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Abstract: The mammary gland is an exocrine gland whose main function is to produce milk. Breast
morphogenesis begins in the embryonic period; however, its greatest development takes place during
the lactation period. Studies have found the expression of serum amyloid A protein (SAA) in both
breast cells and breast milk, yet the function of this protein in these contexts remains unknown.
Insufficient milk production is one of the most frequent reasons for early weaning, a problem that
can be related to the mother, the newborn, or both. This study aims to investigate the relationship
between lactogenesis II (the onset of milk secretion) and the role of SAA in the human breast. To this
end, mammary epithelial cell cultures were evaluated for the expression of SAA and the influence
of various cytokines. Additionally, we sought to assess the activation pathway through which SAA
acts in the breast, its glucose uptake capacity, and the morphological changes induced by SAA
treatment. SAA expression was observed in mammary epithelial cells; however, it was not possible
to establish its activation pathway, as treatments with inhibitors of the ERK1/2, p38MAPK, and
PI3K pathways did not alter its expression. This study demonstrated that SAA can stimulate IL-6
expression, inhibit glucose uptake, and cause morphological changes in the cells, indicative of cellular
stress. These mechanisms could potentially contribute to early breastfeeding cessation due to reduced
milk production and breast involution.

Keywords: breastfeeding; lactation; SAA; human breast cells

1. Introduction

The mammary gland, originating from the ectoderm, is an exocrine gland whose
main function is to produce milk to feed the offspring. Breast morphogenesis begins in the
embryonic period; however, its greatest development occurs during the lactation period [1].
The first stage of morphogenesis begins in the uterus, approximately in the seventh ges-
tational week, when the formation of the rudimentary duct begins, and it develops until
puberty, the phase in which terminal buds will be formed by the release of estrogen. During
adulthood, the ducts become more branchy, and it is at the beginning of pregnancy that
the formation of lobuloalveolar structures begins in response to progesterone stimulation.
During pregnancy, these structures mature, and the lactation phase is the period in which
they are completely developed [2].

While in the breast of non-pregnant adult women, connective and adipose tissue
is predominant and epithelial tissue is scarce, the beginning of pregnancy is marked by
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both organizational and functional changes in the mammary gland, in which there is a
proliferation of ductal and alveolar cells, promoting breast growth, concomitant with the
reduction of adipose tissue [3]. This development leads to the formation of an extensive
branched ductal system and a multitude of alveoli derived from terminal buds [4].

Serum Amyloid A Proteins (SAAs) are made of up to 104 amino acids and are related
to the acute phase response. It can increase their concentration up to a thousand folds in
24 h, especially in situations such as inflammation, trauma, infection and even cancer [5].
In humans, these proteins can be classified into SAA1, SAA2, SAA3 and SAA4 groups, with
SAA1 and SAA2 further subdivided into SAA1α, SAA1β, SAA1γ, SAA2α and SAA2β;
their structures and functions differ from each other. Several functions have already been
described for SAAs, but the general function is still unclear. It was found to be related to
the migration of leukocytes through the induction of chemokines, the chemoattraction of
monocytes [6] and immature dendritic cells, neutrophils and T cells [7]. Furthermore, it
also has the potential to induce cytokines and M2-type macrophages, and has a role in
cholesterol transport, among other things [8].

In the mammary tissue, only the expression of SAA1, SAA2 and SAA4 and not SAA3
was seen; however, Larson et al. detected the expression of the human SAA3 gene using
RT-PCR after the stimulation of mammary gland epithelial cells with lactation hormone
prolactin (PRL) or the acute phase stimulating LPS [9].

It was previously suggested that the effect of SAAs on the proliferation of a preadipocyte
cell line (3T3-L1) was mediated by the ERK1/2 signalling pathway; however, it was not
possible to elucidate the roles of the PI3K and p38MAPK pathways. Another important
finding was the inhibition of the expression of GLUT4 and the stimulation of the pro-
inflammatory cytokines (IL-6 and TNF-α) through this protein [10]. Altogether, this study
aimed to analyze the function of serum amyloid A protein in the ERK1/2, p38MAPK and
PI3K pathways and in the glucose receptor pathway in the human breast through cellular
models to elucidate possible factors associated with an early decrease in lactogenesis and the
terms effect of breastfeeding.

2. Materials and Methods
2.1. Cell Culture

The human breast cell line MCF-10A (ATCC CRL-10317) (Manassas, VA, USA) was grown
in plastic cell culture bottles containing Dulbecco’s Modified Eagle’s Medium (DMEM)/Ham’s
Nutrient Mixture F12 (1:1) (Sigma-Aldrich, Milwaukee, WI, USA), 100 U/mL penicillin,
100 µg/mL streptomycin and 10 mM HEPES, and supplemented with 2.5 mM L-glutamine,
5% horse serum, 10 µg/mL human insulin, 0.5 µg/mL hydrocortisone and 10 ng/mL EGF.
The cells were maintained in a humidified incubator at 37 ◦C, in an atmosphere of 5% carbon
dioxide (CO2).

2.2. Cell Viability

The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay
was used to evaluate cell viability in response to specific pharmacological inhibitors of
ERK1/2 (PD98059), p38MAPK (SB203580) and PI3K (wortmannin). To evaluate the cyto-
toxicity of these inhibitors to the human breast cell line MCF-10A, cells were plated at a
density of 5 × 103 cells per well in 96-well plates. After 48 h of plating, the culture medium
was changed and, after 96 h, the cells were maintained in culture medium with 0.5, 5 and
10% horse serum. After 144 h of plating, the cells were treated with the inhibitors.

Cells incubated with the culture medium alone were used as a control. After a period
of 48 h of treatment, the culture medium in the wells was replaced with an MTT solution
with the culture medium for 2 h, and it was then removed and 100 µL of dimethyl sulfoxide
was added to dissolve the crystals. To determine the concentration of MTT reduced to
formazan by the mitochondrial dehydrogenases of the viable cells, the absorbance was
measured on a Perkin-Elmer LS55 spectrophotometer (Boston, MA, USA) at a wavelength
of 540 nm. This experiment was carried out in triplicate on three consecutive days.
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2.3. Cell Proliferation Assay

For the cell proliferation assay, the same specific pharmacological inhibitors of ERK1/2
(PD98059), p38MAPK (SB203580) and PI3K (wortmannin) were used. For this, MCF-10A
cells were plated at a density of 3 × 104 cells per well in 24-well plates. After 48 h of
plating, the culture medium was changed and, after 96 h, the cells were maintained in
serum-deprived culture medium (0.5% horse serum). After 144 h of plating, the cells were
treated with the inhibitors alone at concentrations of 50 µM (PD98059), 10 µM (SB203580)
and 100 nM (wortmannin) or in association with 5 µg/mL of rSAA. After 48 h of treatment,
the cells were trypsinized and cell proliferation was assessed by counting cells using the
Neubauer chamber. This experiment was carried out in triplicate on three consecutive days.

2.4. Clonogenic Assay

Cells previously treated with 5 µg/mL rSAA, 50 µM PD98059, 10 µM SB203580
and/or 100 nM wortmannin were seeded in 6-well plates at a density of 500 cells/well.
The cells were maintained in culture for another seven days at 37 ◦C in an atmosphere
containing 5% CO2, and the culture medium was changed every 48 h. After the 7th day,
when the cells had formed sufficiently large colonies, the medium was removed from
the wells and the cells were washed carefully with 1× phosphate-buffered saline (PBS).
Subsequently, the PBS was removed, and the cells were fixed with 6% glutaraldehyde. After
fixing the cells, a 0.5% crystal violet solution was added to each well for 30 min to stain
the colonies. After incubation, the wells were washed with water and air-dried at room
temperature (21 ◦C). After the wells were completely dry, digital images of the colonies
were obtained using a camera. The area of the colonies was analyzed using the ImageJ
software (V1.51p) and the ColonyArea plugin [11]. This experiment was carried out in
triplicate on three consecutive days.

2.5. Enzyme-Linked Immunosorbent Assay in Cell Supernatant

Cell supernatant samples were collected and stored at −80 ◦C before the determination
of markers by enzyme-linked immunosorbent assay (ELISA). The concentrations of IL-6,
MCP-1, IFN-γ and SAA were determined by ELISA, according to the instructions of the
manufacturer BD OptEIA™ (Franklin Lakes, NJ, USA) for the analyses of IL-6, MCP- 1 and
IFN-γ, and Invitrogen™ (Camarillo, CA, USA) for SAA analysis. The assays were carried
out according to the manufacturer’s instructions.

2.6. 14C-Glucose Uptake

MCF-10A cells were plated at a density of 5 × 103 cells per well in 96-well plates.
After 48 h of plating, the culture medium was changed and, after 96 h, the cells were
maintained in 0.5% horse serum culture medium. After 144 h of plating, the cells were
treated with 5 µg/mL of rSAA and an untreated control was also maintained. After 48 h
of treatment, the culture medium was removed, and all wells were washed with 1× PBS.
Then, 100 µL of Krebs Ringer-bicarbonate (KRb) (122 mM NaCl, 3 mM KCl, 1.2 mM MgSO4,
1.3 mM CaCl2, 0.4 mM KH2PO4, 25 mM NaHCO3) was added to the wells, with 14C-DG
(0.1 µCi/mL), and incubated for 30 min at 37 ◦C. After incubation, all liquid was removed,
and all wells were washed again with 1× PBS to remove the excess radioactive material.
Then, 200 µL of 0.5 M NaOH was added for cell lysis and of this quantity, 25 µL was used
and dissolved in 1 mL of scintillation liquid [12]. The remaining samples were used for
protein determination using the Lowry method. The samples were kept in the refrigerator
until the reading was performed using a Tri-Carb® 2800TR LSA scintillator (Perkin Elmer,
Waltham, MA, USA). The protein dosage of the samples used for the glucose uptake assay
was measured according to Lowry et al., 1951 [13]. The results were expressed as nmol of
glucose/mg of protein.
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2.7. Transmission Electron Microscopy (TEM)

MCF-10A cells were plated at a density of 3 × 104 cells per well in 24-well plates. After
48 h of plating, the culture medium was changed and, after 96 h, the cells were maintained
in serum-deprived culture medium (0.5% horse serum). After 144 h of plating, cells were
treated with 5 µg/mL rSAA and an untreated control was also maintained.

After 48 h of incubation with the treatments, the cells were trypsinized, transferred to
microtubes and centrifuged to remove all the culture medium and treatments. Afterwards,
they were fixed using a fixative solution of 4% paraformaldehyde, 3% glutaraldehyde and
0.1 M sodium cacodylate. After 24 h in a fixative solution, cells were washed 3 times with
0.1 M sodium cacodylate buffer and then fixed with 1% osmium tetroxide for 2 h. The cells
were then washed again 3 times with 0.1 M sodium cacodylate buffer and subsequently
dehydrated with increasing concentrations of alcohol. After the dehydration stage, the
infiltration process began, with increasing concentrations of resin. After the last infiltration
step, the resin containing the cell pellet was polymerized at 70 ◦C for 48 h. Afterwards,
ultra-thin sections containing the cells were made and placed on the grid, contrasted
with 5% uranyl acetate and lead citrate to be read using a 100 kV transmission electron
microscope (JEM 1011, JEOL, Peabody, MA, USA).

2.8. Data Analysis

Numerical results were expressed in mean and standard deviation and the symmetry
of the data was assessed using the Shapiro–Wilk test [14]. Differences between groups
were evaluated using the one-way ANOVA test with the Bonferroni post-test when three or
more groups were compared, and Student’s t-test was used when comparing two groups.
The level of significance was set at p ≤ 0.05 for all analyses. All analyses were performed
with GraphPad Prism5 (GraphPad Software, San Diego, CA, USA).

3. Results

Considering that adipose tissue and the mammary gland are adjacent tissues, it was
proposed that SAA signalling in breast cells occurs through the ERK1/2, p38 MAPK and
PI3K/Akt pathways, in the same way as in adipocytes.

To evaluate the cytotoxicity of the inhibitors and the cell viability in different concen-
trations of horse serum, an MTT assay was performed. After analyzing cell viability, it
was seen that all cells showed viability above 80%, regardless of the treatment or serum
concentration; therefore, inhibitors could be used at concentrations of 50 µM (PD98059),
10 µM (SB203580) and 100 nM (wortmannin), and a horse serum concentration of 0.5% was
also chosen for subsequent experiments.

The cell proliferation assay was carried out to evaluate whether inhibitors, in the
presence of SAA, could reduce mammary cell proliferation, thus indicating that SAA
would possibly act on the pathway that was being inhibited. However, it was seen that
there was no significant decrease in proliferation in any of the tested pathways (Figure 1),
suggesting that SAA does not act directly on any of the three pathways (ERK1/2, p38
MAPK and PI3K).

To confirm the result obtained in the cell proliferation assay, the clonogenic assay was
carried out, in which the ability of cells treated or not with inhibitors to survive and grow,
producing colonies, was evaluated. The images taken from each well were analyzed in
ImageJ software concerning colour intensity (Figure 2) and the percentage of the well area
occupied by the colony (Figure 3).
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Figure 3. Results expressed as a percentage of occupied area and standard deviation. Control samples
refer to samples without treatment and SAA refers to samples treated with SAA 5 µg/mL. Cells
were also treated with specific pharmacological inhibitors of ERK1/2 (PD98059 50 µM), p38MAPK
(SB203580 10 µM) and PI3K (wortmannin 100 nM). One-way ANOVA with Bonferroni post-test.

Corroborating the results found from the cell proliferation assay, there was no signifi-
cant difference between the different treatments, demonstrating that there was no difference
in the cell’s ability to produce colonies even when treated with SAA and inhibitors.

Using the cell culture supernatant, the concentrations of inflammatory markers were
evaluated after SAA stimulation using the ELISA method (Figure 4). The concentration of
IL-6 was also evaluated when stimulated by SAA and by the inhibitors PD98059, SB203580
and wortmannin (Figure 5).
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respective control groups.

Through this assay, it was seen that breast cells express SAA even when not stimulated.
Another important finding was that all cells treated with SAA showed higher concentrations
of IL-6 in the supernatant compared to untreated cells.

Considering that the inhibitors used did not interact with SAA in the previous results,
it was decided to continue the experiments without them. Therefore, to evaluate the cellular
glucose uptake capacity after treatment with SAA, the glucose uptake assay was performed
on breast cells treated with 5 µg/mL SAA (Figure 6). As a result, cells treated with SAA
showed a decrease in glucose uptake capacity.
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To evaluate the morphological changes in the cells following treatment with SAA, a
transmission electron microscopy assay was performed (Figure 7). Through analysis of the
cells by transmission electron microscopy, a wide distribution of mitochondria and rough
endoplasmic reticulum with regular morphologies was noticed in control cells without
treatment. However, when cells were treated with SAA, mitochondria had an altered
morphology, displaying a central lumen. The rough endoplasmic reticulum also had an
increased lumen with respect to control cells.
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4. Discussion

In this study, it was possible to detect the presence of SAA in mammary epithelial
cells; however, there is still a gap in the literature regarding its function and mechanism
of action. As far as we know, this is the first study that attempts to demonstrate the role
of SAA in the human breast. Since the mammary gland has a close association with the
deposition of mammary adipose tissue, and since adipocytes are important local regulators
of the growth of mammary epithelial cells and also their function during lactation [15], it
has been proposed that SAA acts in the human breast in the same signalling pathways
that act in adipose tissue (ERK1/2, p38 MAPK and PI3K/Akt). Another relevant piece of
information for this theory is that cytokines regulate cell proliferation and inflammation
in the breast through the MAPK and PI3K pathways [16]. Therefore, in this study, the
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proliferation capacity of mammary epithelial cells was tested after the inhibition of three
possible SAA signalling pathways in the breast, the ERK1/2, p38 MAPK and PI3K/Akt
pathways, as well as the SAA expression in response to the inhibition of its pathways.

Firstly, the inhibitors were tested for their cytotoxicity, for which a cell viability assay
was carried out. Along with this assessment, whether serum deprivation would lead to
cell death was investigated. According to the study by Kues and collaborators, serum
deprivation has effects on the cell cycle, allowing cycle synchronization, so that most cells
are in the G0/G1 stage [17]. At the end of this experiment, cell viability greater than 80%
was observed regardless of the treatment used; therefore, the cell proliferation experiment
was carried out using pre-established concentrations of inhibitors and SAA, as well as
the lowest tested serum concentration (0.5%). Both in the cell proliferation assay, through
counting viable cells, and in the clonogenic assay, in which it was possible to evaluate the
capacity of treated cells to form colonies, no significant differences were found between the
groups; therefore, SAA, possibly, does not act on pro-proliferation signalling of any of the
three pathways investigated.

However, when evaluating the expression of cytokines in the cell supernatant in the
different treatments, it was seen that when treating the cells with SAA there was a greater
expression of IL-6. In breast tissue, Zhao, Melenhorst and Hennighausen demonstrated that
IL-6 contributed to the induction of controlled remodelling during the involution phase, in
part through the MAPK pathway. They also demonstrated that IL-6 expression is induced
in breast tissue at early stages of involution, suggesting that it is an inducer of breast
remodelling and that this involution is mediated by Stat3 [18]. The transcription factor
Stat3 is activated in mammary tissue after weaning; consequently, an inactivation of Stat3
in the alveolar epithelium results in a delay in tissue remodelling during involution [19].
Therefore, SAA would not necessarily be related to the development and proliferation of
breast cells, but perhaps to their remodelling, through activation by IL-6.

In addition to analyzing the concentration of IL-6 in the cell supernatant, we sought to
evaluate the capacity of SAA to uptake glucose in mammary cells. As a result, SAA was able
to inhibit glucose uptake in MCF-10A cells. It is known that, upon entering the mammary
cell, glucose is conjugated with UDP-galactose through lactose synthase, resulting in the
production of lactose, which, in addition to being one of the main components of breast
milk, also determines the volume of milk according to its concentration; therefore, the
entry of glucose into the cell and, consequently, the production of lactose, is responsible
for the amount of milk produced by the nursing mother [20]. The studies by Oliveira and
collaborators and Monteiro and collaborators demonstrated the effect of inhibiting glucose
uptake induced by SAA in adipocytes through the reduction in GLUT4, consequently
decreasing glucose transport [10,21]. In the present study, it was not possible to evaluate
the expression of GLUTs to identify by which mechanism this inhibition occurs; however,
it is believed that it is possibly due to the decrease in GLUT1 and/or GLUT8, since both
carry out glucose transport in the breast [22].

Finally, possible morphological changes caused in breast cells after treatment with
SAA were evaluated using an electron microscopy test. The images obtained through the
assay for control samples were similar to those described by Underwood and collabora-
tors [23]. The cells had abundant mitochondria and rough endoplasmic reticulum, the
latter necessary for milk production during lactation. Also, invagination of the nucleus and
smooth endoplasmic reticulum and Golgi apparatus were present [23].

When treated with SAA, cells showed some signs of cellular stress, such as the dis-
continuation of mitochondrial cristae and increased lumens in the rough endoplasmic
reticulum. Mitochondria from rat cells treated with ketamine, which has neurotoxic po-
tential, showed similar structures when compared to the cells of this study treated with
SAA [24]. In another study, carried out by Kosta and collaborators, the structure of mito-
chondrial cristae was also remodelled after nutrient deprivation in cells of Dictyostelium
discoideum strains, even without cell death [25]. Regarding the endoplasmic reticulum,
some studies reported the same variation in morphology in different situations and cell
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types, such as lipotoxic cell death in ovarian cells [26], hypoxia in mouse brains [27] and
ischemia in rat brains [28].

5. Conclusions

In conclusion, this study showed that SAA can stimulate the expression of IL-6,
inhibit glucose uptake, and cause morphological changes in the cells, possibly indicating
cellular stress and a decrease in energy production. Therefore, it could be related to
the early decrease in breastfeeding due to reduced breast milk production, as well as
breast involution.
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