostaining

RAW 264.7 cells were immunostained to assess NOS2 expression by flow cytometry ac-
cording to the manufacturer’s protocol. RAW 264.7 cells were seeded at 6.0 × 105 cells/well
in a 6-well culture plate and precultured for 18 h. After removing the culture medium,
fresh DMEM containing 13 µM nobiletin and/or 20 µM DHA and LPS (final concentration:
1 µg/mL) was added to each well of the plate, and the cells were cultured for 24 h. After
removing the culture medium, the cells were washed with PBS and collected. After cen-
trifugation at 350× g for 5 min, the cells were permeabilized with pre-chilled methanol
for 15 min. After washing the cells with PBS containing 2% FBS, immunostaining was
performed with an anti-NOS2 antibody (1:1000 dilution) labeled with phycoerythrin (PE)
(Cell Signaling Technology) at room temperature for 20 min under a dark condition. After
washing, the cells were suspended in 0.5 mL of PBS containing 2% FBS, and the percentage
of PE-positive cells was measured using a FACSCalibur flow cytometer (BD Biosciences) to
assess NOS2 expression in RAW 264.7 cells.

2.10. Immunoblot Analysis

RAW 264.7 cells were seeded at 6.0 × 105 cells/well in a 6-well culture plate and
precultured for 18 h. After removing the culture medium, fresh DMEM containing 13 µM
nobiletin and/or 20 µM DHA was added to each well of the plate, and the cells were
stimulated with 1 µg/mL of LPS for 15 min. Nuclear and cytosolic proteins were prepared
using the CelLytic NuCLEAR Extraction Kit (Sigma-Aldrich) according to the manufac-
turer’s protocol. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to polyvinylidene difluoride membranes (Hybond-P; GE
Healthcare, Buckinghamshire, UK). The membranes were then blocked with Blocking
One (Nacalai Tesque) or Blocking One-P (Nacalai Tesque) at room temperature for 1 h
and subsequently reacted with each primary antibody overnight at 4 ◦C. Antibodies were
diluted according to the manufacturer’s recommended dilution ratio. After washing, the
membranes were reacted with a secondary antibody labeled with HRP at room temperature
for 1 h. After washing, the membranes were developed with ImmnoStar LD (Fujifilm Wako
Pure Chemical), and chemiluminescence was detected using a ChemiDoc XRS Plus appara-
tus (Bio-Rad Laboratories) with Image Lab software version 2.0.1 (Bio-Rad Laboratories).

2.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism version 7.05 (GraphPad
Software, Boston, MA, USA). Statistical significance was determined via one-way analysis
of variance with Dunnett’s test or Tukey’s test as indicated. The significance level used was
p < 0.05.

3. Results and Discussion
3.1. Synergistic Inhibitory Effect of Nobiletin and DHA in Combination on Nitric Oxide
Production by LPS-Stimulated RAW 264.7 Cells

We screened combinations of various food ingredients using RAW 264.7 cells for
a synergistic anti-inflammatory effect. The cells were stimulated with LPS, a potent in-
ducer, to secret proinflammatory mediators, such as IL-6, and reactive oxygen species,
such as nitric oxide, from macrophages. At first, we evaluated the effect of combinations
of various food-derived molecules on nitric oxide production by a Griess assay. Griess



Nutrients 2024, 16, 2080 5 of 12

reagent reacts with nitrite, which was used as a measure of nitric oxide production dur-
ing the assay. As a result of screening, we found a synergistic inhibitory effect of the
simultaneous treatment with nobiletin and DHA on nitric oxide production. Nitric oxide
is a signaling molecule made from L-arginine by NOS present in various tissues. Nitric
oxide produced by macrophages plays a crucial role in the onset of inflammation; nitric
oxide produced in excess is a proinflammatory mediator. First, we determined the IC50
values of each compound alone for nitric oxide production by a Griess assay. The result
showed that the IC50 value of nobiletin alone was 19 µM, while that of DHA alone was
45 µM (Figure 2A). This tendency was observed in previous studies showing the inhibitory
potency of nobiletin [24,25] and DHA [26,27] on nitric oxide production.
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Figure 2. Effect of nobiletin and docosahexaenoic acid (DHA) on nitric oxide production by
lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. (A) Isobologram showing the type of in-
teraction produced by nobiletin and DHA. Closed circles indicate the IC50 values of nobiletin or DHA
alone. Crosses indicate the IC50 values of nobiletin or DHA in combination. (B) Relative nitric oxide
production by LPS-stimulated RAW 264.7 cells treated with nobiletin alone, DHA alone, and the com-
bination of nobiletin and DHA. Data are expressed as the mean ± SEM (n = 6). * p < 0.05, ** p < 0.01,
and *** p < 0.001 against the control (no treatment with nobiletin or DHA) by Dunnett’s test.

Next, we performed a Griess assay with various concentrations of DHA and nobiletin
in combination and determined IC50 values to assess whether the simultaneous action of
both compounds is a synergism (Figure 2B). When nobiletin concentration was fixed at
13 µM, the IC50 value was obtained with 7.3 µM DHA (CI = 0.81), as shown in Figure 2A. In
the same manner, the IC50 values were obtained with 19 and 17 µM DHA with the CI values
of 0.58 and 0.70 when nobiletin concentrations were fixed at 3.1 and 6.3 µM, respectively
(Figure 2A). On the other hand, the IC50 values were obtained with 14, 11, and 4.3 µM
nobiletin with the CI values of 0.85, 0.77, and 0.69 when DHA concentrations were fixed at 5,
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10, and 20 µM, respectively (Figure 2A). The result revealed that simultaneous treatment of
both nobiletin and DHA markedly inhibits NO production. Because all calculated CI values
were lower than 0.9, the simultaneous action of nobiletin and DHA on NO production was
defined as synergism.

The cytotoxicity of nobiletin and DHA to RAW 264.7 cells was assessed by a WST-8
assay. No reduction in cell viability was observed in any concentration range investigated
(Figure 3). We thus concluded that nobiletin and DHA in combination exhibit a synergistic
inhibitory effect on NO production without cytotoxicity.
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Data are expressed as the mean ± SEM (n = 6). N.S. indicates no statistical significance against the
control (no treatment with nobiletin or DHA) by Dunnett’s test.

3.2. Effect of Nobiletin and DHA in Combination on the Phagocytosis of LPS-Stimulated RAW
264.7 Cells

We assessed the effect of nobiletin and DHA on the phagocytotic activity of RAW
264.7 cells stimulated with LPS because phagocytosis is one of the key reactions of macrophages
for the onset of the innate immune response [28]. After phagocytosis, macrophages present
antigens and secret proinflammatory proteins in response to invading pathogens in the
body. Antigen presentation of phagocytosed pathogens as an antigen on the cell surface
activates the adaptive immune system. We evaluated the phagocytosis rate by measuring
the percentage of Texas Red-positive RAW 264.7 cells on a flow cytometer. As a result,
we found that nobiletin or DHA alone does not affect the phagocytotic capacity of RAW
264.7 cells (Figure 4). The effect of DHA on the phagocytotic activity of macrophages
is still controversial. A research group reported the reduced phagocytotic activity of rat
peritoneal macrophages by DHA treatment [29], whereas another group reported the
enhanced phagocytotic capacity of RAW 264.7 cells by DHA treatment [30]. Our result
was consistent with the data of Lokesh and Kinsella (1987), who reported that DHA does
not affect the phagocytotic activity of mouse peritoneal macrophages [31]. On the other
hand, the effect of nobiletin on the phagocytic capacity of macrophages remains unknown.
For the first time, we revealed that nobiletin does not affect the phagocytotic activity of
RAW 264.7 cells (Figure 4) despite its anti-inflammatory activity. We also assessed the
effect of nobiletin and DHA in combination on the phagocytosis of RAW 264.7 cells. The
data showed that the combination of nobiletin and DHA does not change the phagocytotic
activity (Figure 4).
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Figure 4. Effect of nobiletin and docosahexaenoic acid (DHA) on the phagocytotic capacity of
lipopolysaccharide-stimulated RAW 264.7 cells. Phagocytosis (%) means the percentage of phagocy-
tosed cells. Different letters above the bars indicate significant differences by Tukey’s test (p < 0.05).

3.3. Inhibitory Effect of Nobiletin and DHA in Combination on the Secretion of Proinflammatory
Cytokines from LPS-Stimulated RAW 264.7 Cells

LPS, which consists of lipids and carbohydrates present on the cell wall surface of
Gram-negative bacteria, is a macrophage activator and causes macrophages to secrete large
amounts of various proinflammatory cytokines, including IL-1β, IL-6, and TNF-α [32–34].
We assessed the effect of nobiletin and DHA on the secretion of proinflammatory cytokines
from RAW 264.7 cells stimulated with LPS by ELISAs. The anti-inflammatory activities of
nobiletin and DHA alone were confirmed, as shown in Figure 5. The data were consistent
with those in previous papers, which showed the inhibitory activities of nobiletin and DHA
on the production of proinflammatory cytokines [10,13]. We then assessed the effect of
nobiletin and DHA in combination. The result showed that the combination of nobiletin
and DHA enhanced the inhibitory effect of proinflammatory cytokine secretion; however,
the effect was not synergistic (Figure 5). We thus concluded that the combination of DHA
and nobiletin exerts a synergistic anti-inflammatory effect on NO production but not on
the proinflammatory cytokine secretion from RAW 264.7 cells stimulated with LPS.
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3.4. Effect of Nobiletin and DHA in Combination on NOS2 Expression in LPS-Stimulated RAW
264.7 Cells

Nitric oxide is synthesized by the enzyme NOS2, also commonly called iNOS, in
macrophages [35]. NOS2 expression is induced by an inflammatory stimulus such as LPS.
NOS2, once expressed in macrophages, can abundantly produce nitric oxide for the host
defense to kill the invading pathogens. Because the combination of nobiletin and DHA
synergistically inhibited nitric oxide production by RAW 264.7 cells stimulated with LPS
(Figure 2A), we evaluated the effect of nobiletin and DHA on the NOS2 transcription by
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real-time RT-PCR. The result showed that nobiletin downregulates the transcription of
Nos2 (Figure 6A), which was also observed in previous studies [25,36,37]. We also found
that DHA reduces the transcription of Nos2 (Figure 6A), which was also consistent with the
data shown in previous reports [38,39]. The combination of nobiletin and DHA inhibited
Nos2 transcription stronger than each compound alone (Figure 6A); however, the inhibitory
effect was not synergistic.
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The protein level of NOS2 was assessed with LPS-stimulated RAW 264.7 cells stained
with an anti-NOS2 antibody labeled with PE by flow cytometry. The result showed that
treating the cells with nobiletin decreased the NOS2 protein level (Figure 6B), which was
found in the previous papers [40–42]. DHA also decreased the NOS2 protein amount
(Figure 6B), which is consistent with the data obtained in a previous study [26]. Nobiletin
and DHA in combination inhibited the NOS2 protein level stronger than each compound
alone (Figure 6B); however, the inhibitory effect of the combination was again not synergis-
tic. These results suggest that the simultaneous action of nobiletin and DHA synergistically
suppresses nitric oxide production in part, but not entirely, because of the downregulated
NOS2 expression in RAW 264.7 cells stimulated with LPS. Zhang et al. (2022a) also re-
ported that the NOS2 protein level was not decreased synergistically by the combination
of camellia oil and proanthocyanidin from lipophilic grape seeds, although nitric oxide
production was synergistically inhibited by the combination in RAW 264.7 cells stimulated
with LPS [43]. Other previous studies showed synergistic inhibition for nitric oxide pro-
duction in macrophages by the combination of food ingredients; however, these papers
showed no data on NOS2 expression [44,45]. Therefore, it would be difficult to observe
a distinct difference in the transcriptional or translational level of NOS2 even though a
synergistic inhibitory effect on nitric oxide production was found. The inhibited catalytic
reaction of NOS2 by either nobiletin or DHA can be considered a potential mechanism for
the synergistic effect. Further investigation on the potential inhibitory activity of nobiletin
and DHA on the enzymatic activity of NOS2 is needed.

3.5. Effect of Nobiletin and DHA in Combination on Intracellular Signal Transduction in
LPS-Stimulated RAW 264.7 Cells

Macrophages receive various stimuli, such as LPS, from outside the cell with recep-
tors on the plasma membrane and transmit the information inside the cell to perform
an appropriate response. LPS activates NF-κB and MAP kinase signaling via Toll-like
receptor 4 (TLR4). TLR4 activation induces IKK phosphorylation, and the phosphorylated
IKK in turn phosphorylates IκBα. NF-κB then disassociates from IκBα and translocates
into the nucleus to transcribe proinflammatory cytokine genes as a transcription factor.
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Transcriptional induction of NOS2 is largely dependent on the activation of MAP kinase
and NF-κB pathways [46,47]. We thus assessed the effect of nobiletin and DHA on the
nuclear translocation of NF-κB. The amounts of NF-κB p65 in the nucleus and cytosol were
each detected by immunoblotting. The result showed that nobiletin or DHA alone has little
effect on the NF-κB nuclear translocation; however, nobiletin and DHA in combination
inhibited the NF-κB nuclear translocation much more than the addition of inhibitory effects
by each of both compounds, although the suppressive effect of the combination was not
statistically significant against the control (LPS stimulation only), as shown in Figure 7.
It was thus suggested that the simultaneous action of nobiletin and DHA might syner-
gistically suppress NO production by enhancing their inhibitory potency for the nuclear
translocation of NF-κB. Zhang et al. (2022b) reported that curcumin and resveratrol in
combination exert a synergistic anti-inflammatory activity and that nuclear translocation
of NF-κB p65 is inhibited by curcumin alone but not by resveratrol alone [48]. They also
showed in their study that the inhibitory potency of curcumin for the nuclear translocation
of NF-κB p65 was significantly strengthened by the combined treatment with resveratrol.
The effect of nobiletin and DHA in combination on NF-κB nuclear translocation was thus
quite similar to that of resveratrol and curcumin in combination, which indicates a potential
common mechanism underlying the synergistic anti-inflammatory effects.
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p-p38 represent phosphorylated JNK, phosphorylated ERK, and phosphorylated p38 MAP kinase,
respectively. A representative blot from three independent experiments is shown. Data are expressed
as the mean ± SEM (n = 3). Different letters above the bars indicate significant differences by Tukey’s
test (p < 0.05).

The MAP kinase family consists of ERK, JNK, and p38 MAP kinase. MAP kinase
signaling is activated by a cascade of protein phosphorylation reactions and is involved in
the expression of proinflammatory genes. We also evaluated the effect of the simultaneous
action of nobiletin and DHA on the phosphorylation of MAP kinases. The result showed
that nobiletin and DHA in combination inhibited the phosphorylation of JNK as much
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as the addition of suppressive effects by each compound (Figure 7). On the other hand,
the phosphorylation of ERK and p38 MAP kinase was inhibited with 20 µM DHA but
not with 13 µM nobiletin. Interestingly, the phosphorylation of p38 MAP kinase and ERK
was significantly enhanced by combining DHA with nobiletin (Figure 7). Chen et al. also
reported that silibinin and thymol in combination exert an anti-inflammatory effect and that
the phosphorylation of p38 MAP kinase and ERK was synergistically inhibited, whereas
that of JNK was additively suppressed [49]. Park et al. showed an anti-inflammatory effect
of aconitine and methotrexate in combination via synergistically inhibited phosphorylation
of ERK [50]. Thus, our data suggested that nobiletin and DHA might synergistically
suppress nitric oxide production through enhanced downregulation of phosphorylation of
ERK and p38.

4. Conclusions

We found a synergistic anti-inflammatory effect of nobiletin and DHA on nitric oxide
production by RAW 264.7 cells stimulated with LPS. Neither nobiletin nor DHA affected
the phagocytotic capacity of RAW 264.7 cells stimulated with LPS. Immunoblot analysis
revealed that nobiletin and DHA synergistically inhibit NF-κB nuclear translocation and
the phosphorylation of p38 MAP kinase and ERK, which may lead to the synergistic
anti-inflammatory effect. Overall, our findings show the potential of the synergistic anti-
inflammatory effect of DHA and nobiletin in combination, which can be applied to the
development of novel functional foods for the alleviation of inflammatory reactions.
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