In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Product (NP) Databases
2.2. Animals
2.3. Metabolomics Serum Collection
2.4. Metabolomics, Pathway Analyses, Chemoinformatics, and Data Visualization
2.5. In Vitro Inhibition Uptake Assay
2.6. OAT1 Magnetic Bead Binding Assay
2.7. ChemRICH Analysis
3. Results
3.1. Serum Metabolomics of Oat1 and Oat3 KO Mice Reveal Significant Alterations in Circulating Levels of Natural Products
3.2. Partial Least Squares Discriminant Analysis Yields Clear Separation of Natural Products in Oat1 and Oat3 KO Serum
3.3. Cofactors and Vitamins Are among the Several Pathways Altered in Oat3 KO Serum
3.4. Chemical Property Analysis Helps Differentiate OAT- and OAT3-Dependent Natural Products
3.5. OAT1 In Vitro Uptake Assay and Protein Binding Validation
Binding Assay | In Vitro Cell-Based Transport Assay | Previous in Vitro Cell Assay Validation | References | |
---|---|---|---|---|
Citric acid | X | |||
Alpha ketoglutaric acid | X | |||
Succinic acid | X | |||
D-+-Malic acid | X | |||
Elaidic acid | X | |||
Cis-aconitic acid | X | |||
Arabinose | X | |||
Rutin | X | |||
Biochanin A | X | X | [44] | |
Chrysin | X | X | [44] | |
Ginkgolide B | X | X | [44] | |
P-hydroxycinnamic acid | X | |||
Serotonin | X | |||
N-acetylglycine | X | |||
Homovanillic acid | X | |||
Saccharin | X | |||
Ascorbic acid | X | |||
Folic acid | X | |||
Thiamine hydrochloride | X | |||
Ergocalciferol | X | |||
Niacin | X | X | ||
Skatole | X | |||
3-Indoleacrylic acid | X | |||
Fisetin | X | [45] | ||
Galangin | X | [45] | ||
Luteolin | X | [45] | ||
Morin | X | [45] | ||
Myricetin | X | [44] | ||
Silymarin | X | [44] | ||
Diosmin | X | [44] | ||
Genistein | X | [44] | ||
Quercetin | X | [44] | ||
Phloridzin | X | [44] | ||
Lithospermic acid | X | [46] | ||
Rosmarinic acid | X | [47] | ||
Salvianolic acid A | X | [47] | ||
Rhein | X | [47] | ||
Wogonin | X | [48] | ||
Baicalein | X | [48] | ||
Aristolochic acid (AA-I) | X | [49] | ||
Aristolochic acid (AA-II) | X | [49] | ||
Gallic acid | X | [50] | ||
Ferulic acid | X | [50] | ||
Protocatechuic acid | X | [50] | ||
Sinapinic acid | X | [50] | ||
Vanillic acid | X | [50] | ||
1,3-dicaffeoylquinic acid | X | [50] | ||
18β-Glycyrrhetinic acid | X | [50] | ||
Silybin | X | [51] | ||
Emodin | X | [52] | ||
Aloe emodin | X | [52] | ||
Apigenin | X | [53] | ||
Chrysophanol | X | [54] | ||
Obtusifolin | X | [54] | ||
Quercetin-3-O-glucuronide | X | [55] | ||
Ellagic acid | X | [56] | ||
Flavone | X | [57] | ||
5,6,2′,6′-tetramethoxyflavone | X | [57] | ||
Wedelolactone | X | [58] | ||
Calycosin | X | [58] | ||
Oroxylin A | X | [58] | ||
Viscidulin III | X | [58] | ||
Scullcapflavone II | X | [58] | ||
Ginkgolide A | X | [59] | ||
Bilobalide | X | [59] | ||
Neochamaejasmine A | X | [60] | ||
(−)-epigallocatechin-3-gallate (EGCG) | X | [23] | ||
Cinnamic acid | X | X * | [26] | |
Indoxyl sulfate potassium salt | X * | [26] | ||
4-Hydroxyphenylpyruvic acid | X * | [26] | ||
4-hydroxyphenylacetic acid | X * | [26] | ||
3-indoacetic acid | X * | [26] | ||
2-oxindole | X * | [26] | ||
Tyramine | X * | [26] | ||
Indole-3-carboxaldehyde | X * | [26] |
3.6. ChemRICH Classification and Analysis of OAT1 and OAT3 In Vitro Interacting Natural Products
3.6.1. OAT1 Chemrich Analysis
3.6.2. OAT3 Chemrich Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nigam, S.K.; Granados, J.C. Oat, oatp, and mrp drug transporters and the remote sensing and signaling theory. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 637–660. [Google Scholar] [CrossRef]
- Peter, S.; Navis, G.; de Borst, M.H.; von Schacky, C.; van Orten-Luiten, A.C.B.; Zhernakova, A.; Witkamp, R.F.; Janse, A.; Weber, P.; Bakker, S.J.L.; et al. Public health relevance of drug-nutrition interactions. Eur. J. Nutr. 2017, 56, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Mohn, E.S.; Kern, H.J.; Saltzman, E.; Mitmesser, S.H.; McKay, D.L. Evidence of drug-nutrient interactions with chronic use of commonly prescribed medications: An update. Pharmaceutics 2018, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.; Holler, A.; Michel, M. Potential drug-nutrient interactions of 45 vitamins, minerals, trace elements, and associated dietary compounds with acetylsalicylic acid and warfarin—A review of the literature. Nutrients 2024, 16, 950. [Google Scholar] [CrossRef] [PubMed]
- Lundahl, J.; Regårdh, C.G.; Edgar, B.; Johnsson, G. Effects of grapefruit juice ingestion—Pharmacokinetics and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur. J. Clin. Pharmacol. 1997, 52, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Banbury, L.K.; Leach, D.N. Antioxidant activity of 45 chinese herbs and the relationship with their tcm characteristics. Evid. Based Complement. Altern. Med. 2008, 5, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Pirbalouti, A.; Siahpoosh, A.; Setayesh, M.; Craker, L. Antioxidant activity, total phenolic and flavonoid contents of some medicinal and aromatic plants used as herbal teas and condiments in iran. J. Med. Food 2014, 17, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A.J.; Schmidt, R.J. The antioxidant activity of chinese herbs for eczema and of placebo herbs—I. J. Ethnopharmacol. 1997, 56, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Yadav, S.; Bhardwaj, D.; Kumar, A.; Okanlawon, M.U. Flavonoids as potential natural compounds for the prevention and treatment of eczema. Antiinflamm. Antiallergy Agents Med. Chem. 2024, 23, 71–84. [Google Scholar] [CrossRef]
- Granados, J.C.; Watrous, J.D.; Long, T.; Rosenthal, S.B.; Cheng, S.; Jain, M.; Nigam, S.K. Regulation of human endogenous metabolites by drug transporters and drug metabolizing enzymes: An analysis of targeted snp-metabolite associations. Metabolites 2023, 13, 171. [Google Scholar] [CrossRef]
- Ermakov, V.S.; Granados, J.C.; Nigam, S.K. Remote effects of kidney drug transporter oat1 on gut microbiome composition and urate homeostasis. JCI Insight 2023, 8, 172341. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.H.; Sekine, T.; Fukushima, J.I.; Kanai, Y.; Kobayashi, Y.; Goya, T.; Endou, H. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 2001, 59, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.T.; Singh, P.; Nigam, S.K. Gut-derived uremic toxin handling in vivo requires oat-mediated tubular secretion in chronic kidney disease. JCI Insight 2020, 5, 133817. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Nagle, M.A.; Kouznetsova, V.L.; Tsigelny, I.F.; Nigam, S.K. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (oat1). J. Proteome Res. 2011, 10, 2842–2851. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Takeda, M.; Narikawa, S.; Enomoto, A.; Ichida, K.; Endou, H. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 2002, 301, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Abdur, R.; Noor, J. Natural products as a potential enzyme inhibitors from medicinal plants. In Enzyme Inhibitors and Activators; Murat, S., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 7. [Google Scholar]
- Leitzmann, C. Characteristics and health benefits of phytochemicals. Forsch. Komplementmed. 2016, 23, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.Y.; Takeda, M.; Kim, D.K.; Tojo, A.; Narikawa, S.; Yoo, B.S.; Hosoyamada, M.; Cha, S.H.; Sekine, T.; Endou, H. Characterization of ochratoxin a transport by human organic anion transporters. Life Sci. 2001, 69, 2123–2135. [Google Scholar] [CrossRef] [PubMed]
- Gallo, K.; Kemmler, E.; Goede, A.; Becker, F.; Dunkel, M.; Preissner, R.; Banerjee, P. Supernatural 3.0-a database of natural products and natural product-based derivatives. Nucleic Acids Res. 2023, 51, D654–D659. [Google Scholar] [CrossRef]
- Butt, M.S.; Imran, A.; Sharif, M.K.; Ahmad, R.S.; Xiao, H.; Imran, M.; Rsool, H.A. Black tea polyphenols: A mechanistic treatise. Crit. Rev. Food Sci. Nutr. 2014, 54, 1002–1011. [Google Scholar] [CrossRef]
- VanderJagt, T.J.; Ghattas, R.; VanderJagt, D.J.; Crossey, M.; Glew, R.H. Comparison of the total antioxidant content of 30 widely used medicinal plants of new mexico. Life Sci. 2002, 70, 1035–1040. [Google Scholar] [CrossRef]
- Knop, J.; Misaka, S.; Singer, K.; Hoier, E.; Muller, F.; Glaeser, H.; Konig, J.; Fromm, M.F. Inhibitory effects of green tea and (-)-epigallocatechin gallate on transport by oatp1b1, oatp1b3, oct1, oct2, mate1, mate2-k and p-glycoprotein. PLoS ONE 2015, 10, e0139370. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kondo, M.; Hiramatsu, R.; Nabekura, T. (-)-epigallocatechin-3-gallate inhibits human and rat renal organic anion transporters. ACS Omega 2021, 6, 4347–4354. [Google Scholar] [CrossRef] [PubMed]
- Grollman, A.P.; Shibutani, S.; Moriya, M.; Miller, F.; Wu, L.; Moll, U.; Suzuki, N.; Fernandes, A.; Rosenquist, T.; Medverec, Z.; et al. Aristolochic acid and the etiology of endemic (balkan) nephropathy. Proc. Natl. Acad. Sci. USA 2007, 104, 12129–12134. [Google Scholar] [CrossRef] [PubMed]
- Reker, D.; Shi, Y.; Kirtane, A.R.; Hess, K.; Zhong, G.J.; Crane, E.; Lin, C.H.; Langer, R.; Traverso, G. Machine learning uncovers food- and excipient-drug interactions. Cell Rep. 2020, 30, 3710–3716.e14. [Google Scholar] [CrossRef] [PubMed]
- Granados, J.C.; Ermakov, V.; Maity, K.; Vera, D.R.; Chang, G.; Nigam, S.K. The kidney drug transporter oat1 regulates gut microbiome-dependent host metabolism. JCI Insight 2023, 8, 160437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, Y.; Wang, S.; Yang, X.; Zhou, K.; Xu, C.; Zhang, X.; Fan, J.; Hou, D.; Li, X.; et al. Npass database update 2023: Quantitative natural product activity and species source database for biomedical research. Nucleic Acids Res. 2023, 51, D621–D628. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y. TCM database@taiwan: The world’s largest traditional chinese medicine database for drug screening in silico. PLoS ONE 2011, 6, e15939. [Google Scholar] [CrossRef] [PubMed]
- Kiewhuo, K.; Gogoi, D.; Mahanta, H.J.; Rawal, R.K.; Das, D.; Vaikundamani, S.; Jamir, E.; Sastry, G.N. Osadhi—An online structural and analytics based database for herbs of India. Comput. Biol. Chem. 2023, 102, 107799. [Google Scholar] [CrossRef]
- Committee for the Update of the Guide for the Care and Use of Laboratory Animals; Institute for Laboratory Animal Research; Division on Earth and Life Studies; National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Eraly, S.A.; Vallon, V.; Vaughn, D.A.; Gangoiti, J.A.; Richter, K.; Nagle, M.; Monte, J.C.; Rieg, T.; Truong, D.M.; Long, J.M.; et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in oat1 knock-out mice. J. Biol. Chem. 2006, 281, 5072–5083. [Google Scholar] [CrossRef]
- Wu, W.; Jamshidi, N.; Eraly, S.A.; Liu, H.C.; Bush, K.T.; Palsson, B.O.; Nigam, S.K. Multispecific drug transporter slc22a8 (oat3) regulates multiple metabolic and signaling pathways. Drug Metab. Dispos. 2013, 41, 1825–1834. [Google Scholar] [CrossRef]
- Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 2009, 81, 6656–6667. [Google Scholar] [CrossRef] [PubMed]
- Granados, J.C.; Nigam, A.K.; Bush, K.T.; Jamshidi, N.; Nigam, S.K. A key role for the transporter oat1 in systemic lipid metabolism. J. Biol. Chem. 2021, 296, 100603. [Google Scholar] [CrossRef] [PubMed]
- Bento, A.P.; Hersey, A.; Felix, E.; Landrum, G.; Gaulton, A.; Atkinson, F.; Bellis, L.J.; De Veij, M.; Leach, A.R. An open source chemical structure curation pipeline using rdkit. J. Cheminform. 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data mining toolbox in python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Barupal, D.K.; Fiehn, O. Chemical similarity enrichment analysis (chemrich) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 2017, 7, 14567. [Google Scholar] [CrossRef] [PubMed]
- Granados, J.C.; Richelle, A.; Gutierrez, J.M.; Zhang, P.; Zhang, X.; Bhatnagar, V.; Lewis, N.E.; Nigam, S.K. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters oat1 and oat3. J. Biol. Chem. 2021, 296, 100575. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Bush, K.T.; Nigam, S.K. Key role for the organic anion transporters, oat1 and oat3, in the in vivo handling of uremic toxins and solutes. Sci. Rep. 2017, 7, 4939. [Google Scholar] [CrossRef] [PubMed]
- Granados, J.C.; Bhatnagar, V.; Nigam, S.K. Blockade of organic anion transport in humans after treatment with the drug probenecid leads to major metabolic alterations in plasma and urine. Clin. Pharmacol. Ther. 2022, 112, 653–664. [Google Scholar] [CrossRef]
- Pacheco-Alvarez, D.; Solorzano-Vargas, R.S.; Del Rio, A.L. Biotin in metabolism and its relationship to human disease. Arch. Med. Res. 2002, 33, 439–447. [Google Scholar] [CrossRef]
- Parra, M.; Stahl, S.; Hellmann, H. Vitamin b-6 and its role in cell metabolism and physiology. Cells 2018, 7, 84. [Google Scholar] [CrossRef]
- Sriram, K.; Manzanares, W.; Joseph, K. Thiamine in nutrition therapy. Nutr. Clin. Pract. 2012, 27, 41–50. [Google Scholar] [CrossRef] [PubMed]
- An, G.; Wang, X.; Morris, M.E. Flavonoids are inhibitors of human organic anion transporter 1 (oat1)-mediated transport. Drug Metab. Dispos. 2014, 42, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Zamek-Gliszczynski, M.J.; Hoffmaster, K.A.; Nezasa, K.; Tallman, M.N.; Brouwer, K.L. Integration of hepatic drug transporters and phase ii metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur. J. Pharm. Sci. 2006, 27, 447–486. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sweet, D.H. Competitive inhibition of human organic anion transporters 1 (slc22a6), 3 (slc22a8) and 4 (slc22a11) by major components of the medicinal herb salvia miltiorrhiza (danshen). Drug Metab. Pharmacokinet. 2013, 28, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Sweet, D.H. The anthraquinone drug rhein potently interferes with organic anion transporter-mediated renal elimination. Biochem. Pharmacol. 2013, 86, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Z.; Zheng, J.; Gee Cheung, F.S.; Chan, T.; Zhu, L.; Zhuge, H.; Zhou, F. The inhibitory effects of the bioactive components isolated from scutellaria baicalensis on the cellular uptake mediated by the essential solute carrier transporters. J. Pharm. Sci. 2013, 102, 4205–4211. [Google Scholar] [CrossRef] [PubMed]
- Babu, E.; Takeda, M.; Nishida, R.; Noshiro-Kofuji, R.; Yoshida, M.; Ueda, S.; Fukutomi, T.; Anzai, N.; Endou, H. Interactions of human organic anion transporters with aristolochic acids. J. Pharmacol. Sci. 2010, 113, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sweet, D.H. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (slc22a6), 3 (slc22a8), and 4 (slc22a11). Biochem. Pharmacol. 2012, 84, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.S.; Seo, K.; Lim, S.C.; Han, H.K. Interaction characteristics of flavonoids with human organic anion transporter 1 (hoat1) and 3 (hoat3). Pharmacol. Res. 2007, 56, 468–473. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, L.; Hu, H.; Qin, Y.; Bian, Y.; Jiang, H.; Zhou, H.; Yu, L.; Zeng, S. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (slc22a6) and 3 (slc22a8) and drug-drug interaction in rats. J. Ethnopharmacol. 2014, 153, 864–871. [Google Scholar] [CrossRef]
- Wu, T.; Li, H.; Chen, J.; Cao, Y.; Fu, W.; Zhou, P.; Pang, J. Apigenin, a novel candidate involving herb-drug interaction (hdi), interacts with organic anion transporter 1 (oat1). Pharmacol. Rep. 2017, 69, 1254–1262. [Google Scholar] [CrossRef]
- Wang, X.; Han, L.; Li, G.; Peng, W.; Gao, X.; Klaassen, C.D.; Fan, G.; Zhang, Y. From the cover: Identification of natural products as inhibitors of human organic anion transporters (oat1 and oat3) and their protective effect on mercury-induced toxicity. Toxicol. Sci. 2018, 161, 321–334. [Google Scholar] [CrossRef]
- Wong, C.C.; Botting, N.P.; Orfila, C.; Al-Maharik, N.; Williamson, G. Flavonoid conjugates interact with organic anion transporters (oats) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (oat1/slc22a6). Biochem. Pharmacol. 2011, 81, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Whitley, A.C.; Sweet, D.H.; Walle, T. The dietary polyphenol ellagic acid is a potent inhibitor of hoat1. Drug Metab. Dispos. 2005, 33, 1097–1100. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Li, C.; Khutsishvili, M.; Fayvush, G.; Atha, D.; Zhang, Y.; Borris, R.P. Unusual flavones from primula macrocalyx as inhibitors of oat1 and oat3 and as antifungal agents against candida rugosa. Sci. Rep. 2019, 9, 9230. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Wang, X.; Bi, Y.J.; Yu, H.S.; Wei, J.; Zhang, Y.; Han, L.F.; Zhang, Y.C. Potent inhibitors of organic anion transporters 1 and 3 from natural compounds and their protective effect on aristolochic acid nephropathy. Toxicol. Sci. 2020, 175, 279–291. [Google Scholar] [CrossRef]
- Yaro, P.; Nie, J.; Xu, M.C.; Zeng, K.; He, H.H.; Yao, J.B.; Wang, R.W.; Zeng, S. Influence of organic anion transporter 1/3 on the pharmacokinetics and renal excretion of ginkgolides and bilobalide. J. Ethnopharmacol. 2019, 243, 112098. [Google Scholar] [CrossRef]
- Pan, L.-Y.; Zeng, K.; Li, L.; Lou, Y.; Zeng, S. The inhibition mechanism of the uptake of lamivudine via human organic anion transporter 1 by stellera chamaejasme l. Extracts. Chin. J. Nat. Med. 2019, 17, 682–689. [Google Scholar] [CrossRef]
- Zhou, L.; Zuo, Z.; Chow, M.S. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 2005, 45, 1345–1359. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, D.; Li, L.; Yang, S.; Du, G.; Lu, Y. Anti-inflammatory effects and mechanisms of rhein, an anthraquinone compound, and its applications in treating arthritis: A review. Nat. Prod. Bioprospect. 2020, 10, 445–452. [Google Scholar] [CrossRef]
- Nicolas, P.; Tod, M.; Padoin, C.; Petitjean, O. Clinical pharmacokinetics of diacerein. Clin. Pharmacokinet. 1998, 35, 347–359. [Google Scholar] [CrossRef]
- Iwaki, M.; Shimada, H.; Irino, Y.; Take, M.; Egashira, S. Inhibition of methotrexate uptake via organic anion transporters oat1 and oat3 by glucuronides of nonsteroidal anti-inflammatory drugs. Biol. Pharm. Bull. 2017, 40, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Umer, S.M.; Solangi, M.; Khan, K.M.; Saleem, R.S.Z. Indole-containing natural products 2019–2022: Isolations, reappraisals, syntheses, and biological activities. Molecules 2022, 27, 7586. [Google Scholar] [CrossRef]
- Nozaki, Y.; Kusuhara, H.; Kondo, T.; Hasegawa, M.; Shiroyanagi, Y.; Nakazawa, H.; Okano, T.; Sugiyama, Y. Characterization of the uptake of organic anion transporter (oat) 1 and oat3 substrates by human kidney slices. J. Pharmacol. Exp. Ther. 2007, 321, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Terada, T.; Ogasawara, K.; Katsura, T.; Inui, K. Adaptive responses of renal organic anion transporter 3 (oat3) during cholestasis. Am. J. Physiol. Ren. Physiol. 2008, 295, F247–F252. [Google Scholar] [CrossRef]
- Sugiyama, D.; Kusuhara, H.; Shitara, Y.; Abe, T.; Meier, P.J.; Sekine, T.; Endou, H.; Suzuki, H.; Sugiyama, Y. Characterization of the efflux transport of 17beta-estradiol-d-17beta-glucuronide from the brain across the blood-brain barrier. J. Pharmacol. Exp. Ther. 2001, 298, 316–322. [Google Scholar]
- Mitchell, T.; Kumar, P.; Reddy, T.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Dietary oxalate and kidney stone formation. Am. J. Physiol. Ren. Physiol. 2019, 316, F409–F413. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, T.; Kusuhara, H.; Takadate, A.; Endou, H.; Otagiri, M.; Sugiyama, Y. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004, 65, 162–174. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Nigam, A.K.; Li, J.G.; Lall, K.; Shi, D.; Bush, K.T.; Bhatnagar, V.; Abagyan, R.; Nigam, S.K. Unique metabolite preferences of the drug transporters oat1 and oat3 analyzed by machine learning. J. Biol. Chem. 2020, 295, 1829–1842. [Google Scholar] [CrossRef]
- Chun, O.K.; Chung, S.J.; Song, W.O. Estimated dietary flavonoid intake and major food sources of U.S. Adults. J. Nutr. 2007, 137, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Ozarowski, M.; Karpinski, T.M. Extracts and flavonoids of passiflora species as promising anti-inflammatory and antioxidant substances. Curr. Pharm. Des. 2021, 27, 2582–2604. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep. 2016, 6, 24049. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Q.; Li, M.H.; Qin, Y.M.; Jiang, H.Y.; Zhang, X.; Wu, M.H. Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of microrna-34a-5p. Int. J. Mol. Sci. 2018, 19, 447. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Zhu, Y.; Li, J.-F.; Wang, X.; Liang, Z.; Li, S.-Q.; Xu, X.; Chen, H.; Liu, B.; Zheng, X.-Y.; et al. Apigenin inhibits renal cell carcinoma cell proliferation. Oncotarget 2017, 8, 19834–19842. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, X.-C.; Xiao, Q.; Quan, M.-F. Apigenin inhibits hela sphere-forming cells through inactivation of casein kinase 2α. Mol. Med. Rep. 2015, 11, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, J.; Li, J.; Zhang, L.; Zhao, P.; Wang, C.; Fei, J.; Xie, Y. Determination of luteolin in chrysanthemum tea with a ultra-sensitive electrochemical sensor based on moo(3)/poly(3,4-ethylene dioxythiophene)/gama-cyclodextrin metal-organic framework composites. Food Chem. 2022, 397, 133723. [Google Scholar] [CrossRef] [PubMed]
- Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep. 2017, 3, 423–446. [Google Scholar] [CrossRef]
- Abe, T.; Morita, A.; Otani, N.; Ouchi, M.; Ueda, Y.; Fujita, T.; Anzai, N. Interaction of Human Renal Organic Anion Transporter OAT1 and OAT3 with Flavonoids. Dokkyo J. Med. Sci. 2018, 45, 27–34. [Google Scholar]
- Alebouyeh, M.; Takeda, M.; Onozato, M.L.; Tojo, A.; Noshiro, R.; Hasannejad, H.; Inatomi, J.; Narikawa, S.; Huang, X.-L.; Khamdang, S.; et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J. Pharmacol. Sci. 2003, 93, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Asif, A.R.; Steffgen, J.; Metten, M.; Grunewald, R.W.; Müller, G.A.; Bahn, A.; Burckhardt, G.; Hagos, Y. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflügers Arch. 2005, 450, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Bahn, A.; Ljubojevic, M.; Lorenz, H.; Schultz, C.; Ghebremedhin, E.; Ugele, B.; Sabolic, I.; Burckhardt, G.; Hagos, Y. Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am. J. Physiol. Cell Physiol. 2005, 289, C1075–C1084. [Google Scholar] [CrossRef] [PubMed]
- Bakhiya, A.; Bahn, A.; Burckhardt, G.; Wolff, N. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol. Biochem. 2003, 13, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ohshiro, N.; Tsuchiya, A.; Kohyama, N.; Ohbayashi, M.; Yamamoto, T. Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): Further substrate specificity of mOat3. Drug Metab. Dispos. 2004, 32, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Takanaga, H.; Ohtsuki, S.; Deguchi, T.; Kang, Y.S.; Hosoya, K.I.; Terasaki, T. Rat organic anion transporter 3 (rOat3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J. Cereb. Blood Flow Metab. 2003, 23, 432–440. [Google Scholar] [CrossRef]
- Vallon, V.; Eraly, S.A.; Wikoff, W.R.; Rieg, T.; Kaler, G.; Truong, D.M.; Ahn, S.-Y.; Mahapatra, N.R.; Mahata, S.K.; Gangoiti, J.A.; et al. Organic anion transporter 3 contributes to the regulation of blood pressure. J. Am. Soc. Nephrol. 2008, 19, 1732–1740. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falah, K.; Zhang, P.; Nigam, A.K.; Maity, K.; Chang, G.; Granados, J.C.; Momper, J.D.; Nigam, S.K. In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3. Nutrients 2024, 16, 2242. https://doi.org/10.3390/nu16142242
Falah K, Zhang P, Nigam AK, Maity K, Chang G, Granados JC, Momper JD, Nigam SK. In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3. Nutrients. 2024; 16(14):2242. https://doi.org/10.3390/nu16142242
Chicago/Turabian StyleFalah, Kian, Patrick Zhang, Anisha K. Nigam, Koustav Maity, Geoffrey Chang, Jeffry C. Granados, Jeremiah D. Momper, and Sanjay K. Nigam. 2024. "In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3" Nutrients 16, no. 14: 2242. https://doi.org/10.3390/nu16142242
APA StyleFalah, K., Zhang, P., Nigam, A. K., Maity, K., Chang, G., Granados, J. C., Momper, J. D., & Nigam, S. K. (2024). In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3. Nutrients, 16(14), 2242. https://doi.org/10.3390/nu16142242