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Abstract: This meta-analysis aimed to summarise clinical evidence regarding the effect of sup-
plementation with cornelian cherry (Cornus mas L.) on different cardiometabolic outcomes. An
extensive literature survey was carried out until 10 April 2024. A total of 415 participants from six
eligible studies were included. The overall results from the random-effects model indicated that
cornelian cherry supplementation significantly reduced body weight (standardised mean difference
[SMD] = −0.27, confidence interval [CI]: −0.52, −0.02, p = 0.03), body mass index (SMD = −0.42,
CI: −0.73, −0.12, p = 0.007), fasting blood glucose (SMD = −0.46, CI: −0.74, −0.18, p = 0.001), glycated
haemoglobin (SMD = −0.70, CI: −1.19, −0.22, p = 0.005), and HOMA-IR (SMD = −0.89, CI: −1.62,
−0.16, p = 0.02), while high-density lipoprotein cholesterol significantly increased (SMD = 0.38,
CI: 0.10, 0.65, p = 0.007). A sensitivity analysis showed that cornelian cherry supplementation signifi-
cantly reduced total plasma triglycerides, total cholesterol, low-density lipoprotein cholesterol, and
insulin levels. Cornelian cherry supplementation did not significantly affect waist circumference and
liver parameters among the participants. Considering these findings, this meta-analysis indicates
that supplementation with cornelian cherry may impact diverse cardiometabolic risk factors among
individuals considered to be at a high risk.

Keywords: lipid profile; weight loss; glucose metabolism; anthocyanins; metabolic disease

1. Introduction

Cardiometabolic diseases refer to a group of conditions that involve a combination
of cardiovascular and metabolic factors. These diseases frequently exhibit common risk
factors, underlying mechanisms, and health implications. The most common risk fac-
tors include dyslipidaemia, dysglycaemia, systemic hypertension, and central obesity [1].
Increased liver enzyme levels of, e.g., aspartate aminotransferase and alanine aminotrans-
ferase have conventionally been reported as indicators of liver dysfunction, notably in
conditions such as non-alcoholic fatty liver disease (NAFLD) [2]. However, recent find-
ings have linked serum aspartate aminotransferase and alanine aminotransferase levels
to the development of type 2 diabetes mellitus (T2DM), irrespective of conventional risk
factors [3]. Additionally, increased aminotransferase levels have been correlated with
established risk factors for cardiometabolic disease, such as elevated blood pressure, body
mass index, and fasting blood glucose levels [4]. This finding underscores the potential
preventive significance of aminotransferases.
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The incidence of cardiometabolic diseases has increased globally due to a range of
lifestyle factors, including sedentary behaviour, smoking, and poor dietary choices [5]. As
reported by the World Health Organization (WHO), non-communicable diseases (NCDs)
are responsible for approximately 17 million deaths annually among individuals under the
age of 70 worldwide [6], with a significant portion of these deaths linked to cardiometabolic
diseases. Projections from the WHO indicate that, by the year 2030, NCDs will constitute
77% of the overall global disease burden [7].

In this context, lifestyle changes, including increasing the frequency and intensity of
physical activity and adopting a healthy diet, constitute the primary therapeutic strategies
for addressing cardiometabolic disorders [8–10]. The inclusion of fruits and vegetables
plays a crucial role. By integrating these into one’s diet, individuals can significantly
contribute to managing cardiometabolic disorders [11]. Cornelian cherry (Cornus mas L.)
fruits have emerged as a complementary intervention to mitigate the risk factors associated
with cardiometabolic diseases. Cornelian cherries possess a rich history in traditional
medicine across various regions, including the Caucasus, Central Asia, Slovakia, Turkey,
Azerbaijan, and Iran, where they have been used for over a millennium to address a range
of health issues [12]. These health issues include sore throats, digestion problems, and
infectious diseases like measles and chickenpox, as well as liver and kidney ailments [12].
The composition of cornelian cherry is diverse, with its fruits being particularly rich in
bioactive compounds such as (poly)phenols (anthocyanins, flavonols, phenolic acids, and
tannins), iridoids, and triterpenoids [13]. Several animal studies have demonstrated the
potential health benefits of cornelian cherry supplementation, including its antidiabetic,
anti-obesity, hypolipidemic, hepatoprotective, and cardioprotective effects [14–17]. More-
over, a recent meta-analysis exploring the impact of cornelian cherry supplementation on
the lipid profiles in rat models concluded that such supplementation resulted in notable
reductions in total cholesterol, low-density lipoprotein cholesterol, and total triglycerides
levels [18]. These effects have been attributed to the abovementioned bioactive compounds
present in cornelian cherry, underscoring the potential of cornelian cherry as a dietary sup-
plement or therapeutic agent in managing various cardiometabolic conditions. Therefore,
supplemented forms can offer convenience and potentially concentrated doses of beneficial
nutrients found in raw cornelian cherries [19].

Considering its bioactive composition, promising results from animal studies, and the
rich diversity of ethnopharmacological uses of cornelian cherry, several human randomised
controlled trials (RCTs) have evaluated how supplementation with cornelian cherry affects
various cardiometabolic risk factors. These trials have highlighted the potential benefits
of cornelian cherry fruits in reducing the risk factors linked to cardiometabolic diseases.
However, until now, no meta-analysis has assessed the overall impact of cornelian cherry
supplementation across these trials. Therefore, the aim of this study was to perform a meta-
analysis to assess the data from RCTs regarding the supplementation of cornelian cherry
fruit, powder, and extract on cardiometabolic risk factors in adult participants aged 18 years
and older. The evaluation focused on primary outcomes including low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC),
triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting
blood glucose (FBG), and body mass index (BMI). Secondary outcomes included body
weight (BW), waist circumference (WC), insulin levels, glycated haemoglobin (HbA1c),
homeostatic model assessment of insulin resistance (HOMA-IR), aspartate aminotrans-
ferase (AST), and alanine aminotransferase (ALT). Both these primary and secondary
selected outcomes are typically influenced by diet quality (e.g., the intake of saturated fats,
sugars, and fibre), physical activity levels, smoking habits, alcohol consumption, stress
management, and sleep patterns.
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2. Methods

The meta-analysis was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyse (PRISMA-2020) guidelines reported by Page et al. [20].
Moreover, the meta-analysis was registered in the International Prospective Register of
Systematic Reviews (PROSPERO: CRD42024528587) prior to beginning.

2.1. Literature Search

A systematic search across the prominent databases Embase, Scopus, PubMed, and Web
of Science was carried out until 10 April 2024, without applying any filters. The following
search query “(cornus mas OR cornelian cherry) AND trial” was utilised. Two researchers
independently conducted all phases of the systematic review process. Initially, the titles
and abstracts of the retrieved articles underwent eligibility screening. The full texts of the
relevant studies were then assessed for inclusion, with any disagreements between the
researchers being resolved through discussion and consensus. Language restrictions were
not imposed. Furthermore, the reference lists of eligible RCTs were screened to identify
additional relevant studies.

2.2. Eligibility Criteria

The comprehensive Population, Intervention, Comparison, Outcomes and Study (PICOS)
selection criteria are presented in Table 1. The inclusion criteria for the studies were:
(i) supplementation with cornelian cherry fruit, powder or extract as part of the intervention;
(ii) an RCT with either a crossover or parallel trial design, with a minimum duration
of ≥2 weeks; (iii) the inclusion of adult participants (aged ≥ 18 years), excluding pregnant
individuals, whether healthy or otherwise; and (iv) evaluation of the effects of cornelian
cherry on cardiometabolic risk factors, including BW, BMI, WC, TG, TC, LDL-C, HDL-C,
SBP, DBP, FBG, insulin, HbA1c, HOMA-IR, AST, and ALT. Studies were excluded when
they: (i) did not have a control group; (ii) were not randomised and/or the duration of the
study was <2 weeks; (iii) were conducted on individuals <18 years old or included pregnant
women; and (iv) did not evaluate any of the mentioned outcomes. Moreover, trial protocols,
observational studies, case reports, case series, in vitro studies, animal experiments, and
abstracts without findings were not included in the meta-analysis.

Table 1. The PICOS framework summarising the rationale behind the study, outlining the criteria for
selecting studies.

Criteria Description

Population Adult participants (aged ≥ 18 years), excluding pregnant individuals, whether healthy or otherwise
Intervention Supplementation with cornelian cherry fruits/powder/extract
Comparison Placebo

Study Evaluation of the effects of cornelian cherry on cardiometabolic risk factors, including BW, BMI, WC,
TG, TC, LDL-C, HDL-C, SBP, DBP, FBG, insulin, HbA1c, HOMA-IR, AST, and ALT

Outcome Randomised controlled trials with either a crossover or parallel trial design, lasting at least ≥2 weeks

Abbreviations: Body weight (BW), body mass index (BMI), waist circumference (WC), triglycerides (TG), total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C),
systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), glycated haemoglobin
(HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), aspartate aminotransferase (AST), and
alanine aminotransferase (ALT).

The inclusion criteria for the studies were carefully chosen to ensure the relevance and
quality of the meta-analysis: (i) cornelian cherry is known for its bioactive compounds,
which have shown potential benefits in previous studies, including studies that used
cornelian cherry in various forms (powder or extract), ensuring a comprehensive evaluation
of its effects on cardiometabolic risk factors; (ii) RCTs are considered to be the gold standard
for clinical research because they reduce bias and allow for causal inferences. A threshold
of ≥2 weeks was chosen based on previous meta-analyses and clinical studies that have
indicated that a minimum duration of two weeks is necessary to observe significant changes
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in cardiometabolic risk factors with dietary interventions [21]; (iii) adults are the primary
demographic for studying cardiometabolic risk factors, as they are more likely to be affected
by these conditions. Pregnant individuals were excluded to avoid confounding factors
related to pregnancy, such as hormonal changes and altered metabolic states, which could
affect the outcomes; and (iv) these specific cardiometabolic risk factors were chosen because
they are widely recognised indicators of cardiometabolic health and are commonly assessed
in clinical trials.

The rationality behind the exclusion criteria were: (i) a control group is essential to
determine the effect of an intervention. Studies without a control group cannot provide a
valid comparison, making it impossible to attribute the observed effects to cornelian cherry
supplementation alone; (ii) randomisation minimises selection bias and ensures that the
results are due to the intervention rather than other factors. As previously mentioned, a
duration of at least 2 weeks is necessary to observe meaningful changes in cardiometabolic
risk factors; (iii) including only adults ensures that the results are applicable to the pop-
ulation most at risk for cardiometabolic diseases. Excluding pregnant women eliminates
the confounding effects of pregnancy on cardiometabolic risk factors; and (iv) the focus
of this meta-analysis is on specific cardiometabolic risk factors. Studies not evaluating
these outcomes do not contribute relevant data to the analysis. Moreover, trial protocols,
observational studies, case reports, case series, in vitro studies, animal experiments, or
abstracts without findings were not included in the meta-analysis, because they do not
provide the same level of evidence as RCTs and often lack the necessary data to assess the
impact of cornelian cherry supplementation on cardiometabolic risk factors.

2.3. Data Extraction

Two of the authors independently conducted an initial screening of the article titles
and abstracts retrieved from the online database searches. Subsequently, all pertinent
data were extracted and cross-verified by other authors. The extracted data included the
first author’s name, publication year, study location, design, participants’ health status,
dose and intervention type, duration, total number of subjects included in the study, and
reported outcomes. Additionally, correspondence was initiated with the corresponding
authors of specific RCTs to obtain any missing data that were not originally documented in
the articles.

2.4. Quality Assessment

Two of the authors independently assessed the methodological quality of the eligible
studies using the revised Cochrane risk-of-bias tool for randomised trials (RoB 2) [22,23].
RoB 2 is organised into a predefined set of bias domains (bias arising from the randomi-
sation process, bias due to deviations from intended interventions, bias due to missing
outcome data, bias in the measurement of the outcome, and bias in the selection of the
reported result), which address various aspects of trial design, implementation, and re-
porting. Each domain comprises a series of questions (‘signalling questions’) aimed at
gathering information pertinent to the risk of bias. An algorithm generates a proposed
judgment regarding the risk of bias for each domain, based on responses to the signalling
questions. These judgments may indicate a ‘low’ or ‘high’ risk of bias, or may raise ‘some
concerns’. Any discrepancies regarding the methodological quality of the eligible studies
were discussed and resolved by consensus.

2.5. Data Synthesis and Statistical Analysis

The statistical analysis was performed using RevMan version 5.4 software and R stu-
dio 2023.12.1+402 version. A random-effects meta-analysis model was chosen due to
the variations in cornelian cherry supplementation among the studies included. This
model aimed to evaluate the mean differences in the treatment effect of cornelian cherry
supplementation on cardiometabolic outcomes. When data were presented in differing
formats, standard equations were applied to derive the mean and standard deviation (SD).
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For instance, when the SD of the change was unspecified in the studies, it was calculated
using the following Formula (1):

SD of change =
√

((SDbaseline)2 + (SDend)2 − (2 × R × SDbaseline × SDend)) (1)

where R = 0.5. Additionally, in trials that provided only the standard error of the mean
(SEM), the SD was determined using the Formula (2):

SD = SEM ×
√

n (2)

where “n” is the number of subjects in each group. Furthermore, in studies reporting only
the median and 25th–75th percentiles, based on the assumption of normal distribution, the
mean and SD were calculated using equations outlined by Wan et al. [24]. Specifically, the
mean was estimated using Equation (3):

(q1 + m + q3)/3 (3)

where q1 represents the first quartile, q3 represents the third quartile, and m represents the
median. The SD approximation was calculated using Equation (4):

(q3 − q1)/η(n) (4)

where η(n) equals 2E(Z(3Q + 1)), with its value depending on the sample size of each arm
of the trials.

The outcomes were combined as standardised mean differences (SMD) with 95%
confidence intervals (CI), accordingly [25]. Moreover, the extent of statistical heterogeneity
among the studies was evaluated using the I2 statistic [26]. Statistical heterogeneity was
considered to be significant when it ranged from moderate to substantial (I2 > 50%) or
when there was inconsistency across the RCTs regarding the direction of effect. It was
opted not to perform a subgroup analysis due to the limited number of studies included
in the meta-analysis and the absence of a definitive dichotomising factor between these
studies, such as dosage, administration form, study duration, etc. However, a sensitivity
analysis was conducted to evaluate the influence of each study on the overall SMD.
Additionally, the potential presence of publication bias using the formal Egger’s test
was assessed [27].

3. Results
3.1. Study Selection

Figure 1 illustrates the process of the literature survey and selection. Briefly, during
the initial literature survey, a total of 68 articles were identified (Embase = 12, Scopus = 16,
PubMed = 19, and Web of Science = 21). After removing duplicates (n = 23), 45 articles
remained for screening based on their titles and abstracts. Subsequently, 34 irrelevant
articles were excluded (including in vitro and animal studies, review articles, and those
with unrelated outcomes), leaving 11 relevant articles for full-text screening. Finally, five
articles were excluded as they did not meet the inclusion criteria (three due to unrelated
outcomes, one study protocol, and one involving children), while six articles were found to
be eligible for inclusion in the meta-analysis.
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Figure 1. The PRISMA flowchart depicting the study selection process.

3.2. Study Characteristics

Table 2 provides a summary of the characteristics of the included studies. These
studies were published between 2014 [28] and 2024 [29] and were conducted in Iran
(four studies, [28,30–32]) and Turkey (two studies, [29,33]). All studies included partici-
pants of both genders, with a total of 415 participants (209 in the intervention groups and
206 in the placebo groups; 125 males and 290 females). Among these, three studies en-
rolled participants with metabolic-dysfunction-associated fatty liver disease (MAFLD),
a term that was proposed by Eslam et al. [34] to describe fatty liver disease associ-
ated with systemic metabolic dysregulation, replacing the previous designation of
NAFLD [29,31,32]. One study enrolled participants with T2DM [28], one study en-
rolled participants with insulin resistance [33], and one study enrolled postmenopausal
women [30]. The dosage of cornelian cherry supplementation varied across studies,
ranging from 500 mg/day Cornus mas (CM) extract (150 mg anthocyanins/day) [28] to
20 mL/day CM extract (equivalent to 2800 mg dried extract, containing 32 mg antho-
cyanins) [31,32] and 20–30 g/day lyophilised dried CM powder [29,33]. The intervention
duration ranged from 6 [28] to 12 weeks [31–33]. Among the studies included, four
evaluated the impact of CM supplementation on TG [28–30,33], three on TC [29,30,33],
three on LDL-C [29,30,33], three on HDL-C [29,30,33], four on FBG [28–30,33], four on
insulin [28–30,33], three on HbA1c [28,29,33], three on HOMA-IR [29,30,33], three on
ALT [28,29,31], three on AST [28,29,31], four on BW [29,30,32,33], four on BMI [28–30,33],
and four on WC [29,30,32,33].
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Table 2. Characteristics of included RCTs evaluating supplementation with cornelian cherry fruit/powder/extract on selected cardiometabolic outcomes.

Study (Year), Country Study Design Participants Intervention/d Control Type
of Intervention Duration

Total Sample
(Intervention/Placebo)
Sex Distribution (M/F)

Measured Outcomes

Soltani et al. (2015),
Iran [28]

Parallel, double-blinded,
randomised clinical trial T2DM 500 mg CM extract

(150 mg anthocyanins) Placebo Extract 6 wk 60 (30/30)
(39/21)

↔ BMI, ↔ FBG, ↓ Insulin, ↓ HbA1c, ↓ TG, ↔ ALT,
↔ AST

Gholamrezayi et al. (2019),
Iran [30]

Parallel, double-blinded,
randomised clinical trial

Postmenopausal
women 900 mg CM extract Placebo Extract 8 wk 84 (42/42)

(0/84)
↓ BW, ↓ BMI, ↓ WC, ↔ FBG, ↔ Insulin, ↔ HOMA-IR,

↔ TG, ↔ LDL-C, ↑ HDL-C, ↔ TC

Sangsefidi et al. (2021),
Iran [31]

Parallel, double-blinded,
randomised clinical trial MAFLD

20 mL CM extract
(2800 mg dried extract,
32 mg anthocyanins)

Placebo Extract 12 wk 50 (25/25)
(23/27) ↔ ALT, ↔ AST

Celık et al. (2023),
Turkey [33] Parallel, randomised controlled trial Insulin

resistance
20 g lyophilised dried

CM powder Placebo Powder 12 wk 84 (43/41)
(0/84)

↔ BW, ↔ BMI, ↔ WC, ↓ FBG, ↓ HbA1c, ↓ Insulin,
↓ HOMA-IR, ↓ TC, ↔ LDL-C, ↔ HDL-C, ↓ TG

Yarhosseini et al. (2023),
Iran [32]

Parallel, double-blinded,
randomised clinical trial MAFLD

20 mL CM extract
(2800 mg dried extract,
32 mg anthocyanins)

Placebo Extract 12 wk 50 (25/25)
(23/27) ↔ BW, ↔ WC, ↓ SBP, ↓ DBP

Bayram et al. (2024),
Turkey [29]

Parallel, single-blinded,
randomised controlled trial MAFLD 30 g lyophilised dried

CM powder Placebo Powder 8 wk 87 (44/43)
(40/47)

↓ BW, ↓ BMI, ↓ WC, ↓ FBG, ↓ Insulin, ↓ HOMA-IR,
↓ HbA1c, ↓ AST, ↓ ALT, ↓ TG, HDL-C, ↓ LDL-C, ↓ TC

Abbreviations: Cornus mas (CM), metabolic-dysfunction-associated fatty liver disease (MAFLD), type 2 diabetes mellitus (T2DM), body weight (BW), body mass index (BMI), waist
circumference (WC), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP),
diastolic blood pressure (DBP), fasting blood glucose (FBG), glycated haemoglobin (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), aspartate aminotransferase
(AST), and alanine aminotransferase (ALT). ↓, ↑ presence of an effect (p < 0.05), ↔ no effect.
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3.3. Risk of Bias Assessment

The RoB 2 tool, as described by Sterne et al. [22], was employed to evaluate bias across
the six randomised clinical trials included in the current meta-analysis. The results of this
evaluation are depicted in Figures 2 and 3. The assessment included five domains aimed
at evaluating the quality of the included studies: the randomisation process, deviations
from intended interventions, missing outcome data, measurement of the outcome, and
selection of the reported results. In the domain of the randomisation process, one study
raised some concerns; regarding deviations from intended interventions, two studies raised
some concerns and one study exhibited a high risk of bias; concerning missing outcome
data, one study raised some concerns, while one study had a high risk of bias; regarding
the measurement of the outcome, one study raised some concerns; and lastly, in the domain
of selection of the reported results, two studies raised some concerns. Overall, utilising
the RoB 2 tool, which offers a framework for evaluating the risk of bias, two studies
demonstrated a low risk of bias, three studies raised some concerns, while one study
exhibited a high risk of bias.
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Figure 2. The evaluation of risk of bias concerning each aspect across the studies included in the meta-
analysis. D1—randomisation process, D2—deviations from intended interventions, D3—missing
outcome data, D4—measurement of the outcome, and D5—selection of the reported results [28–33].

Nutrients 2024, 16, x FOR PEER REVIEW 

  8  of  25 
 

 

3.3. Risk of Bias Assessment 

The RoB 2 tool, as described by Sterne et al. [22], was employed to evaluate bias across 

the six randomised clinical trials included in the current meta-analysis. The results of this 

evaluation are depicted in Figures 2 and 3. The assessment included five domains aimed 

at evaluating the quality of the included studies: the randomisation process, deviations 

from  intended  interventions, missing outcome data, measurement of  the outcome, and 

selection of the reported results. In the domain of the randomisation process, one study 

raised  some  concerns;  regarding  deviations  from  intended  interventions,  two  studies 

raised some concerns and one study exhibited a high risk of bias; concerning missing out-

come data, one study raised some concerns, while one study had a high risk of bias; re-

garding the measurement of the outcome, one study raised some concerns; and lastly, in 

the domain of selection of the reported results, two studies raised some concerns. Overall, 

utilising the RoB 2 tool, which offers a framework for evaluating the risk of bias, two stud-

ies demonstrated a low risk of bias, three studies raised some concerns, while one study 

exhibited a high risk of bias. 

 

Figure 2. The evaluation of risk of bias concerning each aspect across the studies included in the 

meta-analysis.  D1—randomisation  process,  D2—deviations  from  intended  interventions,  D3—

missing outcome data, D4—measurement of the outcome, and D5—selection of the reported results 

[28−33]. 

 

Figure 3. Risk of bias across individual elements, presented as percentage (intention-to-treat), for 

studies included in the meta-analysis. 

   

Figure 3. Risk of bias across individual elements, presented as percentage (intention-to-treat), for
studies included in the meta-analysis.

3.4. Meta-Analysis Results
3.4.1. Effect of Cornelian Cherry Supplementation on BW, BMI, and WC

Four studies, comprising six arms in total, provided data on BW, BMI, and WC as
outcome measures. Data for BW and WC were available for 305 participants (154 in the
intervention group and 151 in the placebo group), while data for BMI were reported for
315 participants (159 in the intervention group and 156 in the placebo group). Overall,
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the results from the random-effects model indicated that cornelian cherry supplementa-
tion significantly reduced BW (SMD = −0.27, CI: −0.52, −0.02, p = 0.03, I2 = 17%) and
BMI (SMD = −0.42, CI: −0.73, −0.12, p = 0.007, I2 = 44%), while it did not affect WC
(SMD = −0.40, CI: −0.89, 0.09, p = 0.11, I2 = 77%) (Figure 4). Following a sensitivity analy-
sis, it was found that by excluding arm 1 from the study of Celık et al. [33], WC exhibited a
significant reduction following cornelian cherry supplementation (SMD = −0.53, CI: −1.05,
−0.01, p = 0.05) (Figure S1A in Supplementary Materials). Nonetheless, the heterogeneity
remained notably high (I2 = 76%, p = 0.002). Excluding arm 2 from the study conducted
by Bayram et al. [29] led to a reduction in heterogeneity to below 50% (I2 = 30%, p = 0.22);
however, the results were no more statistically significant (SMD = −0.19, CI: −0.48, 0.11,
p = 0.22) (Figure S1B in Supplementary Materials).
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3.4.2. Effect of Cornelian Cherry Supplementation on TG, TC, LDL-C, and HDL-C Levels

Four studies with a total of six arms, comprising 315 participants (159 in the inter-
vention group and 156 in the placebo group), reported TG levels as an outcome mea-
sure. Overall, the results from the random-effects model indicated that cornelian cherry
supplementation did not significantly reduce TG levels post-intervention (SMD = −0.55,
CI: −1.11, 0.01, p = 0.06), with significant heterogeneity noted among the studies (I2 = 83%,
p = 0.0001) (Figure 5). However, a sensitivity analysis revealed that excluding arm 1 from
Celık et al. [33] led to a significant outcome favouring the cornelian cherry group over
the control group (SMD = −0.76, CI: −1.26, −0.25, p = 0.003, I2 = 74%) (Figure S2A
in Supplementary Materials).
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Three studies with a total of five arms, comprising 255 participants (129 in the interven-
tion group and 126 in the placebo group), reported TC and HDL-C levels as outcome mea-
sures. Overall, the results from the random-effects model indicated that cornelian cherry
supplementation did not significantly reduce TC (SMD = −0.38, CI: −0.85, 0.09, p = 0.11,
I2 = 70%), (Figure 5). However, HDL-C levels significantly increased post-intervention
(SMD = 0.38, CI: 0.10, 0.65, p = 0.007, I2 = 16%) (Figure 5). Furthermore, a sensitivity analysis
revealed that excluding arm 1 from Celık et al. [33] for the TC analysis led to a signifi-
cant outcome favouring the cornelian cherry group over the control group (SMD = −0.54,
CI: −1.02, −0.05, p = 0.03, I2 = 65%) (Figure S2B in Supplementary Materials).

Despite three studies with a total of five arms initially reporting LDL-C levels as an out-
come measure, upon scrutinising the data, we opted to exclude those from
Gholamrezayi et al. [30] due to apparent misreporting. Consequently, the final analysis in-
cluded two studies with a total of four arms, comprising 171 participants (87 in the interven-
tion group and 84 in the placebo group). The overall findings from the random-effects model
indicated that cornelian cherry supplementation did not significantly reduce LDL-C levels
post-intervention (SMD = −0.50, CI: −1.06, 0.06, p = 0.08, I2 = 69%) (Figure 5). A sensitivity
analysis revealed that excluding arm 1 of the study conducted by Celık et al. [33] resulted in a
significant outcome favouring the cornelian cherry group over the control group (SMD = −0.53,
CI: −1.28, −0.11, p = 0.02, I2 = 62%) (Figure S2C in Supplementary Materials).

3.4.3. Effect of Cornelian Cherry Supplementation on FBG, Insulin, HbA1c, and HOMA-IR

Four studies with a total of six arms, comprising 315 participants (159 in the interven-
tion group and 156 in the placebo group), reported FBG and insulin levels as outcome mea-
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sures. Overall, the results from the random-effects model indicated that cornelian cherry
supplementation significantly reduced FBG (SMD = −0.46, CI: −0.74, −0.18, p = 0.001,
I2 = 34%), while it did not significantly affect the insulin level (SMD = −0.55, CI: −1.32,
0.22, p = 0.16, I2 = 90%) (Figure 6). However, a sensitivity analysis revealed that excluding
the study by Soltani et al. [28] resulted in a significant outcome favouring the cornelian
cherry group over the control group regarding the insulin level (SMD = −0.85, CI: −1.52,
−0.18, p = 0.01, I2 = 84%) (Figure S3A in Supplementary Materials).
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Conversely, three studies with a total of five arms reported HbA1c and HOMA-IR
as outcome measures, with a total of 231 participants (117 in the intervention group and
114 in the placebo group) and 255 participants (129 in the intervention group and 126 in
the placebo group), respectively. Overall, the results from the random-effects model indi-
cated that cornelian cherry supplementation significantly reduced HbA1c (SMD = −0.70,
CI: −1.19, −0.22, p = 0.005, I2 = 69%) and HOMA-IR (SMD = −0.89, CI: −1.62, −0.16,
p = 0.02, I2 = 86%) (Figure 6). Moreover, a sensitivity analysis revealed that excluding
arm 2 from Bayram et al. [29] led to a decrease in heterogeneity, while preserving the
observed effect for HbA1c (SMD = −0.48, CI: −0.78, −0.19, p = 0.001, I2 = 0%) (Figure S3B
in Supplementary Materials). In the case of HOMA-IR, the sensitivity analysis did not
result in a decrease in heterogeneity.
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3.4.4. Effect of Cornelian Cherry Supplementation on AST and ALT

Three studies with a total of four arms, comprising 197 participants (99 in the intervention
group and 98 in the placebo group), reported AST and ALT levels as outcome measures. Overall,
the results from the random-effects model indicated that cornelian cherry supplementation
did not significantly reduce AST (SMD = −0.34, CI: −0.75, 0.06, p = 0.10, I2 = 51%) and ALT
(SMD = −0.32, CI: −0.83, 0.20, p = 0.23, I2 = 69%) levels (Figure 7). In both cases, the sensitivity
analysis did not significantly affect the reported results.
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3.4.5. Effect of Cornelian Cherry Supplementation on SBP and DBP

Due to limited data availability, only one out of the six studies included in this meta-
analysis provided information on systolic (SBP) and diastolic blood pressure (DBP) [32].
Consequently, this lack of data prevented us from conducting a meta-analysis on these
outcomes. However, the findings from this study, which involved a 12-week admin-
istration of 20 mL/day of CM extract (equivalent to 2800 mg dried extract, contain-
ing 32 mg anthocyanins) among 50 patients with MAFLD, showed significant reduc-
tions in SBP and DBP. Specifically, there was a mean change in the intervention group
of −8.63 ± 14.37 mmHg in SBP compared to 0.0 ± 12.67 mmHg in the placebo group
(p = 0.02) and −8.62 ± 11.86 mmHg in DBP compared to 0.53 ± 8.53 mmHg (p = 0.003).

3.4.6. Publication Bias

The evaluation of publication bias through a visual analysis of funnel plots alongside
Egger’s test indicated the presence of publication bias in the meta-analysis of cornelian
cherry supplementation for LDL-C (p = 0.003), FBG (p = 0.04), insulin (p = 0.01), HOMA-IR
(p = 0.0001), AST (p = 0.03), and ALT (p = 0.03). However, the meta trim and fill analysis
results did not reveal any publication bias except for FBG (p = 0.001). Egger’s linear
regression test for other outcomes showed no presence of publication bias for TG (p = 0.26),
TC (p = 0.53), HDL-C (p = 0.13), HbA1c (p = 0.19), BW (p = 0.39), BMI (p = 0.42), and WC
(p = 0.42) (Table S1 in Supplementary Materials).

4. Discussion

Cardiometabolic diseases are the leading non-communicable diseases worldwide, rep-
resenting the primary cause of global mortality and significantly affecting quality of life [35].
Obesity, dyslipidaemia, hypertension, insulin resistance, and high aminotransferase lev-
els, among other factors, collectively contribute to an elevated risk of developing various
cardiometabolic diseases like T2DM, cardiovascular disease, and metabolic-dysfunction-
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associated fatty liver disease [4,36]. Consequently, numerous dietary interventions have
been developed to mitigate the modifiable risk factors associated with cardiometabolic
diseases and enhance overall well-being [37–39]. Cornelian cherry has emerged as a promis-
ing dietary component with favourable health effects against cardiometabolic diseases,
attracting significant attention within the scientific community. Within this framework, we
conducted the first comprehensive review and meta-analysis of RCTs regarding its efficacy,
evaluating the impact of supplementation with cornelian cherry on various cardiometabolic
risk factors in adults, including anthropometric measurements, lipid profile, glycaemic
parameters, blood pressure, and liver markers.

The results of the current meta-analysis suggested that supplementation with cornelian
cherry may contribute to beneficial effects on certain risk factors linked to cardiometabolic
diseases. Specifically, our findings supported a favourable impact of cornelian cherry sup-
plementation on anthropometric measurements, lipid profile, and glycaemic parameters.

4.1. The Effect of Cornelian Cherry Supplementation on Anthropometric Measurements

Epidemiological data consistently link a high BW and BMI, respectively, with increased
risks of medical complications and mortality. The distribution of body fat, particularly
excess abdominal fat, plays a crucial role in predisposing individuals to obesity-related
pathologies. To assess its level, WC is commonly employed as a surrogate marker due to its
simplicity, correlation with abdominal fat mass (both subcutaneous and intra-abdominal),
and association with the risk of cardiometabolic diseases [40]. According to our meta-
analysis results, cornelian cherries may offer potentially beneficial effects on anthropometric
parameters. Our findings, derived from a random-effects model, revealed that cornelian
cherry supplementation significantly decreased BW and BMI, although it did not affect WC
(Figure 4). However, subsequent sensitivity analysis revealed that excluding certain arms
from individual studies led to variations in the results regarding WC. Notably, excluding
one arm from a study resulted in a statistically significant reduction in WC with a high
heterogeneity, while excluding another arm from a study reduced the heterogeneity to
below 50%, although the results were no longer statistically significant.

The meta-analysis results align with other data from animal and human studies. For
instance, a meta-analysis conducted by Park et al. [41] revealed a significant reduction
in BMI following anthocyanin supplementation, while no significant changes in BW or
WC were observed. Notably, anthocyanins decreased the BMI in non-obese individuals
(BMI ≤ 25), but had no effect on obese individuals. Subgroup analyses indicated that doses
below 300 mg/day of anthocyanins were more effective in reducing BMI, particularly over
a four-week treatment period. Moreover, in a study examining the impact of anthocyanins
from cornelian cherries on obesity in C57BL/6 mice fed with a high-fat diet, supplemen-
tation with anthocyanins (1 g/kg) for eight weeks led to a 24% decrease in weight gain
and reduced lipid accumulation in the liver, as indicated by a significant decrease in liver
triacylglycerol concentration [42]. Likewise, in a streptozotocin-induced diabetes mellitus
model, administering 20 mg/kg of cornelian cherry extract resulted in reduced weight gain
compared to the control group [43]. Similarly, in an animal model of obesity induced by
ovariectomy, the oral administration of loganic acid, an iridoid from cornelian cherries,
significantly curbed body weight gain, total fat accumulation, fatty hepatocyte deposition
in the liver, and abdominal visceral fat tissue enlargement [44]. Treatment with the lo-
ganic acid of preadipocytes reduced the expression of key adipogenesis-related genes in a
dose-dependent manner.

However, contrasting data exist in relation to our meta-analysis. The results of a sepa-
rate meta-analysis indicated that anthocyanins did not significantly affect anthropometric
and body composition parameters in humans [45]. No significant impacts on BMI and
WC were observed in analyses of all subgroups following anthocyanins supplementation
(regarding dosage, duration, design of the studies, etc). Moreover, Sangouni et al. [46]
reported that, at the end of a 12-week intervention, there was no significant difference
between the intervention (receiving 2800 mg/day of cornelian cherry fruit extract) and
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control groups regarding lipid accumulation product, an index calculated by WC and TG
levels, which reflects lipid toxicity. Furthermore, in dyslipidaemic children and adolescents
who received 50 g of cornelian cherry fruits twice a day for a period of six weeks, no
significant difference in BMI was observed between the intervention and control groups at
the end of the trial [47].

The reported contrasting results between different studies may be explained by various
factors. Firstly, differences in study designs, such as the duration of the intervention,
dosage of anthocyanins, and baseline anthocyanins’ intake of the studied population, could
contribute to the contrarieties observed. For example, Daneshzad et al. showed that
anthocyanin intake for more than 12 weeks of intervention was associated with an average
of a 2.42 kg weight reduction and 0.75 kg/m2 decrease in BMI [48]. Secondly, differences in
the formulations of cornelian cherry supplements used among the studies could impact the
results. While certain studies reported the anthocyanin concentration of the supplemented
extract, others only specified the quantity of the supplement, neglecting to mention the
anthocyanin content. Additionally, the studies included various forms of cornelian cherry,
such as liquid forms, extracts, and lyophilised powders. This diversity in the supplemented
forms of cornelian cherry could have affected the availability of bioactive compounds,
potentially influencing the outcomes [49].

4.2. The Effect of Cornelian Cherry Supplementation on Total Blood Lipid Levels

Dyslipidaemia can be characterised by elevated serum levels of TG, TC, and LDL-C
or a reduced serum concentration of HDL-C. It is a well-established risk factor for coronary
artery disease (CAD) [50]. The combined outcomes from the random-effects model revealed
that, following cornelian cherry supplementation, there was a significant increase in HDL-C
levels, although there was no significant decrease in post-intervention TG, TC, or LDL-C
levels (Figure 5). However, a subsequent sensitivity analysis indicated that cornelian cherry
supplementation might indeed lead to significant reductions in TG, LDL-C, and TC levels.

These findings align, in part, with those reported by Mohammadi et al. [18], who con-
ducted a meta-analysis assessing the impact of cornelian cherry supplementation on the blood
lipid profiles in animal rat models, concluding that cornelian cherry supplementation signifi-
cantly lowered TG and TC levels, with a non-significant increase in HDL-C levels. Additionally,
the daily ingestion of various amounts of cornelian cherry fruits (5, 10, and 15 g/d) over
a period of 20 days in hamsters (Mesocricetus auratus) resulted in reductions in TC and
LDL-C levels, while elevating HDL-C levels [16]. It was observed that the supplementation
of 10 g/d cornelian cherry fruits demonstrated a more pronounced hypolipidemic effect
compared to other doses (5 and 15 g/day).

Anthocyanins constitute the predominant compounds present in cornelian cherry.
The predominant anthocyanins in cornelian cherry fruits include cyanidin-3-O-glucoside,
cyanidin-3-O-robinobioside, and cyanidin-3-O-rutinoside (0.12–4.2 mg/g fw) [13]. In a
meta-analysis conducted by Jang et al. [21], which included 41 studies, anthocyanin sup-
plementation was found to significantly modulate various blood lipid markers, including
reductions in TG levels and LDL-C levels, alongside an increase in HDL-C levels. Further-
more, in a subgroup analysis of the meta-analysis conducted by Daneshzad et al. [48], it
was demonstrated that an anthocyanin supplementation dose of ≥300 mg/day decreased
TC and LDL-C levels. In the studies included in our meta-analysis, however, the reported
concentrations of anthocyanins ranged from 32 to 150 mg/day. This variability in dosage
might account for the lack of significance in our results regarding TG, TC, and LDL-C levels
before conducting the sensitivity analysis.

Several studies have explored the mechanisms underlying the positive impact of
anthocyanins on blood lipid levels. In a double-blind, randomised, placebo-controlled
trial involving 120 dyslipidaemic subjects aged 40–65 years, berry-derived anthocyanin
supplements were administered twice daily for 12 weeks. It was shown that anthocyanin
supplementation improved both LDL-C and HDL-C concentrations and enhanced cellular
cholesterol efflux to serum, possibly through the inhibition of CETP [51]. Moreover, in an
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ApoE(−/−) mice model study, Wang et al. [52] showed that gut microbiota metabolised
cyanidin-3-O-glucoside into protocatechuic acid (PCA), promoting cholesterol efflux from
macrophages and enhancing the expression of ABCA1 and ABCG1 transporters. PCA
also accelerated macrophage cholesterol efflux through the miRNA-10b-ABCA1/ABCG1
signalling cascade. Nevertheless, anthocyanins have the capacity to activate AMP-activated
protein kinase, which, in turn, inhibits the synthesis of cholesterol and triglycerides by
blocking HMG-CoA and acetyl-CoA carboxylase, respectively [48].

Conversely, cornelian cherry fruits are rich in iridoids, such as loganic acid, loganin,
cornuside, sweroside, and catalposide. The total iridoid content of cornelian cherry fruits
ranged between 0.87 and 4.94 mg/g fw [13]. The oral intake of cornelian cherry (100 mg/kg
bodyweight) for 60 days in hypercholesterolemic rabbits led to a significant 44% decrease
in serum triglyceride levels and prevented atheromatous changes in the thoracic aorta [53].
Additionally, cornelian cherry notably increased peroxisome proliferator-activated receptor-
alpha (PPARα) protein expression in the liver, indicating enhanced fatty acid catabolism.
The authors of the study suggested that iridoids were, in part, responsible for the observed
effects [53]. In addition, these findings were corroborated in another study where the
administration of loganic acid (20 mg/kg bodyweight) in hypercholesterolemic rabbits
significantly decreased TG levels and increased HDL-C levels, also reducing the intima
thickness and intima/media ratio in the thoracic aorta and decreasing plasma ox-LDL
levels [54]. None of the studies included in our meta-analysis reported data regarding the
iridoid content of cornelian cherry supplements administered to the study participants.
Nevertheless, these findings collectively indicate that cornelian cherry fruits have the
potential to impact blood lipid levels, although the supplementation form should be
standardised to at least 300 mg of anthocyanins and/or 20 mg/kg bodyweight of iridoids
(this statement should be experimentally evaluated).

4.3. The Effect of Cornelian Cherry Supplementation on Glycaemic Parameters

Elevated levels of glucose and insulin, both during fasting periods and after meals, as
well as elevated HbA1c, are primary indicators of T2DM [55]. Among these risk factors, FBG
demonstrated the strongest association with the onset of diabetes, followed by postprandial
glucose (2hPG), HbA1c, HOMA-IR, and fasting insulin [56]. Our meta-analysis results
demonstrated notable positive effects on several glycaemic indices, such as FBG, HbA1C,
and HOMA-IR, following interventions with cornelian cherry fruits (Figure 6). Furthermore,
a sensitivity analysis revealed a significant reduction in insulin levels after interventions
with cornelian cherry fruits.

Several studies on animal models support our findings regarding the impact of cornelian
cherry fruits and extracts on glycaemic parameters. For example, Jayaprakasam et al. [42]
showed that supplementation with anthocyanins (1 g/kg) and ursolic acid (500 mg/kg),
some of the most abundant bioactive compounds in cornelian cherries, in mice fed with
a high-fat diet preserved islet architecture and insulin staining, suggesting anti-diabetic
properties. Asgary et al. [57] found that administering 2 g/day of cornelian cherry fruits re-
duced FBG levels in alloxan-induced diabetic rats. Similarly, Capcarova et al. [58] observed
decreased FBG levels in male Zucker diabetic fatty rats (fa/fa) consuming 1000 mg/kg
of cornelian cherry fruits. Additionally, the administration of 20 mg/kg of cornelian
cherry extract improved the glucose tolerance and lowered the blood glucose in rats with
streptozotocin-induced diabetes mellitus [43]. Cornelian cherry has been shown to enhance
the expression of insulin signalling genes in adipocytes, while increasing the expression of
PPARγ, therefore alleviating insulin resistance and exerting a beneficial effect on cellular
metabolism [59]. Furthermore, cornelian cherry fruits exhibited a potent inhibition of
the exocrine enzymes involved in the breakdown of complex carbohydrates, specifically
α-amylase and α-glucosidase, which catalyse the conversion of complex carbohydrates
into readily digestible simple sugars [60].

In the meta-analysis conducted by Mao et al. [61], it was shown that anthocyanins
at a median dose of 320 mg/day for a median intervention duration of eight weeks sig-
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nificantly reduced HbA1c and FBG, however, no statistically significant effects were ob-
served on fasting insulin and HOMA-IR. Moreover, an umbrella review of systematic
reviews and meta-analyses conducted by Sandoval-Ramírez et al. [62] showed that sup-
plementation with 200–400 mg/day of anthocyanins significantly reduced FBG, HbA1c,
and HOMA-IR in cardiometabolic participants. Mechanistically, anthocyanins act as α-
glucosidase and α-amylase inhibitors, slowing carbohydrate digestion in the gut lumen [63].
Also, anthocyanins impact glucose absorption within the intestine, acting through active
sodium-dependent and independent transport mechanisms mediated by sodium-glucose
co-transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) in both Caco-2 cells of the in-
testine and HepG2 cells [64]. Furthermore, anthocyanin consumption has been linked to en-
hanced glycogen synthesis and reduced gluconeogenesis in HepG2 cells and adipocytes [65].
These effects are attributed to the upregulation of PPARγ, a hormone involved in regulating
adiponectin and the transcription of proteins crucial for the cellular uptake of glucose and
fatty acids [66]. As a result, the upregulation of PPARγ leads to a decrease in fasting blood
glucose levels.

As was mentioned above, ursolic acid (1.16 mg/g fw) and iridoids are some of the
most abundant compounds found in cornelian cherry fruits [13]. For example, in a ran-
domised, double-blind, placebo-controlled clinical trial involving 24 patients with untreated
metabolic syndrome aged between 30 and 60 years, the effects of ursolic acid were evalu-
ated by Ramírez-Rodríguez et al. [67]. The results showed, that after 12 weeks of ursolic
acid intake (150 mg of ursolic acid/day), 50% of patients experienced a remission of
metabolic syndrome, with significant improvements observed in FBG and insulin sensitiv-
ity. Moreover, the impact of treatment with ursolic acid on glycemia in hyperglycaemic
rats and its underlying mechanisms in muscle tissue revealed that ursolic acid has a potent
antihyperglycemic effect, increasing insulin vesicle translocation and secretion, as well
as enhancing the glycogen content [68]. Ursolic acid stimulated glucose uptake in the
muscle cells through classical insulin signalling pathways, involving the synthesis and
translocation of GLUT4 to the plasma membrane. These effects were accompanied by
an increased expression of GLUT4 mRNA, the activation of DNA transcription, and an
enhanced presence of GLUT4 at the plasma membrane [68]. By contrast, a study which
investigated the relationship between loganic acid content and the hypoglycaemic effects
of cornelian cherry fruits showed that the tested extracts exhibited a strong inhibition of
α-glucosidase activity [69], with the activity being correlated, in part, with the loganic acid
present in the cornelian cherries. Further research showed that loganic acid administered
orally to rats at 20 mg/kg for 14 days effectively restored the balance between antioxidant
defence mechanisms and oxidative stress in leukocytes [70]. Although it did not signifi-
cantly affect blood glucose levels, loganic acid notably improved the antioxidant status
in leukocytes by increasing the levels of reduced glutathione and enhancing the activities
of catalase, glutathione peroxidase, and glutathione reductase. Moreover, loganic acid
demonstrated the ability to mitigate the formation and accumulation of glycation and
oxidation protein products, as well as malondialdehyde derivatives in plasma [70]. The
authors concluded that loganic acid holds promise as a potential therapeutic agent for
alleviating the metabolic and functional disorders associated with diabetes, highlighting its
potential for development as a component in new drug formulations.

4.4. The Effect of Cornelian Cherry Supplementation on Liver Parameters

ALT and AST are frequently evaluated markers of liver injury. Elevated levels of
ALT and AST are significantly linked to an increased risk of developing cardiometabolic
diseases [71,72]. Overall, the results of this meta-analysis indicated that cornelian cherry
supplementation did not significantly reduce AST and ALT levels neither before nor after
the sensitivity analysis (Figure 7).

Intriguingly, the scientific literature reported contrasting results. Although the animal
studies reported indicated that anthocyanins may have beneficial effects in mitigating
liver damage and improving liver function [73,74], human data did not support these
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results. A meta-analysis of 12 RCTs with a total number of 893 participants concluded
that anthocyanins did not have any significant effects on ALT and AST [75]. Furthermore,
another meta-analysis which included 15 RCTs and a total of 1028 participants showed
that a significant reduction in AST was observed only in trials where individuals were sup-
plemented with anthocyanin-rich products and in trials restricted to healthy subjects [76],
indicating that anthocyanin supplementation may exert a more significant influence on
decreasing AST levels in individuals without existing liver conditions.

4.5. The Effect of Cornelian Cherry Supplementation on Blood Pressure

Hypertension plays a central role in cardiometabolic diseases, showing the most com-
pelling evidence for its causal link with cardiovascular disease [77]. However, only one
out of six studies included in this meta-analysis evaluated the impact of cornelian cherry
fruits on SBP and DBP, therefore, this scarcity of data prevented us from conducting a
meta-analysis. Nevertheless, the findings from this study revealed that cornelian cherry
supplementation resulted in significant reductions in both SBP and DBP in MAFLD subjects.
The anthocyanin content of cornelian cherries may explain this effect, as dietary intake
of anthocyanins has been linked to an 8% decrease in the risk of hypertension [78]. This
effect may be due to anthocyanins’ ability to increase endothelial-derived nitric oxide
levels by regulating endothelial NO synthase expression and activity [79]. Additionally,
anthocyanins have demonstrated the ability to decrease the production of vasoconstricting
molecules, including angiotensin II through ACE inhibition, endothelin 1, and thrombox-
anes via the inhibition of the cyclooxygenase pathway [80]. These actions promote blood
vessel relaxation, ultimately resulting in decreased blood pressure [81].

4.6. Weight-Loss-Dependent and Independent Effects of Cornelian Cherry Supplementation

The question of how much the effects of cornelian cherry supplementation on lipid
profiles, insulin sensitivity, blood pressure, and other cardiometabolic risk factors are
mediated by weight loss versus being independent of body weight and adiposity is a
critical one. Firstly, several studies have explored the relationship between weight loss
and improvements in these risk factors, providing valuable context for interpreting the
findings of the current meta-analysis. The meta-analysis conducted by Dattilo and Kris-
Etherton showed that weight reduction is associated with significant improvements in
lipid profiles, including decreases in TC, LDL-C, VLDL-C, and TG. Additionally, a modest
increase in HDL-C was observed per kilogram of weight loss [82]. Further supporting
this, Harder et al. demonstrated that a low-calorie diet resulting in significant weight loss
led to marked improvements in the glycaemic control and lipid profiles in obese patients
with T2DM [83]. This included reductions in FBG, fasting insulin, HbA1c, and LDL-C,
alongside significant weight loss. Similarly, Zhou et al. found that weight loss in the first
year following bariatric surgery was significantly correlated with long-term improvements
in HbA1c and TG, highlighting the importance of weight loss for sustained glycaemic and
metabolic control [84]. Lastly, Shinde et al. provided evidence from a large cohort study
that sustained weight loss was associated with clinically meaningful improvements in
glycaemic and metabolic parameters among individuals with T2DM. Greater weight loss
percentages were linked to greater improvements in HbA1c and metabolic parameters,
underscoring the role of weight management in managing T2DM and its complications [85].

Secondly, while these studies collectively highlight the significant role of weight loss
in improving cardiometabolic risk factors in the context of a hypocaloric diet, it is also
important to consider the potential direct effects of cornelian cherry supplementation
on weight loss. In arm 2 of Bayram et al.’s and Gholamrezayi et al.’s studies, the only
two studies where weight loss differences between the intervention and control groups
were statistically significant, only arm 2 of Bayram et al.’s study showed improvements in
the evaluated cardiometabolic parameters following further analysis. This potentially sug-
gests a relationship between weight loss and improvements in cardiometabolic outcomes.
However, the sensitivity analysis indicated a potential relationship only between arm 2 of
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Bayram et al.’s study and HOMA-IR, as excluding this arm from the meta-analysis nullified
the significance of the effect. Apart from this, excluding arm 2 of Bayram et al.’s study did
not alter any other reported results, suggesting that cornelian cherry supplementation may
have a weight-loss-independent effect on cardiometabolic outcomes. Indeed, some of the
bioactive compounds present in cornelian cherries, such as anthocyanins, loganic acid, and
ursolic acid, have demonstrated beneficial effects on lipid metabolism, glucose regulation,
and blood pressure independent of weight loss in preclinical studies [42–44]. However,
distinguishing between weight-loss-dependent and -independent effects in the context of
cornelian cherry supplementation still requires more rigorous studies.

4.7. Clinical Relevance of the Findings

The meta-analysis findings suggested that cornelian cherry supplementation has sev-
eral beneficial effects on cardiometabolic risk factors, which are clinically relevant for
managing and potentially reducing the risk of cardiovascular diseases and metabolic disor-
ders. Incorporating cornelian cherry supplementation into weight management programs
could enhance the effectiveness of these interventions, particularly for overweight or obese
individuals. For individuals with T2DM or prediabetes, cornelian cherry supplementation
could be an adjunct therapy for improving glycaemic control and insulin sensitivity, poten-
tially reducing the need for medication or enhancing its effectiveness. The improvements
in lipid profiles and potential reductions in blood pressure highlight the role of cornelian
cherry supplementation in cardiovascular disease prevention and management. There-
fore, this broad spectrum of beneficial effects on cardiometabolic risk factors suggests that
cornelian cherry supplementation could contribute to overall metabolic health, reducing
the risk of multiple chronic diseases. Moreover, dietary interventions, such as cornelian
cherry supplementation, are often more accepted than pharmacological therapies due to
their natural origin and the ability to incorporate them into a varied and balanced diet.
This makes dietary strategies more sustainable and appealing to individuals compared to
rigid medication regimens. However, the biomarkers investigated in this meta-analysis are
considered to be soft endpoints. These markers, while valuable for understanding inter-
mediate effects and physiological changes, do not always correlate with hard endpoints
such as mortality or major cardiovascular events, thus, the evaluation of hard endpoints
could provide a more comprehensive understanding of the long-term clinical relevance of
cornelian cherry supplementation.

5. Limitations and Future Perspectives

To our knowledge, this is the first meta-analysis that evaluated the impact of cornelian
cherry supplementation on different cardiometabolic risk factors in human RCTs, such as
BW, BMI, and WC, TG, TC, LDL-C, HDL-C, SBP, DBP, FBG, insulin, HbA1c, HOMA-IR,
AST, and ALT. Although the present meta-analysis offers valuable insights into the potential
effects of cornelian cherry supplementation on various health parameters, some limitations
should be considered.

5.1. Methodological Limitations

The primary limitation of the present meta-analysis lies in the applied methodology.
The reliance on transforming data reported as medians and interquartile ranges (IQRs)
into means and SDs assumes that the underlying distribution of the data is approximately
normal. This transformation is a common approach in meta-analyses when individual
study data are not reported in a format directly usable for pooled analyses. The formula
used to estimate means and SDs from medians and IQRs, while widely cited in the literature,
assumes normality and may not accurately capture the variability in the data, when the
distribution is substantially non-normal. Furthermore, the transformation process itself
introduces potential sources of error. Variability in the original data distribution, outliers,
and the choice of transformation formula can all influence the accuracy of the estimated
mean and SD. In addition, this transformation does not account for any asymmetry or
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kurtosis in the original data distribution, potentially leading to biased estimates of central
tendency and dispersion. Therefore, this limitation has implications for the robustness
and reliability of the meta-analysis results. Biased estimates of means and SDs derived
from transformed data can affect the precision and accuracy of effect size estimates and
may impact the overall conclusions drawn from meta-analyses. Moreover, the assumption
of normality underlying the transformation may not be justified in all cases, particularly
in studies with small sample sizes (as was the case with two of included studies) or non-
standard populations.

5.2. Study-Related Limitations

The total sample size across the included studies was relatively small (415 participants,
predominantly females (~70%)), which may impact the generalisability of the findings and
statistical power of the analyses. Also, there were considerable variations in the dosages
and durations of cornelian cherry supplementation across the included studies. Diverse
dosages and durations could lead to inconsistent outcomes and dilute the ability to draw
definitive conclusions about the optimal intervention. Moreover, the studies included
participants with different health conditions, such as MAFLD, T2DM, insulin resistance,
and postmenopausal status. Variability in participant characteristics could introduce
confounding variables that affect the outcomes. Also, in some studies, the observed
improvements in cardiometabolic risk factors might be partially attributed to weight loss,
which is inherently correlated with improvements in lipid levels and glycaemic parameters.
This suggests that the beneficial effects seen with cornelian cherry supplementation could,
in part, be due to its influence on body weight, rather than direct effects on these risk
factors. Distinguishing between the weight-loss-dependent and -independent effects of
cornelian cherry supplementation remains a challenge and highlights the need for more
controlled studies in this area. Lastly, the risk of bias assessment using the RoB 2 tool
revealed concerns and a high risk of bias across several domains in some studies. This
could potentially affect the reliability and validity of the reported results.

5.3. Geographic and Supplement Quality Limitations

Most included studies were conducted in specific geographic regions (Iran and Turkey),
which may limit the generalisability of the findings to other populations with different
dietary habits, lifestyles, and genetic backgrounds. Additionally, dietary supplements
often lack the same reproducible quality and dose consistency as pharmaceuticals. This
variability in supplement composition can impact the consistency of the observed effects
across different studies.

5.4. Future Research Directions

Addressing the presented limitations in future research could enhance the robustness
and validity of the findings regarding the potential benefits of cornelian cherry supplemen-
tation. Future studies should focus on improving of the generalisability of the findings by
including participants with various demographic backgrounds, including different ethnici-
ties, geographical regions, socioeconomic statuses, and background pathologies, therefore
providing a more comprehensive understanding of how cornelian cherry supplementation
affects different population groups, regardless of their health status. Moreover, utilising
a standardised cornelian cherry supplement with a consistent dosage of at least 300 mg
of anthocyanins would allow for more accurate comparisons across studies and facilitate
meta-analyses, thus ensuring consistency in the composition and potency of the supple-
ment, minimising variability in the observed effects. In addition to anthocyanins, future
research should evaluate the presence and concentration of other bioactive compounds in
the final supplement, such as loganic and ursolic acids, which showed beneficial results in
preclinical and some clinical studies. This comprehensive approach would provide insights
into the potential synergistic effects of these compounds on health outcomes. Furthermore,
studies with a longer duration (≥12 weeks) would allow researchers to assess the long-
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term effects of cornelian cherry supplementation on various health parameters. Lastly,
future studies should prioritise rigorous study design and implementation to minimise
the risk of bias and enhance internal validity. This approach includes employing robust
randomisation procedures, blinding participants and researchers, addressing missing data
comprehensively, and transparently reporting study protocols and outcomes. Utilising
validated outcome measures and standardised data collection methods would further
enhance the reliability and reproducibility of the findings. By addressing these key areas in
future research, researchers can advance our understanding of the potential health benefits
of cornelian cherry supplementation and provide evidence-based recommendations for its
use in clinical practice.

6. Conclusions

This meta-analysis included six RCTs with a total number of 415 participants, suggest-
ing that cornelian cherry supplementation might have beneficial effects on anthropometrical
parameters (BW and BMI), lipid profiles (TG, TC, LDL-C, and HDL-C), and glycaemic
parameters (FBG, insulin, HbA1c, and HOMA-IR). However, the inherent limitation of
the meta-analysis method, coupled with the constrains of the included studies, such as
the small sample size, heterogeneity in dosages and durations, variability in participant
characteristics, risk of bias, and limited generalisability to diverse populations and health
conditions, underscore the need for further investigation. Future research should aim to
address these limitations by including larger and more diverse study populations, utilising
standardised supplement dosages, evaluating additional bioactive compounds, extending
supplementation periods, and enhancing the study design for internal validity. By doing
so, the reliability and applicability of findings related to cornelian cherry supplementation
can be improved, while providing more robust evidence for its potential health benefits.
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