Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Quality
2.1.1. Samples
2.1.2. Sample Preparation
2.2. Amino Acid Analysis
2.2.1. Cysteine
2.2.2. Tryptophan
2.2.3. In Vitro Protein Digestibility
2.3. Fibre Study
2.3.1. Samples
2.3.2. Fibre Composition
2.3.3. In Vitro Digestion and Fermentation
2.4. SCFA Analysis
2.5. Microbiota Analysis
2.6. Intestinal Iron Absorption In Vitro
2.6.1. Sample Formulations
2.6.2. Sample Preparation and Cooking
2.6.3. In Vitro Digestion
2.6.4. In Vitro Assessment of Intestinal Iron Absorption
2.7. Statistical Analyses
3. Results
3.1. Protein Quality
Amino Acid Composition
3.2. Protein Digestibility
3.3. Fibre Composition and Effects on Microbiota
3.3.1. Fibre Content and Composition
3.3.2. Effects on SCFA Production
3.3.3. Effects on Microbiota Composition
3.4. Intestinal Iron Absorption In Vitro
Effect of Elemental Iron Source and Ascorbic Acid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2022, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Muhlhausler, B.S.; Belobrajdic, D.; Wymond, B.; Benassi-Evans, B. Assessing the Effect of Plant-Based Mince on Fullness and Post-Prandial Satiety in Healthy Male Subjects. Nutrients 2022, 14, 5326. [Google Scholar] [CrossRef] [PubMed]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors. Nutrients 2018, 10, 599. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.R.; Conlon, M.A.; Christophersen, C.T.; Topping, D.L. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes 2010, 1, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, S.; Muir, J.; Chey, W.D. Fiber and Functional Gastrointestinal Disorders. Am. J. Gastroenterol. 2013, 108, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Toribio-Mateas, M.A.; Bester, A.; Klimenko, N. Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study. Foods 2021, 10, 2040. [Google Scholar] [CrossRef] [PubMed]
- Deehan, E.C.; Mocanu, V.; Madsen, K.L. Effects of dietary fibre on metabolic health and obesity. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.D.; Hartle, J.C.; Garrett, R.D.; Offringa, L.C.; Wasserman, A.S. Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutr. Rev. 2019, 77, 197–215. [Google Scholar] [CrossRef]
- Latunde-Dada, G.O.; Kajarabille, N.; Rose, S.; Arafsha, S.M.; Kose, T.; Aslam, M.F.; Hall, W.L.; Sharp, P.A. Content and Availability of Minerals in Plant-Based Burgers Compared with a Meat Burger. Nutrients 2023, 15, 2732. [Google Scholar] [CrossRef] [PubMed]
- Santos-Hernández, M.; Alfieri, F.; Gallo, V.; Miralles, B.; Masi, P.; Romano, A.; Ferranti, P.; Recio, I. Compared digestibility of plant protein isolates by using the INFOGEST digestion protocol. Food Res. Int. 2020, 137, 109708. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is Best? J. Sport. Sci. Med. 2004, 3, 118–130. [Google Scholar]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Marsh, K.A.; Munn, E.A.; Baines, S.K. Protein and vegetarian diets. Med. J. Aust. 2013, 199, S7–S10. [Google Scholar] [CrossRef]
- Mayer Labba, I.-C.; Steinhausen, H.; Almius, L.; Bach Knudsen, K.E.; Sandberg, A.-S. Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish Market. Nutrients 2022, 14, 3903. [Google Scholar] [CrossRef]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef]
- v2Food. Cooking with v2. Available online: https://v2food.com/cooking (accessed on 11 June 2024).
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Sousa, R.; Recio, I.; Heimo, D.; Dubois, S.; Moughan, P.J.; Hodgkinson, S.M.; Portmann, R.; Egger, L. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chem. 2023, 404, 134720. [Google Scholar] [CrossRef]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition; Report of an FAQ Expert Consultation; FAO Food and Nutrition Paper 92; FAO: Rome, Italy, 2013; pp. 1–66. [Google Scholar]
- Conlon, M.A.; Topping, D.L. Dietary polysaccharides and polyphenols can promote health by influencing gut microbiota populations. Food Funct. 2016, 7, 1730. [Google Scholar] [CrossRef]
- Ramos-Romero, S.; Hereu, M.; Molinar-Toribio, E.; Almajano, M.P.; Méndez, L.; Medina, I.; Taltavull, N.; Romeu, M.; Nogués, M.R.; Torres, J.L. Effects of the combination of ω-3 PUFAs and proanthocyanidins on the gut microbiota of healthy rats. Food Res. Int. 2017, 97, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Watson, E.; Conlon, M.; Sanguansri, L.; Augustin, M.A. Impact of Co-Delivery of EGCG and Tuna Oil within a Broccoli Matrix on Human Gut Microbiota, Phenolic Metabolites and Short Chain Fatty Acids In Vitro. Molecules 2022, 27, 656. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Adiamo, O.Q.; Netzel, M.E.; Hoffman, L.C.; Gidley, M.J.; Osborne, S.; Sultanbawa, Y. Nutritional and techno-functional properties of Australian Acacia seed flour: Effects of roasting on chemical composition, physicochemical properties, and in vitro digestibility and intestinal iron absorption. Food Res. Int. 2023, 164, 112336. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, N.S.; Bailey, H.M.; Thompson, T.W.; Delmore, R.; Nair, M.N.; Stein, H.H. Digestible indispensable amino acid score (DIAAS) is greater in animal-based burgers than in plant-based burgers if determined in pigs. Eur. J. Nutr. 2022, 61, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Portmann, R.; Recio, I.; Dubois, S.; Egger, L. Comparison of in vitro digestibility and DIAAR between vegan and meat burgers before and after grilling. Food Res. Int. 2023, 166, 112569. [Google Scholar] [CrossRef]
- Shan, S.; Teng, C.; Chen, D.; Campanella, O. Insights into protein digestion in plant-based meat analogs. Curr. Opin. Food Sci. 2023, 52, 101043. [Google Scholar] [CrossRef]
- Wolf, R.B.; Cavins, J.F.; Kleiman, R.; Black, L.T. Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 1982, 59, 230–232. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: A cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Clem, J.; Barthel, B. A Look at Plant-Based Diets. Mo Med. 2021, 118, 233–238. [Google Scholar] [PubMed]
- Di Costanzo, M.; De Paulis, N.; Biasucci, G. Butyrate: A Link between Early Life Nutrition and Gut Microbiome in the Development of Food Allergy. Life 2021, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Leylabadlo, H.E.; Ghotaslou, R.; Feizabadi, M.M.; Farajnia, S.; Moaddab, S.Y.; Ganbarov, K.; Khodadadi, E.; Tanomand, A.; Sheykhsaran, E.; Yousefi, B.; et al. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb. Pathog. 2020, 149, 104344. [Google Scholar] [CrossRef] [PubMed]
- Precup, G.; Vodnar, D.C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. Br. J. Nutr. 2019, 122, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, R.; Ma, W.; Dong, X.; Yan, S.; Xie, W. Eggerthella lenta Bacteremia in a Middle-Aged Healthy Man with Acute Hepatic Abscess: Case Report and Literature Review, 1970–2020. Infect. Drug Resist. 2021, 14, 3307–3318. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.R.; Zheng, H.M.; Zhang, G.X.; Chen, F.L.; Chen, L.D.; Yang, Z.C. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 2020, 10, 9364. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M.; Dekker Nitert, M. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 2018, 9, 189–201. [Google Scholar] [CrossRef]
- Astbury, S.; Atallah, E.; Vijay, A.; Aithal, G.P.; Grove, J.I.; Valdes, A.M. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 2020, 11, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Glahn, R. 13—The use of Caco-2 cells in defining nutrient bioavailability: Application to iron bioavailability of foods. In Designing Functional Foods; McClements, D.J., Decker, E.A., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 340–361. [Google Scholar]
- Hurrell, R. Linking the bioavailability of iron compounds to the efficacy of iron-fortified foods. Int. J. Vitam. Nutr. Res. 2007, 77, 166–173. [Google Scholar] [CrossRef] [PubMed]
Ala | Thr | Phe | Leu | Ile | Met | Val | Pro | Tyr | Gly | Ser | Glx 1 | Asx 2 | His | Arg | Lys | Trp | Cys | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beef Mince | 1.66 | 1.44 | 0.63 | 2.52 | 1.09 | 0.51 | 1.14 | 1.08 | 1.01 | 1.55 | 1.33 | 2.99 | 1.87 | 1.66 | 2.77 | 2.32 | 0.28 | 0.31 |
v2food® Control | 0.88 | 0.99 | 0.48 | 1.52 | 0.76 | 0.17 | 0.77 | 0.68 | 0.81 | 0.71 | 1.11 | 2.35 | 1.61 | 0.88 | 2.01 | 1.42 | 0.21 | 1.18 |
v2food® Formulation 1 | 0.91 | 1.01 | 0.50 | 1.47 | 0.70 | 0.44 | 0.78 | 0.70 | 0.81 | 0.73 | 1.14 | 2.45 | 1.66 | 0.91 | 2.08 | 1.47 | 0.22 | 1.20 |
v2food® Formulation 2 | 0.92 | 1.01 | 0.50 | 1.56 | 0.79 | 0.52 | 0.83 | 0.68 | 0.81 | 0.73 | 1.13 | 2.46 | 1.66 | 0.92 | 2.08 | 1.48 | 0.22 | 1.03 |
v2food® Formulation 3 | 0.94 | 1.04 | 0.49 | 1.54 | 0.80 | 0.45 | 0.85 | 0.70 | 0.85 | 0.73 | 1.16 | 2.52 | 1.75 | 0.94 | 2.13 | 1.51 | 0.22 | 1.22 |
Ala | Thr | Phe | Leu | Ile | Met | Val | Pro | Tyr | Gly | Ser | Glx 2 | Asx 3 | His | Arg | Lys | Trp | Cys | SAAs 4 | AAAs 5 | Total 6 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) | |||||||||||||||||||||
Beef Mince | 80.4 | 68.2 | 68.5 | 72.0 | 68.9 | 69.7 | 63.6 | 72.9 | 63.8 | 76.1 | 68.5 | 73.7 | 66.5 | 79.4 | 78.2 | 69.6 | 52.8 | 55.4 | 64.6 | 65.8 | 71.7± 0.9 |
v2food® Control | 76.8 | 69.6 | 80.0 | 77.8 | 76.1 | 77.2 | 70.6 | 76.8 | 73.5 | 70.6 | 69.9 | 80.9 | 69.0 | 81.6 | 80.7 | 74.2 | 42.3 | 47.3 | 51.4 | 76.2 | 73.6 ± 1.8 |
p-value | 0.061 | 0.483 | 0.001 | 0.171 | 0.221 | 0.045 | 0.021 | 0.313 | 0.010 | 0.302 | 0.531 | 0.060 | 0.245 | 0.774 | 0.456 | 0.206 | 0.042 | 0.678 | 0.011 | 0.002 | 0.341 |
(b) | |||||||||||||||||||||
v2food® Control | 76.8 | 69.6 | 80.0 | 77.8 b | 76.1 ab | 77.2 a | 70.6 b | 76.8 | 73.5 | 70.6 | 69.9 | 80.9 b | 69.0 | 81.6 b | 80.7 b | 74.2 | 42.3 | 47.3 | 51.4 a | 76.2 | 73.6 ± 1.8 |
v2food® Form.1 | 73.3 | 63.9 | 76.2 | 72.7 a | 71.0 a | 87.6 b | 62.3 a | 69.6 | 68.2 | 61.3 | 61.6 | 71.6a | 63.0 | 65.3 a | 71.6 ab | 65.3 | 40.0 | 48.0 | 61.0 b | 71.5 | 67.4 ± 0.9 |
v2food® Form.2 | 76.3 | 66.6 | 82.5 | 79.3 b | 77.2 b | 92.0 b | 69.7 b | 75.1 | 72.8 | 63.4 | 61.9 | 72.6 ab | 64.5 | 65.5 a | 71.1 a | 67.3 | 49.6 | 45.9 | 62.2 b | 76.8 | 69.9 ± 0.1 |
v2food® Form.3 | 76.2 | 66.3 | 80.1 | 78.5b | 77.6 b | 90.1 b | 71.4 b | 71.4 | 71.3 | 65.2 | 63.1 | 74.7 ab | 66.6 | 69.3 ab | 73.7 ab | 70.1 | 48.0 | 52.5 | 63.1 b | 75.0 | 71.0 ± 2.0 |
p-value | 0.061 | 0.483 | 0.001 | 0.171 | 0.221 | 0.045 | 0.021 | 0.313 | 0.010 | 0.302 | 0.531 | 0.060 | 0.245 | 0.774 | 0.456 | 0.206 | 0.042 | 0.678 | 0.011 | 0.002 | 0.341 |
(a) | |||||
Beef Mince | v2food® Mince | p-Value | |||
DIAA reference ratio | |||||
Threonine | 1.51 ± 0.02 | 1.48 ± 0.04 | 0.477 | ||
Leucine | 1.14 ± 0.05 b | 1.04 ± 0.02 a | 0.012 | ||
Isoleucine | 0.96 ± 0.06 | 1.03 ± 0.02 | 0.335 | ||
Valine | 0.70 ± 0.20 | 0.73 ± 0.01 | 0.167 | ||
Histidine | 2.98 ± 0.10 | 2.78 ± 0.17 | 0.366 | ||
Lysine | 1.29 ± 0.01 | 1.18 ± 0.05 | 0.099 | ||
Tryptophan | 0.85 ± 0.01 | 0.71 ± 0.05 | 0.063 | ||
SAAs 2 | 0.88 ± 0.02 | 1.62 ± 0.06 | 0.0004 | ||
AAAs 3 | 1.01 ± 0.02 | 1.28 ± 0.01 | 0.0003 | ||
In vitro DIAAS 4 | 69.6 (Val) | 70.9 (Trp) | 0.816 | ||
(b) | |||||
v2food® Mince | v2food® Formulation 1 | v2food® Formulation 2 | v2food® Formulation 3 | p-Value 1 | |
DIAA reference ratio | |||||
Threonine | 1.48 ± 0.04 | 1.33 ± 0.03 | 1.38 ± 0.01 | 1.37 ± 0.06 | 0.107 |
Leucine | 1.04 ± 0.02 b | 0.91 ± 0.07 a | 1.04 ± 0.09 b | 0.99 ± 0.02 b | 0.0003 |
Isoleucine | 1.03 ± 0.02 b | 0.85 ± 0.03 a | 1.04 ± 0.02 b | 1.03 ± 0.02 b | 0.0002 |
Valine | 0.73 ± 0.09 b | 0.63 ± 0.02 a | 0.74 ± 0.01 b | 0.75 ± 0.03 b | 0.002 |
Histidine | 2.78 ± 0.17 | 2.27 ± 0.11 | 2.27 ± 0.05 | 2.44 ± 0.12 | 0.053 |
Lysine | 1.18 ± 0.05 | 1.03 ± 0.04 | 1.06 ± 0.01 | 1.10 ± 0.04 | 0.095 |
Tryptophan | 0.71 ± 0.05 | 0.70 ± 0.05 | 0.83 ± 0.04 | 0.81 ± 0.02 | 0.132 |
SAAs | 1.62 ± 0.06 a | 2.26 ± 0.08 b | 2.15 ± 0.07 b | 2.28 ± 0.08 b | 0.0003 |
AAAs | 1.28 ± 0.01 | 1.18 ± 0.01 | 1.26 ± 0.02 | 1.22 ± 0.04 | 0.055 |
In vitro DIAAS 4 | 70.9 (Trp) | 63.0 (Val) | 73.9 (Val) | 75.3 (Val) | 0.072 |
Control | Cellulose | Inulin | v2food® Mince | |
---|---|---|---|---|
Acetic Acid | 15.0 ± 0.2 a | 15.0 ± 0.3 a | 54.5 ± 1.8 b | 54.0 ± 4.0 b |
Propionic Acid | 4.3 ± 0.1 a | 4.9 ± 0.1 a | 6.8 ± 0.1 b | 21.0 ± 0.4 c |
Butyric Acid | 4.7 ± 0.1 a | 4.7 ± 0.1 a | 7.4 ± 0.1 b | 18.0 ± 1.0 c |
Phylum | Control | Cellulose | Inulin | v2food® Mince |
---|---|---|---|---|
Actinomycetota | 1.54 ± 0.06 a | 1.61 ± 0.19 ab | 1.49 ± 0.19 a | 2.30 ± 0.18 b |
Bacteroidota | 10.88 ± 0.62 a | 8.40 ± 0.28 a | 56.02 ± 0.57 b | 11.10 ± 0.95 a |
Bacillota | 84.32 ± 0.27 a | 89.08 ± 0.24 b | 42.34 ± 0.47 c | 84.63 ± 1.19 a |
Lentisphaerota | 0.065 ± 0.007 a | 0.015 ± 0.008 b | 0 b | 0.002 ± 0.002 b |
Pseudomonadota | 3.05 ± 0.52 a | 0.76 ± 0.21 b | 0.13 ± 0.01 b | 1.96 ± 0.59 a |
Synergistota | 0.017 ± 0.008 ab | 0.024 ± 0.006 a | 0 b | 0 b |
Mycoplasmatota | 0.078 ± 0.012 a | 0.074 ± 0.010 a | 0.002 ± 0.002 b | 0.004 ± 0.002 b |
Verrucomicrobiota | 0.019 ± 0.004 a | 0.011 ± 0.006 ab | 0 b | 0.002 ± 0.002 b |
Genus | Control | Cellulose | Inulin | v2food® Mince |
---|---|---|---|---|
Alistipes | 0.398 ± 0.028 a | 0.210 ± 0.037 b | 0.289 ± 0.039 ab | 0.063 ± 0.011 c |
Anaerostipes | 0.179 ± 0.008 a | 0.138 ± 0.005 b | 0.013 ± 0.013 c | 0 c |
Bacteroides | 4.30 ± 0.24 a | 2.57 ± 0.30 b | 1.90 ± 0.07 b | 2.40 ± 0.30 b |
Blautia | 9.96 ± 0.18 a | 10.48 ± 0.54 ab | 3.85 ± 0.31 c | 11.76 ± 0.29 b |
Butyricicoccus | 0.766 ± 0.068 a | 0.818 ± 0.058 a | 0.060 ± 0.013 b | 0.758 ± 0.096 a |
Catenibacterium | 0.84 ± 0.12 a | 1.13 ± 0.06 a | 10.03 ± 1.01 b | 0.44 ± 0.08 a |
Clostridium (family Clostridiaceae) | 0.389 ± 0.003 a | 0.427 ± 0.019 a | 0.091 ± 0.022 b | 0.306 ± 0.022 c |
Clostridium (family Lachnospiraceae) | 2.19 ± 0.16 a | 2.14 ± 0.13 a | 0.19 ± 0.02 b | 1.65 ± 0.20 a |
Collinsella | 1.12 ± 0.04 a | 1.12 ± 0.19 a | 1.40 ± 0.17 ab | 2.01 ± 0.16 b |
Coprococcus | 4.31 ± 0.37 a | 4.29 ± 0.27 a | 2.33 ± 0.28 b | 3.53 ± 0.14 ab |
Dorea | 9.97 ± 0.31 a | 12.52 ± 0.81 b | 0.45 ± 0.02 c | 11.92 ± 0.54 ab |
Eggerthella | 0.109 ± 0.015 a | 0.118 ± 0.008 a | 0 b | 0.053 ± 0.004 c |
Enterobacter | 0 a | 0 a | 0 a | 0.108 ± 0.108 a |
Faecalibacterium | 8.56 ± 0.33 a | 6.86 ± 0.06 b | 5.76 ± 0.21 c | 11.37 ± 0.25 d |
Haemophilus | 0.079 ± 0.013 a | 0.43 ± 0.009 b | 0 c | 0 c |
Klebsiella | 0.007 ± 0.007 a | 0 a | 0 a | 0.141 ± 0.132 a |
Lachnobacterium | 0.015 ± 0.015 a | 0.067 ± 0.040 ab | 0.170 ± 0.022 b | 0 ac |
Lachnospira | 0.519 ± 0.057 a | 0.412 ± 0.033 ab | 0.043 ± 0.007 c | 0.298 ± 0.030 b |
02d06 | 0.508 ± 0.057 a | 0.423 ± 0.028 a | 0.191 ± 0.015 b | 0.259 ± 0.022 b |
Odoribacter | 0.113 ± 0.012 a | 0.011 ± 0.011 b | 0.061 ± 0.009 c | 0 b |
Oscillospira | 3.62 ± 0.09 a | 4.14 ± 0.22 a | 0.37 ± 0.06 b | 1.58 ± 0.10 c |
Parabacteroides | 2.42 ± 0.29 a | 1.18 ± 0.06 b | 0.22 ± 0.01 c | 0.57 ± 0.02 bc |
Phascolarctobacterium | 2.27 ± 0.18 a | 1.97 ± 0.15 a | 0.26 ± 0.02 b | 2.31 ± 0.14 a |
Prevotella | 2.93 ± 0.18 a | 4.20 ± 0.13 a | 53.27 ± 0.68 b | 8.02 ± 0.86 c |
Roseburia | 1.47 ± 0.08 ab | 2.06 ± 0.11 a | 1.01 ± 0.18 b | 2.15 ± 0.26 a |
Ruminococcus (family Lachnospiraceae) | 3.33 ± 0.18 a | 2.77 ± 0.26 a | 2.68 ± 0.13 a | 3.02 ± 0.37 a |
Ruminococcus (family Ruminococcaceae) | 3.01 ± 0.09 ac | 3.36 ± 0.13 a | 1.09 ± 0.16 b | 2.32 ± 0.22 c |
Shigella | 0.019 ± 0.011 a | 0.039 ± 0.039 a | 0 a | 0.125 ± 0.125 a |
Slackia | 0.099 ± 0.007 a | 0.133 ± 0.014 a | 0.031 ± 0.003 b | 0.135 ± 0.009 a |
SMB53 | 0.125 ± 0.010 ab | 0.136 ± 0.003 a | 0.080 ± 0.012 bc | 0.067 ± 0.017 c |
Streptococcus | 0.327 ± 0.029 a | 0.347 ± 0.030 a | 0.054 ± 0.002 b | 0.130 ± 0.017 b |
Subdoligranulum | 2.28 ± 0.03 a | 2.54 ± 0.09 a | 0.50 ± 0.10 b | 1.62 ± 0.13 c |
Sutterella | 2.92 ± 0.52 a | 0.61 ± 0.15 bc | 0.13 ± 0.01 b | 1.48 ± 0.12 c |
Cellular Ferritin Production (%) | |||
---|---|---|---|
Iron Source | Elemental Iron (mg/100 g) | ||
2 mg | 2.7 mg | 4.0 mg | |
Iron without ascorbic acid | |||
Ferric pyrophosphate | 28.0 ± 2.7 | 35.9 ± 4.1 | 46.9 ± 2.8 |
Ferric EDTA | 35.0 ± 8.6 | 32.7 ± 5.3 | 37.1 ± 7.2 |
Ferrous sulphate | 66.2 ± 6.1 * | 86.3 ± 5.8 * | 80.6 ± 12.1 * |
Ferrous fumarate | 47.3 ± 5.8 | 41.1 ± 6.3 | 37.5 ± 7.5 |
Ferrous bisglycinate | 49.7 ± 12.4 | 25.9 ± 3.0 | 43.7 ± 6.1 |
Ferrous bisglycinate ± citric acid l | 39.0 ± 3.0 | 53.9 ± 5.1 * | 52.7 ± 3.7 |
Iron and ascorbic acid (1:2) | |||
Ferric pyrophosphate | 35.4 ± 1.7 # | 45.8 ± 3.0 | 39.8 ± 2.4 |
Ferric EDTA | 21.0 ± 6.4 | 36.2 ± 4.1 | 22.7 ± 2.1 |
Ferrous sulphate | 64.8 ± 8.8 * | 66.6 ± 3.5 * | - |
Ferrous fumarate | 41.9 ± 3.9 | 63.5 ± 16.5 # | 43.6 ± 10.6 |
Ferrous bisglycinate | 31.6 ± 7.0 | - | 37.9 ± 9.4 |
Ferrous bisglycinate ± citric acid l | 44.0 ± 2.7 | 46.1 ± 4.9 | 78.5 ± 5.7 *# |
Iron and ascobic acid (1:4) | |||
Ferric pyrophosphate | 48.8 ± 3.3 # | 22.6 ± 4.1 | 46.4 ± 1.2 |
Ferric EDTA | 31.0 ± 3.9 | 26.1 ± 4.2 | 39.3 ± 3.3 |
Ferrous sulphate | 63.9 ± 4.2 * | 41.4 ± 7.4 | 55.2 ± 7.3 |
Ferrous fumarate | 37.5 ± 13.9 | 25.7 ± 6.3 | 31.4 ± 5.1 |
Ferrous bisglycinate | 38.0 ± 2.3 | 20.5 ± 4.4 | 26.1 ± 3.3 |
Ferrous bisglycinate ± citric acid l | 37.8 ± 3.8 | 58.8 ± 9.3 * | 51.9 ± 6.5 |
Lean beef | 298.4 ± 96.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belobrajdic, D.P.; Osborne, S.; Conlon, M.; Brook, H.; Addepalli, R.; Muhlhausler, B.S. Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince. Nutrients 2024, 16, 2339. https://doi.org/10.3390/nu16142339
Belobrajdic DP, Osborne S, Conlon M, Brook H, Addepalli R, Muhlhausler BS. Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince. Nutrients. 2024; 16(14):2339. https://doi.org/10.3390/nu16142339
Chicago/Turabian StyleBelobrajdic, Damien P., Simone Osborne, Michael Conlon, Henri Brook, Rama Addepalli, and Beverly S. Muhlhausler. 2024. "Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince" Nutrients 16, no. 14: 2339. https://doi.org/10.3390/nu16142339
APA StyleBelobrajdic, D. P., Osborne, S., Conlon, M., Brook, H., Addepalli, R., & Muhlhausler, B. S. (2024). Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince. Nutrients, 16(14), 2339. https://doi.org/10.3390/nu16142339