Immunoneuroendocrine, Stress, Metabolic, and Behavioural Responses in High-Fat Diet-Induced Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Diet Protocol
2.3. Physical Condition, Sensorimotor and Behavioural Tests
2.3.1. Tests Assessing Physical Condition
Grip Strength Test
Tight-Rope Test
2.3.2. Tests Assessing Sensorimotor Response
Wood Rod Test
Wire Rod Test
2.3.3. Tests Assessing Pain and Anxiety/Stress
Hot Plate Test
Elevated Plus Maze Test
Hole-Board Test
Open Field Test
2.4. Body Measurements and the Collection of Biological Samples
2.5. Determination of Plasma Concentrations of Norepinephrine (NA), Corticosterone (CTC), and Extracellular Heat-Shock Protein eHsp72
2.6. Determination of Concentrations of Systemic Inflammatory Cytokines
2.7. Oxidative Burst Assay
2.8. Determination of Adipocyte Size and Crown-like Structures in WAT
2.9. Statistical Analysis
3. Results
3.1. Analysis of Weight, Glycaemic and Lipid Profile in Obesity
3.2. Behavioural Tests
3.2.1. Physical Condition
3.2.2. Sensorimotor Responses
3.2.3. Pain and Anxiety-like Behaviour
Pain
Elevated Plus Maze Test
Hole-Board Test
Open Field Test
3.3. Systemic Biomarkers of the Stress Response
3.4. Systemic Inflammatory Cytokines
3.5. Microbicide Capacity
3.6. WAT Crown-like Structures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Speakman, J.R. Use of high-fat diets to study rodent obesity as a model of human obesity. Int. J. Obes. 2019, 43, 1491–1492. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Behnezhad, S. Obesity and anxiety symptoms: A systematic review and meta-analysis. Neuropsychiatrie 2019, 33, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, E.F.; Lee, R.; Coussons-Read, M. Elevated plasma inflammatory markers in individuals with intermittent explosive disorder and correlation with aggression in humans. JAMA Psychiatry 2014, 71, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Hilakivi-Clarke, L.; Cho, E.; Onojafe, I. High-fat diet induces aggressive behavior in male mice and rats. Life Sci. 1996, 58, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Veniaminova, E.; Cespuglio, R.; Markova, N.; Mortimer, N.; Cheung, C.W.; Steinbusch, H.W.; Lesch, K.-P.; Strekalova, T. Behavioral Features of Mice Fed with a Cholesterol-Enriched Diet: Deficient Novelty Exploration and Unaltered Aggressive Behavior. Transl. Neurosci. Clin. 2016, 2, 87–95. [Google Scholar] [CrossRef]
- Sharma, S.; Fulton, S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int. J. Obes. 2013, 37, 382–389. [Google Scholar] [CrossRef]
- Takase, K.; Tsuneoka, Y.; Oda, S.; Kuroda, M.; Funato, H. High-fat diet feeding alters olfactory-, social-, and reward-related behaviors of mice independent of obesity. Obesity 2016, 24, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.G.; Chan, R.B.; Bravo, F.V.; Miranda, A.; Silva, R.R.; Zhou, B.; Marques, F.; Pinto, V.; Cerqueira, J.J.; Di Paolo, G.; et al. The impact of chronic stress on the rat brain lipidome. Mol. Psychiatry 2015, 21, 80–88. [Google Scholar] [CrossRef]
- Peng, K.Y.; Pérez-González, R.; Alldred, M.J.; Goulbourne, C.N.; Morales-Corraliza, J.; Saito, M.; Saito, M.; Ginsberg, S.D.; Mathews, P.M.; Levy, E. Apolipoprotein E4 genotype compromises brain exosome production. Brain 2019, 142, 163–175. [Google Scholar] [CrossRef]
- Xu, J.; Gao, H.; Zhang, L.; Rong, S.; Yang, W.; Ma, C.; Chen, M.; Huang, Q.; Deng, Q.; Huang, F. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet. J. Pineal Res. 2019, 67, e12584. [Google Scholar] [CrossRef]
- Das, U.N. Is obesity an inflammatory condition? Nutrition 2001, 17, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Luppino, F.S.; De Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression: A Systematic Review and Meta-analysis of Longitudinal Studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Harrison, N.A.; Cercignani, M.; Voon, V.; Critchley, H.D. Effects of Inflammation on Hippocampus and Substantia Nigra Responses to Novelty in Healthy Human Participants. Neuropsychopharmacology 2014, 40, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Haba, R.; Shintani, N.; Onaka, Y.; Wang, H.; Takenaga, R.; Hayata, A.; Baba, A.; Hashimoto, H. Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala. Behav. Brain Res. 2012, 228, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, H.; Dahlborn, K.; Meyerson, B.J. Exploration and risk assessment in female wild house mice (Mus musculus musculus) and two laboratory strains. Physiol. Behav. 2005, 84, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Wu, S.K.; Cairney, J. Obesity and motor coordination ability in Taiwanese children with and without developmental coordination disorder. Res. Dev. Disabil. 2011, 32, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; East, P.; Blanco, E.; Kang Sim, E.; Castillo, M.; Lozoff, B.; Gahagan, S. Obesity leads to declines in motor skills acrosschildhood. Child. Care. Health Dev. 2016, 42, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Seebacher, F.; Tallis, J.; Mcshea, K.; James, R.S. Obesity-induced decreases in muscle performance are not reversed by weight loss. Int. J. Obes. 2017, 41, 1271–1278. [Google Scholar] [CrossRef]
- Morrison, C.D.; Pistell, P.J.; Ingram, D.K.; Johnson, W.D.; Liu, Y.; Fernandez-Kim, S.O.; White, C.L.; Purpera, M.N.; Uranga, R.M.; Bruce-Keller, A.J.; et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: Implications for decreased Nrf2 signaling. J. Neurochem. 2010, 114, 1581–1589. [Google Scholar] [CrossRef]
- Gálvez, I.; Hinchado, M.D.; Martín-Cordero, L.; Morán-Plata, F.J.; Graham, G.; Francisco-Morcillo, J.; Ortega, E. The anti-inflammatory and bioregulatory effects of habitual exercise in high-fat diet-induced obesity involve crown-like structures and MCP-1 in white adipose tissue. Exerc. Immunol. Rev. 2023, 29, 111–120. [Google Scholar]
- Martín-Cordero, L.; Gálvez, I.; Hinchado, M.D.; Ortega, E. Influence of Obesity and Exercise on β2-Adrenergic-Mediated Anti-Inflammatory Effects in Peritoneal Murine Macrophages. Biomedicines 2020, 8, 556. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, I.; Martín-Cordero, L.; Hinchado, M.D.; Álvarez-Barrientos, A.; Ortega, E. Anti-inflammatory effect of β2 adrenergic stimulation on circulating monocytes with a pro-inflammatory state in high-fat diet-induced obesity. Brain. Behav. Immun. 2019, 80, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Nguyen, K.D.; Goh, Y.P.S. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 2011, 11, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Haase, J.; Weyer, U.; Immig, K.; Klöting, N.; Blüher, M.; Eilers, J.; Bechmann, I.; Gericke, M. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 2014, 57, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Cabe, P.A.; Tilson, H.A.; Mitchell, C.L.; Dennis, R. A Simple Recording Grip Strength Device 1. Pharmacol. Biochem. Behav. 1978, 8, 101–102. [Google Scholar] [CrossRef]
- Baeza, I.; De Castro, N.M.; Giménez-Llort, L.; De la Fuente, M. Ovariectomy, a model of menopause in rodents, causes a premature aging of the nervous and immune systems. J. Neuroimmunol. 2010, 219, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Himanshu; Dharmila; Sarkar, D.; Nutan. A review of behavioral tests to evaluate different types of anxiety and anti-anxiety effects. Clin. Psychopharmacol. Neurosci. 2020, 18, 341–351. [Google Scholar] [CrossRef]
- Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef]
- Viveros, M.P.; Fernández, B.; Guayerbas, N.; De la Fuente, M. Behavioral characterization of a mouse model of premature immunosenescence. J. Neuroimmunol. 2001, 114, 80–88. [Google Scholar] [CrossRef] [PubMed]
- File, S.E.; Wardill, A.G. Validity of head-dipping as a measure of exploration in a modified hole-board. Psychopharmacologia 1975, 44, 53–59. [Google Scholar] [CrossRef]
- de Cabo de la Vega, C.; Pujol, A.; Viveros, M.P. Neonatally administered naltrexone affects several behavioral responses in adult rats of both genders. Pharmacol. Biochem. Behav. 1995, 50, 277–286. [Google Scholar] [CrossRef]
- Albonetti, M.E.; Farabollini, F. Behavioural responses to single and repeated restraint in male and female rats. Behav. Process. 1992, 28, 97–109. [Google Scholar] [CrossRef]
- Abbott, K.N.; Arnott, C.K.; Westbrook, R.F.; Tran, D.M.D. The effect of high fat, high sugar, and combined high fat-high sugar diets on spatial learning and memory in rodents: A meta-analysis. Neurosci. Biobehav. Rev. 2019, 107, 399–421. [Google Scholar] [CrossRef] [PubMed]
- Basdevant, A. L’obésité: Origines et conséquences d’une épidémie. Comptes Rendus Biol. 2006, 329, 562–569. [Google Scholar] [CrossRef]
- Jellinger, P.S. Metabolic consequences of hyperglycemia and insulin resistance. Clin. Cornerstone 2007, 8, S30–S42. [Google Scholar] [CrossRef]
- Liou, T.H.; Pi-Sunyer, F.X.; Laferrère, B. Physical disability and obesity. Nutr. Rev. 2005, 63, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 2016, 17, 467–483. [Google Scholar] [CrossRef]
- Visser, M.; Kritchevsky, S.B.; Goodpaster, B.H.; Newman, A.B.; Nevitt, M.; Elizabeth, S.; Harris, T.B. Leg Muscle Mass and Composition in Relation to Lower Extremity Performance in Men and Women Aged 70 to 79: The Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2002, 50, 787–979. [Google Scholar] [CrossRef]
- Roy, B.; Curtis, M.E.; Fears, L.S.; Nahashon, S.N.; Fentress, H.M. Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy. Front. Physiol. 2016, 7, 439. [Google Scholar] [CrossRef] [PubMed]
- Kawao, N.; Takafuji, Y.; Ishida, M.; Okumoto, K.; Morita, H.; Muratani, M.; Kaji, H. Roles of the vestibular system in obesity and impaired glucose metabolism in high-fat diet-fed mice. PLoS ONE 2020, 15, e0228685. [Google Scholar] [CrossRef] [PubMed]
- Bolzenius, J.D.; Laidlaw, D.H.; Cabeen, R.P.; Conturo, T.E.; McMichael, A.R.; Lane, E.M.; Heaps, J.M.; Salminen, L.E.; Baker, L.M.; Scott, S.E.; et al. Brain structure and cognitive correlates of body mass index in healthy older adults. Behav. Brain Res. 2015, 278, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Walther, K.; Birdsill, A.C.; Glisky, E.L.; Ryan, L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum. Brain Mapp. 2010, 31, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chan, J.S.Y.; Ren, L.; Yan, J.H. Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural Plast. 2016, 2016, 2473081. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Huh, Y.; Ji, R.R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2019, 33, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Dupuis, R.; Costentin, J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav. Brain Res. 1994, 61, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.M.; Lightowler, S.; Stanhope, K.J.; Kennett, G.A.; Dourish, C.T. Measurement of anxiety in transgenic mice. Rev. Neurosci. 2000, 11, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017, 17, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Kyratzi, E.; Lamprokostopoulou, A.; Chrousos, G.P.; Charmandari, E. Stress, the Stress System and the Role of Glucocorticoids. Neuroimmunomodulation 2014, 22, 6–19. [Google Scholar] [CrossRef]
- Dallman, M.F.; Pecoraro, N.C.; La Fleur, S.E.; Warne, J.P.; Ginsberg, B.; Akana, S.F.; Laugero, K.C.; Houshyar, H.; Strack, A.M.; Bhatnagar, S.; et al. Glucocorticoids, chronic stress, and obesity. Prog. Brain Res. 2006, 153, 75–105. [Google Scholar] [CrossRef] [PubMed]
- Astrupl, A.V.; Christensen, N.J.; Leif, B. Reduced plasma noradrenaline concentrations in simple- obese and diabetic obese patients. Clin. Sci. 1991, 80, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Marmol, P.; Moliner, A.; Björnholm, M.; Zhang, C.; Shokat, K.M.; Ibanez, C.F. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. eLife 2014, 3, e03245. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Ding, S. Obesity-associated sympathetic overactivity in children and adolescents: The role of catecholamine resistance in lipid metabolism. J. Pediatr. Endocrinol. Metab. 2015, 29, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Thorp, A.A.; Schlaich, M.P. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. J. Diabetes Res. 2015, 2015, 341583. [Google Scholar] [CrossRef] [PubMed]
- Straznicky, N.E.; Lambert, G.W.; Lambert, E.A. Noradrenergic dysfunction in obesity: An overview of the effects of weight loss. Curr. Opin. Lipidol. 2010, 21, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Straznicky, N.E.; Lambert, E.A.; Nestel, P.J.; McGrane, M.T.; Dawood, T.; Schlaich, M.P.; Masuo, K.; Eikelis, N.; De Courten, B.; Mariani, J.A.; et al. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects. Diabetes 2010, 59, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cordero, L.; García, J.J.; Hinchado, M.D.; Ortega, E. The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: Effect of exercise. Cardiovasc. Diabetol. 2011, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Canada, J.M.; Van Tassell, B.W.; Wise, C.M.; Dinarello, C.A. Interleukin-1 blockade in rheumatoid arthritis and heart failure: A missed opportunity? Int. J. Cardiol. 2014, 171, 125–126. [Google Scholar] [CrossRef]
- Dinarello, C.A.; van der Meer, J.W.M. Treating inflammation by blocking interleukin-1 in humans. Semin. Immunol. 2013, 25, 469–484. [Google Scholar] [CrossRef]
- Dinarello, C.A. An expanding role for interleukin-1 blockade from gout to cancer. Mol. Med. 2014, 20 (Suppl. S1), 43–58. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, H.O.; del Rey, A. Processing of Cytokine Signals at CNS Levels. Relevance for Immune-HPA Axis Interactions. NeuroImmune Biol. 2007, 7, 227–240. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Chrousos, G.P. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann. N. Y. Acad. Sci. 2002, 966, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Elenkov, I.J.; Iezzoni, D.G.; Daly, A.; Harris, A.G.; Chrousos, G.P. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation 2005, 12, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Ortega, E.; Gálvez, I.; Martín-Cordero, L. Adrenergic Regulation of Macrophage-Mediated Innate/Inflammatory Responses in Obesity and Exercise in this Condition: Role of β2 Adrenergic Receptors. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cordero, L.; García, J.J.; Ortega, E. Noradrenaline-mediated inhibition of inflammatory cytokines is altered in macrophages from obese Zucker rats: Effect of habitual exercise. Endocr. Metab. Immune Disord. Drug Targets 2013, 13, 234–239. [Google Scholar] [CrossRef]
- Gálvez, I.; Martín-Cordero, L.; Hinchado, M.D.; Ortega, E. β2 Adrenergic Regulation of the Phagocytic and Microbicide Capacity of Circulating Monocytes: Influence of Obesity and Exercise. Nutrients 2020, 12, 1438. [Google Scholar] [CrossRef]
- Martín-Cordero, L.; Reis, F.; Garcia, J.J.; Teixeira, F.; Ortega, E. Effect of exercise without diet on functional capacity of peritoneal macrophages and TNF-a levels in blood and in adipose tissue in the obese Zucker rat model of the metabolic syndrome. Proc. Nutr. Soc. 2013, 72, E76. [Google Scholar] [CrossRef]
- Ortega, E.; Martín-Cordero, L.; Garcia-Roves, P.M.; Chicco, A.J.; González-Franquesa, A.; Marado, D. Diabetes Mellitus and Metabolic Syndrome. In Biomarkers of Cardiometabolic Risk, Inflammation and Disease; Palavra, F., Reis, F., Marado, D., Sena, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 55–79. ISBN 9783319160184. [Google Scholar]
- Ortega, E.; Giraldo, E.; Hinchado, M.D.; Martín, L.; García, J.J.; la Fuente, M.D. Neuroimmunomodulation during Exercise: Role of Catecholamines as ‘Stress Mediator’ and/or ‘Danger Signal’ for the Innate Immune Response. Neuroimmunomodulation 2007, 14, 206–212. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Wang, H.; Yang, X.; Yang, J.; Xiong, W.; Wen, Q.; Ma, L. Glucocorticoids Suppress Antimicrobial Autophagy and Nitric Oxide Production and Facilitate Mycobacterial Survival in Macrophages. Sci. Rep. 2017, 7, 982. [Google Scholar] [CrossRef]
- Schaffner, A. Therapeutic concentrations of glucocorticoids suppress the antimicrobial activity of human macrophages without impairing their responsiveness to gamma interferon. J. Clin. Investig. 1985, 76, 1755. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed]
- Musi, N.; Guardado-Mendoza, R. Adipose Tissue as an Endocrine Organ. In Cellular Endocrinology in Health and Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 229–237. ISBN 9780124081345. [Google Scholar]
- McArdle, M.A.; Finucane, O.M.; Connaughton, R.M.; McMorrow, A.M.; Roche, H.M. Mechanisms of obesity-induced inflammation and insulin resistance: Insights into the emerging role of nutritional strategies. Front. Endocrinol. 2013, 4, 52. [Google Scholar] [CrossRef] [PubMed]
Lean | Obese | p-value | ES | |
---|---|---|---|---|
Body weight (g) | 23.8 ± 1.8 (22.2, 25.3) | 39.1 ± 8.5 (30.2, 48) *** | p = 0.0001 *** | 2.7 |
Adipocyte size (μm) | 58.8 ± 2.4 (51.1, 66.5) | 105 ± 2.4 (79.7, 131.2) *** | p = 0.0007 *** | 3.9 |
Food intake (g/day) | 3.5 ± 0.08 (3.4, 3.5) | 3 ± 0.3 (2.8, 3.1) *** | p = 3.2392 × 10−9 | 2.6 |
Glucose (mg/dL) | 173 ± 51 (130.4, 215.6) | 247.3 ± 96.2 (146.4, 348.39) * | p = 0.02 * | 1 |
Cholesterol (mg/dL) | ||||
- Total Cholesterol | <100 | 198 ± 88.6 (88, 308) * | p = 0.03 * | 1.4 |
- HDL Cholesterol | 50.5 ± 7.1 (32.3, 68.7) | >80 * | p = 0.02 * | 1.9 |
- LDLc Cholesterol | 32 ± 7.3 (14.2, 49.8) | 90 ± 32.9 (5.3, 174.5) * | p = 0.04 * | 1 |
Triglycerides (mg/dL) | <50 | 88.6 ± 14 (49.7, 127.5) | p = 0.16 | 0.7 |
Hot Plate Test | Lean | Obese | p-Value | ES |
---|---|---|---|---|
Pain threshold (°C) | 46.4 ± 0.7 (45, 47.7) | 46.8 ± 0.3 (46.3, 47.2) | p = 0.27 | 0.22 |
Pain latency (s) | 5.1 ± 0.4 (4.3, 5.8) | 4.2 ± 0.6 (3.2, 5.2) | p = 0.07 | 0.52 |
Lean | Obese | p-Value | ES | |
---|---|---|---|---|
Corticosterone (ng/mL) | 1390 ± 282 (1040.1, 1740.1) | 1598.2 ± 42.3 (1545.6, 1650.7) * | p = 0.04 * | 1.03 |
Noradrenaline (pg/mL) | 11.69 ± 6 (2.2, 21.2) | 7.85 ± 2 (5.5, 10.2) * | p = 0.05 | 0.92 |
eHsp72 (ng/mL) | 1.68 ± 1.4 (−0.1, 3.5) | 1.49 ± 0.2 (1.3, 1.7) | p = 0.4 | 0.18 |
Lean | Obese | p-Value | ES | |
---|---|---|---|---|
IL-1β | 10.4 ± 2 (4.8, 16.1) | 13.5 ± 0 (13.5, 13.6) * | p = 0.04 * | 0.97 |
IL-10 | 22.5 ± 5.6 (7, 38) | 25.3 ± 9.7 (−1.7, 52.3) | p = 0.39 | 0.16 |
IL-6 | 15 ± 2.2 (8.7, 21.2) | 18.1 ± 3.1 (9.4, 26.8) | p = 0.23 | 0.5 |
TNF-α | 14.3 ± 4.1 (2.8, 25.8) | 17.8 ± 4.4 (3.6, 27.9) | p = 0.41 | 0.2 |
Lean | Obese | p-Value | ES | |
---|---|---|---|---|
CLS | 0.2 ± 0.2 (−0.4, 0.8) | 3.8 ± 0.6 (2.2, 5.4) *** | p = 0.0002 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, M.d.C.; Gálvez, I.; Hinchado, M.D.; Otero, E.; Torres-Piles, S.; Francisco-Morcillo, J.; de La Fuente, M.; Martín-Cordero, L.; Ortega, E. Immunoneuroendocrine, Stress, Metabolic, and Behavioural Responses in High-Fat Diet-Induced Obesity. Nutrients 2024, 16, 2209. https://doi.org/10.3390/nu16142209
Navarro MdC, Gálvez I, Hinchado MD, Otero E, Torres-Piles S, Francisco-Morcillo J, de La Fuente M, Martín-Cordero L, Ortega E. Immunoneuroendocrine, Stress, Metabolic, and Behavioural Responses in High-Fat Diet-Induced Obesity. Nutrients. 2024; 16(14):2209. https://doi.org/10.3390/nu16142209
Chicago/Turabian StyleNavarro, María del Carmen, Isabel Gálvez, María Dolores Hinchado, Eduardo Otero, Silvia Torres-Piles, Javier Francisco-Morcillo, Mónica de La Fuente, Leticia Martín-Cordero, and Eduardo Ortega. 2024. "Immunoneuroendocrine, Stress, Metabolic, and Behavioural Responses in High-Fat Diet-Induced Obesity" Nutrients 16, no. 14: 2209. https://doi.org/10.3390/nu16142209
APA StyleNavarro, M. d. C., Gálvez, I., Hinchado, M. D., Otero, E., Torres-Piles, S., Francisco-Morcillo, J., de La Fuente, M., Martín-Cordero, L., & Ortega, E. (2024). Immunoneuroendocrine, Stress, Metabolic, and Behavioural Responses in High-Fat Diet-Induced Obesity. Nutrients, 16(14), 2209. https://doi.org/10.3390/nu16142209