Phase Angle as Surrogate Marker of Muscle Weakness in Kidney Transplant Candidates Referred to Prehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Population, Eligibility Criteria
2.4. Index Tests and Reference Standard
2.5. Other Study Variables
2.6. Ethics
2.7. Statistical Analysis
3. Results
Total Sample (n = 119) | Normality Range | |
---|---|---|
Age (years) | 63.7 (SD 10.6) | - |
Sex, men (%) | 90 (75.6%) | - |
Dialysis modality, n (%): Hemodialysis Peritoneal dialysis peritoneal No kidney replacement therapy Unknown | 65 (54.6%) 19 (16%) 22 (18.5%) 13 (10.9%) | - |
Body mass index (Kg/m2) | 28.4 (SD 5.3) | 18.5–25 Kg/m2 [30] |
Frail status, Fried phenotype 1–5 (%) | 64 (53.8%) | 0, robust; 0–1, pre-frail; 2–5, frail. |
Gait speed (m/s) | 1.1 (SD 0.3) | >1.2 m/s |
Exercise capacity: Peak oxygen uptake (mL/min) b Peak oxygen uptake (% pred.) Peak workload (watts) b Peak workload (% pred.) Distance traveled in the 6-minute walking test (m) b Distance traveled in the 6-minute walking test (% pred.) | 786.9 (SD 402.3) 42.6 (SD 17.3) 55.3 (SD 33.1) 38.6 (SD 20.8) 403.8 (SD 111.2) 86.8 (SD 21.3) | - >80% pred. - >80% pred. - >80% pred. |
Muscle weakness: Upper limb (handgrip <80% ref.) Lower limb (quadriceps VMIC < 40% body weight) | 59 (49.6%) 78 (65.5%) | - - |
Dominant peripheral muscle strength: Handgrip (Kg) a Handgrip (% ref.) MVIC of quadriceps (Kg) MVIC of quadriceps (% body weight) | 28.1 (SD 10.1) 80.5 (SD 23.4) 28.2 (SD 10.0) 36.3 (SD 10.8) | - 80–120% [19] - <40% of body weight |
Respiratory muscle strength: Maximal inspiratory muscle pressure (cmH2O) b Maximal inspiratory muscle pressure (% pred.) Maximal expiratory muscle pressure (cmH2O) b Maximal expiratory muscle pressure (% pred.) | 68.4 (SD 28.2) 63.8 (SD 23.9) 106.8 (SD 38.7) 63.8 (SD 20.5) | - >80% pred. - >80% pred. |
BIA-derived parameters of body composition: Skeletal muscle mass (Kg) b Fat-free mass (Kg) b Fat mass (Kg) b Fat mass (% body weight) Total body water (L) b Extracellular water (L) b Intracellular water (L) b Extracellular water/Total body water b Phase angle (°) | 27.7 (SD 6.0) 50.5 (SD 10.6) 27.2 (SD 12.2) 33.3 (SD 10.5) 37.5 (SD 7.7) 15.1 (SD 3.1) 22.8 (SD 4.6) 0.405 (SD 0.070) 4.95 (SD 0.9) | - - - Men 10–20%, women 18–28% [31] . - - 0.360–0.390 [32,33] 5°–7° [12] |
Muscle size of the dominant side assessed by ultrasound: Forearm muscle thickness (mm) Rectus femoris muscle thickness (mm) | 15.6 (SD 3.9) 17.8 (SD 4.3) | 13.3–23.5 mm [34] Men 20–31 mm; women 16–24 mm [35] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansur, H.N.; AB Colugnati, F.; Grincenkov, F.R.d.S.; Bastos, M.G. Frailty and quality of life: A cross-sectional study of Brazilian patients with pre-dialysis chronic kidney disease. Health Qual. Life Outcomes 2014, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; McAdams-DeMarco, M.; Bennett, P.N.; Wilund, K. Advances in exercise therapy in predialysis chronic kidney disease, hemodialysis, peritoneal dialysis, and kidney transplantation. Curr. Opin. Nephrol. Hypertens. 2020, 29, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Hu, S.L.; Bostom, A. Physical Activity in Kidney Transplant Recipients: A Review. Am. J. Kidney Dis. 2018, 72, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Cupisti, A.; Capitanini, A.; Calella, P.; D’Alessandro, C. Physical Activity and Renal Transplantation. Kidney Blood Press. Res. 2014, 39, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Dalrymple, L.S.; Delgado, C.; Chertow, G.M.; Segal, M.R.; Chiang, J.; Grimes, B.; Kaysen, G.A. Factors Associated with Frailty and Its Trajectory among Patients on Hemodialysis. Clin. J. Am. Soc. Nephrol. 2017, 12, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; Johansen, K.L.; Lindholm, B.; Stenvinkel, P.; Cuppari, L.; Avesani, C.M. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016, 90, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, S.; Odamaki, M.; Yoneyama, T.; Hibi, I.; Miyaji, K.; Kumagai, H. Standardized thigh muscle area measured by computed axial tomography as an alternate muscle mass index for nutritional assessment of hemodialysis patients. Am. J. Clin. Nutr. 2000, 71, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Higashiguchi, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition. Clin. Nutr. 2022, 41, 1425–1433. [Google Scholar] [CrossRef]
- Muñoz-Redondo, E.; Morgado-Pérez, A.; Pérez-Sáez, M.-J.; Faura, A.; Sánchez-Rodríguez, D.; Tejero-Sánchez, M.; Meza-Valderrama, D.; Muns, M.D.; Pascual, J.; Marco, E. Low Phase Angle Values Are Associated with Malnutrition according to the Global Leadership Initiative on Malnutrition Criteria in Kidney Transplant Candidates: Preliminary Assessment of Diagnostic Accuracy in the FRAILMar Study. Nutrients 2023, 15, 1084. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoshida, T.; Murakami, H.; Kawakami, R.; Gando, Y.; Ohno, H.; Tanisawa, K.; Konishi, K.; Julien, T.; Kondo, E.; et al. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Sci. Rep. 2022, 12, 17274. [Google Scholar] [CrossRef]
- Rinaldi, S.; Gilliland, J.; O’Connor, C.; Chesworth, B.; Madill, J. Is phase angle an appropriate indicator of malnutrition in different disease states? A systematic review. Clin. Nutr. ESPEN 2019, 29, 1–14. [Google Scholar] [CrossRef]
- Llames, L.; Baldomero, V.; Iglesias, M.L.; Rodota, L.P. Values of the phase angle by bioelectrical impedance; nutritional status and prognostic value. Nutr. Hosp. 2013, 28, 286–295. [Google Scholar]
- Custódio Martins, P.; de Lima, T.R.; Silva, A.M.; Santos Silva, D.A. Association of phase angle with muscle strength and aerobic fitness in different populations: A systematic review. Nutrition 2022, 93, 111489. [Google Scholar] [CrossRef]
- Shin, J.; Hwang, J.H.; Han, M.; Cha, R.-H.; Kang, S.H.; An, W.S.; Kim, J.C.; Kim, S.H. Phase angle as a marker for muscle health and quality of life in patients with chronic kidney disease. Clin. Nutr. 2022, 41, 1651–1659. [Google Scholar] [CrossRef]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Clin. Chem. 2015, 61, 1446–1452. [Google Scholar] [CrossRef]
- Maltais, F.; Decramer, M.; Casaburi, R.; Barreiro, E.; Burelle, Y.; Debigaré, R.; Dekhuijzen, P.N.R.; Franssen, F.; Gayan-Ramirez, G.; Gea, J.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2014, 189, e15–e62. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Meza-Valderrama, D.; Chaler, J.; Marco, E. Assessment of muscle mass in Rehabilitation settings. Rehabilitación 2021, 55, 2–4. [Google Scholar] [CrossRef]
- Lunaheredia, E.; Martinpena, G.; Ruizgaliana, J. Handgrip dynamometry in healthy adults. Clin. Nutr. 2005, 24, 250–258. [Google Scholar] [CrossRef]
- Morales, P.; Sanchis, J.; Cordero, P.J.; Díez, J.L. Maximum static respiratory pressures in adults. The reference values for a Mediterranean Caucasian population. Arch. Bronconeumol. 1997, 33, 213–219. [Google Scholar] [CrossRef]
- American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117, Erratum in Am. J. Respir. Crit. Care Med. 2016, 193, 1185. [Google Scholar]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwée, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31, Erratum in Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Statistics Notes: Diagnostic tests 3: Receiver operating characteristic plots. BMJ 1994, 309, 188. [Google Scholar] [CrossRef]
- Liu, X. Classification accuracy and cut point selection. Stat. Med. 2012, 31, 2676–2686. [Google Scholar] [CrossRef]
- Schutz, Y.; Kyle, U.; Pichard, C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 953–960. [Google Scholar] [CrossRef] [PubMed]
- WHO Recommendations. A Healthy Lifestyle. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 6 June 2024).
- Liu, Z.H.; Zhang, G.X.; Zhang, H.; Jiang, L.; Deng, Y.; Chan, F.S.Y.; Fan, J.K.M. Association of body fat distribution and metabolic syndrome with the occurrence of colorectal adenoma: A case-control study. J. Dig. Dis. 2021, 22, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Hida, T.; Seki, T.; Suzuki, K.; Ito, K.; Tsushima, M.; Morozumi, M.; Machino, M.; et al. Relationship between locomotive syndrome and body composition among community-dwelling middle-age and elderly individuals in Japan: The Yakumo study. Mod. Rheumatol. 2019, 29, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kwon, O.; Shin, C.S.; Lee, S.M. Use of Bioelectrical Impedance Analysis for the Assessment of Nutritional Status in Critically Ill Patients. Clin. Nutr. Res. 2015, 4, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Meza-Valderrama, D.; Rodríguez, D.S.; Perkisas, S.; Duran, X.; Bastijns, S.; Dávalos-Yerovi, V.; Da Costa, E.; Marco, E. The feasibility and reliability of measuring forearm muscle thickness by ultrasound in a geriatric inpatient setting: A cross-sectional pilot study. BMC Geriatr. 2022, 22, 137. [Google Scholar] [CrossRef]
- Minetto, M.A.; Caresio, C.; Menapace, T.; Hajdarevic, A.; Marchini, A.; Molinari, F.; Maffiuletti, N.A. Ultrasound-Based Detection of Low Muscle Mass for Diagnosis of Sarcopenia in Older Adults. PM&R 2016, 8, 453–462. [Google Scholar]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachexia Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar] [CrossRef]
- Dumler, F.; Kilates, C. Body composition analysis by bioelectrical impedance in chronic maintenance dialysis patients: Comparisons to the National Health and Nutrition Examination Survey III. J. Ren. Nutr. 2003, 13, 166–172. [Google Scholar] [CrossRef]
- Tomeleri, C.M.; Cavalcante, E.F.; Antunes, M.; Nabuco, H.C.G.; de Souza, M.F.; Teixeira, D.C.; Gobbo, L.A.; Silva, A.M.; Cyrino, E.S. Phase Angle Is Moderately Associated with Muscle Quality and Functional Capacity, Independent of Age and Body Composition in Older Women. J. Geriatr. Phys. Ther. 2019, 42, 281–286. [Google Scholar] [CrossRef]
- Beberashvili, I.; Azar, A.; Sinuani, I.; Shapiro, G.; Feldman, L.; Stav, K.; Sandbank, J.; Averbukh, Z. Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. Eur. J. Clin. Nutr. 2014, 68, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Della-Morte, D.; Cacciatore, F.; Gargiulo, G.; Galizia, G.; Roselli, M.; Curcio, F.; Bonaduce, D.; Abete, P. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp. Gerontol. 2014, 58, 43–46. [Google Scholar] [CrossRef]
- Belarmino, G.; Gonzalez, M.C.; Torrinhas, R.S.; Sala, P.; Andraus, W.; D’albuquerque, L.A.C.; Pereira, R.M.R.; Caparbo, V.F.; Ravacci, G.R.; Damiani, L.; et al. Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis. World J. Hepatol. 2017, 9, 401–408. [Google Scholar] [CrossRef]
- Chamney, P.W.; Wabel, P.; Moissl, U.M.; Müller, M.J.; Bosy-Westphal, A.; Korth, O.; Fuller, N.J. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007, 85, 80–89. [Google Scholar] [CrossRef]
- Scotland, G.; Cruickshank, M.; Jacobsen, E.; Cooper, D.; Fraser, C.; Shimonovich, M.; Marks, A.; Brazzelli, M. Multiple-frequency bioimpedance devices for fluid management in people with chronic kidney disease receiving dialysis: A systematic review and economic evaluation. Health Technol. Assess. 2018, 22, 1–138. [Google Scholar] [CrossRef]
- Jayanama, K.; Putadechakun, S.; Srisuwarn, P.; Vallibhakara, S.A.-O.; Chattranukulchai Shantavasinkul, P.; Sritara, C.; Kantachuvesiri, S.; Komindr, S. Evaluation of Body Composition in Hemodialysis Thai Patients: Comparison between Two Models of Bioelectrical Impedance Analyzer and Dual-Energy X-ray Absorptiometry. J. Nutr. Metab. 2018, 2018, 4537623. [Google Scholar] [CrossRef]
- Gao, B.; Liu, Y.; Ding, C.; Liu, S.; Chen, X.; Bian, X. Comparison of visceral fat area measured by CT and bioelectrical impedance analysis in Chinese patients with gastric cancer: A cross-sectional study. BMJ Open 2020, 10, e036335. [Google Scholar] [CrossRef] [PubMed]
- Tauber, R.N.; Camic, C.L.; Zhang, S.; Chomentowski, P.J., 3rd. Comparison of Multi-Frequency Bioelectrical Impedance and Dual-Energy X-ray Absorptiometry to Assess Body Composition in College-Aged Adults. Int. J. Exerc. Sci. 2020, 13, 1595–1604. [Google Scholar] [PubMed]
- Visser, M.; Deurenberg, P.; Van Staveren, W.A. Multi-frequency bioelectrical impedance for assessing total body water and extracellular water in elderly subjects. Eur. J. Clin. Nutr. 1995, 49, 256–266. [Google Scholar] [PubMed]
- Kaysen, G.A.; Zhu, F.; Sarkar, S.; Heymsfield, S.B.; Wong, J.; Kaitwatcharachai, C.; Kuhlmann, M.K.; Levin, N.W. Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. Am. J. Clin. Nutr. 2005, 82, 988–995. [Google Scholar] [CrossRef]
- Pillon, L.; Piccoli, A.; Lowrie, E.G.; Lazarus, J.M.; Chertow, G.M. Vector length as a proxy for the adequacy of ultrafiltration in hemodialysis. Kidney Int. 2004, 66, 1266–1271. [Google Scholar] [CrossRef]
- Bellido, D.; García-García, C.; Talluri, A.; Lukaski, H.C.; García-Almeida, J.M. Future lines of research on phase angle: Strengths and limitations. Rev. Endocr. Metab. Disord. 2023, 24, 563–583. [Google Scholar] [CrossRef]
Reference Test (MVIC-Q < 40% of Body Weight) | ||||
---|---|---|---|---|
Weakness (n = 78) | No Weakness (n = 41) | Total (n = 119) | ||
Phase Angle < 5.1° | Positive | 37 | 28 | 65 |
Negative | 22 | 32 | 54 |
MVIC of Quadriceps (<40% of Body Weight) | |
---|---|
Sensitivity | 66.7% |
Specificity | 74.4% |
Positive predictive value | 77.3% |
Negative predictive value | 63.0% |
Accuracy | 70% |
Positive likelihood ratio | 2.6 |
Negative likelihood ratio | 0.45 |
PhA ≥ 5.1° (n = 46) | PhA < 5.1° (n = 44) | Mean Differences (95%CI) | p | |
---|---|---|---|---|
Age (years) | 60.1 (SD 10.9) | 67.2 (SD 8.7) | 7.2 (3.1 to 11.3) | 0.001 |
Dialysis modality, n (%) Hemodialysis Peritoneal dialysis No kidney replacement therapy Information not available | 26 (56.5%) 6 (13.0%) 9 (19.6%) 5 (10.9%) | 28 (63.6%) 7 (15.9%) 4 (9.1%) 5 (11.4%) | - | 0.363 |
Body mass index (Kg/m2) | 28.3 (SD 4.8) | 27.5 (SD 4.9) | −0.8 (−2.8 to 1.2) | 0.435 |
Frailty, Fried phenotype 3–5 (%) | 6 (13.0%) | 9 (20.5%) | - | 0.405 |
Gait speed (m/s) | 1.2 (SD 0.2) | 1.0 (SD 0.2) | −0.2 (−0.3 to −0.1) | 0.001 |
Exercise capacity: Peak oxygen uptake (L/min) Peak oxygen uptake (% pred.) Peak workload (watts) Peak workload (% pred.) Distance traveled in the 6-minute walking test (m) Distance traveled in the 6-minute walking test (% pred.) | 1.0 (SD0.5) 47.0 (SD 17.8) 71.8 (SD 34.2) 45.0 (SD 18.2) 471.7 (SD 103.4) 95.7 (SD 17.2) | 0.7 (SD 0.3) 37.2 (SD 15.9) 50.7 (SD 29.9) 36.7 (SD 24.1) 359.4 (SD 88.7) 79.9 (SD 22.3) | −0.3 (−0.5 to −0.1) −9.7 (−17.6 to −1.9) −21.1 (−35.6 to −6.6) −8.3 (−17.8 to 1.2) −112.4 (−153.4 to −71.4) −15.8 (−24.2 to −7.4) | 0.001 0.016 0.005 0.086 <0.001 <0.001 |
Peripheral muscle strength of the dominant side: Handgrip (Kg) Handgrip (% ref.) MVIC of quadriceps (Kg) MVIC of quadriceps (% body weight) | 35.3 (SD 9.5) 84.4 (SD 24.1) 34.7 (SD 10.0) 42.9 (SD 9.4) | 27.8 (SD 5.5) 77.6 (SD 23.2) 27.1 (SD 7.3) 34.7 (SD 9.1) | −7.5 (−10.7 to −4.2) −6.8 (−16.7 to 3.1) −7.6 (−11.3 to −3.9) −8.2 (−12.1 to −4.4) | <0.001 0.174 <0.001 <0.001 |
Respiratory muscle strength: Maximal inspiratory muscle pressure (cmH2O) Maximal inspiratory muscle pressure (% pred.) Maximal expiratory muscle pressure (cmH2O) Maximal expiratory muscle pressure (% pred.) | 81.0 (SD 30.8) 68.3 (SD 24.9) 123.4 (SD 42.7) 66.3 (SD 21.9) | 64.0 (SD 24.2) 58.4 (SD 22.8) 104.0 (SD 31.8) 59.7 (SD 18.7) | −17.0 (−28.7 to −5.4) −9.9 (−19.8 to 0.2) −19.2 (−35.2 to −3.5) −6.6 (−15.1 to 1.9) | 0.005 0.054 0.017 0.128 |
BIA-derived parameters of body composition: Appendicular skeletal muscle mass (Kg) Fat-free mass (Kg) Fat mass (Kg) Fat mass (% body weight) Extracellular water / Total body water | 31.1 (SD 5.4) 54.9 (SD 11.3) 25.6 (DE 12.7) 29.0 (SD 8.8) 0.404 (SD 0.11) | 28.0 (DE 4.4) 52.1 (SD 7.5) 26.7 (SD 12.8) 32.5 (SD 10.5) 0.409 (SD 0.03) | −3.2(−5.2 to 1.1) −2.8 (−6.8 to 1.2) 1.1 (−4.2 to 6.5) 3.5 (−0.5 to 7.6) 0.055 (−0.03 to 0.04) | 0.003 0.168 0.678 0.086 0.761 |
Muscle size assessed by ultrasound: Dominant forearm muscle thickness (mm) Dominant rectus femoris muscle thickness (mm) | 17.6 (SD 3.8) 21.0 (SD 3.4) | 15.2 (SD 3.6) 16.3 (SD 4.0) | −2.3 (−3.9 to −0.8) −4.7 (−6.2 to −3.1) | 0.004 <0.001 |
Crude Analysis (Univariate) | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Muscle Weakness | cOR | 95%CI | p | aOR | 95%CI | p |
Phase angle (<5.1°) | 5.8 | 2.3 to 14.6 | <0.001 | 8.2 | 2.3 to 29.2 | 0.001 |
Age | 1.0 | 1.0 to 1.1 | 0.980 | |||
Frailty | 0.9 | 0.3 to 3.2 | 0.899 | |||
Hydration status | 0.6 | 0.2 to 2.3 | 0.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marco, E.; Pérez-Sáez, M.J.; Muñoz-Redondo, E.; Curbelo, Y.G.; Ramírez-Fuentes, C.; Meza-Valderrama, D.; Acuña-Pardo, C.; Muns, M.D.; Vázquez-Ibar, O.; Chamoun, B.O.; et al. Phase Angle as Surrogate Marker of Muscle Weakness in Kidney Transplant Candidates Referred to Prehabilitation. Nutrients 2024, 16, 2245. https://doi.org/10.3390/nu16142245
Marco E, Pérez-Sáez MJ, Muñoz-Redondo E, Curbelo YG, Ramírez-Fuentes C, Meza-Valderrama D, Acuña-Pardo C, Muns MD, Vázquez-Ibar O, Chamoun BO, et al. Phase Angle as Surrogate Marker of Muscle Weakness in Kidney Transplant Candidates Referred to Prehabilitation. Nutrients. 2024; 16(14):2245. https://doi.org/10.3390/nu16142245
Chicago/Turabian StyleMarco, Ester, María José Pérez-Sáez, Elena Muñoz-Redondo, Yulibeth G. Curbelo, Cindry Ramírez-Fuentes, Delky Meza-Valderrama, Carolina Acuña-Pardo, Mª Dolors Muns, Olga Vázquez-Ibar, Betty Odette Chamoun, and et al. 2024. "Phase Angle as Surrogate Marker of Muscle Weakness in Kidney Transplant Candidates Referred to Prehabilitation" Nutrients 16, no. 14: 2245. https://doi.org/10.3390/nu16142245
APA StyleMarco, E., Pérez-Sáez, M. J., Muñoz-Redondo, E., Curbelo, Y. G., Ramírez-Fuentes, C., Meza-Valderrama, D., Acuña-Pardo, C., Muns, M. D., Vázquez-Ibar, O., Chamoun, B. O., Faura-Vendrell, A., Bach, A., Crespo, M., & Pascual, J., on behalf of the FRAILMar Study Group. (2024). Phase Angle as Surrogate Marker of Muscle Weakness in Kidney Transplant Candidates Referred to Prehabilitation. Nutrients, 16(14), 2245. https://doi.org/10.3390/nu16142245