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Abstract: Hepatobiliary malignancies, which include hepatocellular carcinoma (HCC) and cholangio-
carcinoma (CCA), are the sixth most common cancers and the third leading cause of cancer-related
death worldwide. Hepatic carcinogenesis is highly stimulated by chronic inflammation, defined as
fibrosis deposition, and an aberrant imbalance between liver necrosis and nodular regeneration. In
this context, the gut–liver axis and gut microbiota have demonstrated a critical role in the patho-
genesis of HCC, as dysbiosis and altered intestinal permeability promote bacterial translocation,
leading to chronic liver inflammation and tumorigenesis through several pathways. A few data
exist on the role of the gut microbiota or bacteria resident in the biliary tract in the pathogenesis of
CCA, and some microbial metabolites, such as choline and bile acids, seem to show an association.
In this review, we analyze the impact of the gut microbiota and its metabolites on HCC and CCA
development and the role of gut dysbiosis as a biomarker of hepatobiliary cancer risk and of response
during anti-tumor therapy. We also discuss the future application of gut microbiota in hepatobiliary
cancer management.

Keywords: inflammation; gut–liver axis; gut microbiota; hepatocellular carcinoma; cholangiocarcinoma;
immunotherapy

1. Introduction

Worldwide, hepatobiliary malignancies are the sixth most common cancer and the
third leading cause of cancer death [1]. Hepatobiliary cancers include hepatocellular
carcinoma (HCC), which is the fourth leading cause of cancer-related death and the main
cause of death in patients with compensated chronic liver disease [2]. Cholangiocarcinoma
(CCA) is the second most frequent primary liver cancer following HCC, and it accounts
for up to 15% of primary hepatic tumors [3]. The gut microbiota is a key regulator of host
homeostasis. In recent years, the disruption of the gut–liver axis and gut dysbiosis have
been shown to play a critical role in promoting liver diseases.

The gut microbiota is made by the complex collection of various microorganisms (bac-
teria, archaea, eukarya, and viruses) that colonize the intestine and cooperate in multiple
functions, such as host nutrient metabolism, xenobiotic and drug metabolism, immune
modulation, and protection against pathogens through the maintenance of the structural
integrity of the intestinal barrier [4]. The advances in anaerobic culture techniques and the
development of culture-independent approaches (i.e., gene sequencing) have led to a better
understanding of the composition and function of the “healthy” gut microbiota [5], which is
mainly composed of seven phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
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Verrucomicrobia, Fusobacteria, and Cyanobacteria, with a predominance of Firmicutes and
Proteobacteria) [6,7]. In homeostatic conditions, Firmicutes and Bacteroidetes represent
90% of the bacteria resident in the gastrointestinal tract, followed by Actinobacteria. From
the oral cavity to the rectum, the number, density and diversity of microbiota varies. This
balance is highly influenced by multiple factors, and it is disrupted during inflammation,
infection or metabolic-associated conditions, such as alcohol consumption, unhealthy diet,
obesity, and diabetes [8]. A high grade of gut dysbiosis has also been reported in pa-
tients with cancer, suggesting a causative role for gut dysbiosis in oncogenesis through
multiple pathways [9,10]. A strict association between Helicobacter pylori infection and
gastric cancer has been extensively demonstrated [11], and an increase in the abundance
of Bacteroidetes, Firmicutes and Proteobacteria has been associated with esophageal can-
cer development [12]. Colorectal cancer occurrence is also influenced by the overgrowth
of Bacteroides fragilis, Clostridium septicum, Escherichia coli [13], Enterococcus faecalis [14],
Fusobacterium spp. and Streptococcus bovis, as described by many studies [15,16]. The gut
microbiota can also influence tumorigenesis through the production of metabolites that
may originate directly from bacteria or the bacterial transformation of dietary compounds
or host-produced molecules; these include short-chain fatty acids (SCFAs), branched-chain
amino acids (BCAAs), trimethylamine N-oxide (TMAO) and bile acids (BAs) [17]. In this
review, we describe the role of the gut microbiota and its metabolites in the pathogene-
sis of HCC and CCA, and we also report the evidence on the predictive and prognostic
importance of gut dysbiosis as a novel biomarker.

1.1. The Gut-Biliary-Liver Axis: Between Inflammation and Immunosuppression

One first role of gut microbiota in promoting HCC is linked to impaired functioning
of the gut–liver axis. The gut and the liver are functionally and anatomically linked by the
gut–liver axis, which includes the intestinal barrier and consists of vascular and lymphatic
structures, as well as molecular and immune pathways that are deeply influenced by the
gut microbiota [18,19]. The intestinal barrier is made up of multiple layers (the epithelium,
the lamina propria, and the endothelium) that influence each other and present specific
functions for the preservation of host homeostasis [20]. In healthy conditions, the intestinal
barrier prevents the translocation of the gut bacteria and their products into systemic circu-
lation. Any perturbation that produces an imbalance between the intestinal barrier and
the gut microbiota affects the gut–liver axis and acts as a trigger for several liver diseases,
including liver cirrhosis and HCC [21]. It is not surprising that gut dysbiosis represents
the main driver in the gut–liver axis derangement, as it remarkably influences the intesti-
nal barrier integrity and, as a consequence, pathological bacterial translocation (BT) is
favored [22]. The presence of dysbiosis increases the concentration of enterotoxins in the
gut, which stimulates the inflammatory response and increases intestinal barrier leakiness
through the disruption of epithelial tight junctions (TJs). It is reported that elevated levels of
zonula occludens 1 (ZO-1) are associated with increased intestinal permeability and disease
severity in HCC [23]. Bacterial products such as the endotoxin lipopolysaccharides (LPSs)
are also released in systemic circulation, leading to low-grade chronic inflammation [24,25].
LPSs are involved in several pathways that converge on HCC; interestingly, patients with
liver cirrhosis and those with HCC show higher levels of circulating LPSs, according to
animal models of carcinogen-induced hepatocarcinogenesis [26]. LPSs directly damage TJs
through the activation of the Toll-Like Receptor (TLR) 4-Myeloid differentiation primary
response 88 (MyD88) pathway, which activates myosin light chain kinase and enhances
intestinal permeability. Moreover, through this same pathway, LPS acts as an inflammatory
trigger for the liver, stimulating Kupffer cells to release pro-inflammatory cytokines such
as interleukin (IL)-1 beta, IL-6, and tumor necrosis factor (TNF) alpha via the activation of
the nuclear factor kappa B (NF-kB) cascade [27–29]. Also, Gram-positive bacteria influence
systemic inflammation and carcinogenesis through the release of lipoteichoic acid (LTA),
which acts on TLR-2 and converges eventually on Myd88. Indeed, in an obesity-driven
murine model of HCC, the activation of TLR-2-Cyclooxygenase-2 (COX-2) [30] by LTA
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produced by Gram-positive bacteria was proven to favor hepatocarcinogenesis through two
different mechanisms: the senescence of hepatic stellate cells (HSCs) and the modification of
bile acid composition [31–33]. Moreover, gut dysbiosis and gut-derived products stimulate
HSCs to express the senescence-associated secretory phenotype (SASP), reprogramming
their transcriptome towards the production of inflammatory cytokines, such as IL-1 beta,
as observed in mice models of non-fibrotic HCC after the establishment of diet-induced
gut dysbiosis [32]. To analyze the possible contribution of HSC senescence and HCC devel-
opment, Yoshimoto and colleagues used a mice model knock-out for the gene of IL-1 beta,
a cytokine associated with both cancerogenesis and tumor suppression since it acts on the
tumor microenvironment (TME) [32,34,35], and observed a parallel reduction in activated
HSCs and the number of liver tumors [32,35]. Concerning the LTA/TLR-2/COX-2 pathway,
it promotes the activation of prostaglandin E2 (PGE2) in HSCs, which is associated with
a reduced anti-tumor response in the TME [36]. Moreover, TLR-4 triggers proliferative
and antiapoptotic signals in resident hepatocytes of non-myeloid origin that are involved
in cell growth and angiogenesis through the activation of STAT3 and its downstream
genes cyclin D1, Bcl-2, c-myc, and IL-10 [25,37]. The activation of janus kinase/mitogen-
activated protein kinase (JNK/MAPK) signaling by LPSs in HCC cells via TLR-4 results in
enhanced invasive capacity and an epithelial–mesenchymal transition [38]. The interplay
between low-grade chronic inflammation and gut dysbiosis also impacts immune system
efficacy [39–41]. This has been observed in colorectal cancer, where gut dysbiosis, repre-
sented by a higher abundance of Fusobacterium nucleatum, has been associated with the
impairment of natural killer (NK) cell expression and activity and a reduction in cluster
differentiation (CD)-3+ T cells. These changes resulted from the direct interaction between
F. nucleatum and the immune checkpoint “T cell immunoglobulin and immunoreceptor
tyrosine-based inhibitory motif” (TIGIT), which is expressed on the surfaces of immune
cells to downregulate their activity [42]. Bacterial translocation is a key player in this
mechanism, as high circulating levels of bacterial extracts from patients with HCC in-
jected in healthy patients induce a peculiar pattern of lymphocytes in the peripheral blood
mononuclear cells, which are enriched in regulatory T cells and poor in cytotoxic CD-8 T
cells [37,43,44]. How dysbiosis influences the anti-tumor response is not completely defined.
Bacteria can stimulate immune cells differently. Many examples of the regulatory effect
of the gut microbiota on immune cells through the upregulation of immune checkpoint
molecules are reported in HCC patients: the overexpression of Programmed Death 1 (PD-1),
Programmed Death Ligand 1 (PD-L1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4)
leads to an increase in regulatory T cells, while CD 4+ T cells, CD 8+ T cells and NK cells
are downregulated [45]. In patients with HCC, Bacteroidetes and E. coli were associated with
higher levels of these antagonists of the immune response, resulting in a reduced efficacy
of immunotherapy [45–47]. Gut-derived metabolites may have a role in this interaction; in
particular, SCFAs inhibit the histone deacetylase, which limits the expression of PD-1 and
results in its upregulation, but their role has not been clarified yet [48–51]. Also, primary
bile acids promote the accumulation of CXC receptor 6+ NK T cells in the liver, which favors
tumor inhibition, whereas secondary bile acids have opposite effects [52]. Changes in the
gut–liver axis and gut dysbiosis are considered key players in the development of chronic
disease of the biliary tract. Preclinical studies demonstrated that in healthy conditions, bile
ducts are sterile; intestinal barrier disruption causes the translocation of bacteria and LPSs
in the portal circulation and in the biliary tract. In this condition, gut microbiota and its
products are able to activate TLRs exposed by cholangiocytes. In response to chronic TLR
activation, cholangiocytes produce a variety of inflammatory cytokines, such as IL-1, IL-6,
IL-8, TNF, transforming growth factor (TGF), and interferon gamma (IFN gamma), leading
to an aberrant reaction that results in fibrosis, bile cell proliferation, and the generation of
an immunosuppressive milieu [53,54]. In particular, the upregulation of myeloid-derived
suppressor cells (MDSCs) causes the inhibition of cytotoxic T-lymphocytes and influences
tumor replication, intravascular invasion, and metastasis. Hepatocytes contribute to this
process by secreting CXC motif chemokine ligand 1 (CXCL1), which interacts with the CXC
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chemokine receptor on the aforementioned myeloid cells [55]. Thus, the chronic activation
of TLR-4 and the upregulation of its gene correlates with CCA occurrence and progres-
sion [56,57]. Another possible mechanism involved in cholangiocarcinogenesis is molecular
mimicry, observed in autoimmune conditions such as primary biliary cholangitis; this
consists of the aberrant production of autoantibodies that are very similar, have bacterial
and virus epitopes, and are able to activate effector T cells. According to this hypothe-
sis, autoantibodies participate in the promotion and maintenance of liver inflammation
and tumorigenesis [58–60].

1.2. Gut Dysbiosis and Hepatobiliary Carcinogenesis

Liver cirrhosis is characterized by a profound derangement of the gut microbiota com-
position. In particular, while bacterial alpha diversity and the abundance of Lactobacilli and
Bifidobacteria is reduced, a marked increase in Enterobacteriaceae, Enterococci, Bacteroides,
and Ruminococcaceae is observed [61–63]. Aerobic Gram-negative bacteria, specifically
E. coli and other Enterobacteriaceae, have been identified as the most frequently involved
in bacterial translocation and the major source of serum endotoxin [64]. On the other hand,
anaerobic bacteria such as Bifidobacteria and Lactobacilli limit the overgrowth of poten-
tially invasive microorganisms and exert ant-inflammatory and homeostatic properties [65].
In patients with HCC, an abundance of E. coli [66], Actinobacteria and other bacteria that
produce LPSs has been observed with a reduction in butyrate-producing ones [62]; more-
over, stools from patients with non-viral HCC harbored more pro-inflammatory bacteria,
such as Escherichia, Shigella and Enterococcus, and less Faecalibacterium, Ruminococcus, and
Ruminoclostridium spp., which instead produce anti-inflammatory compounds such as SC-
FAs [67]. Gut dysbiosis is a key player in the development of HCC in patients with NAFLD.
In overweight patients, bacterial overgrowth syndrome is observed, and this is associated
with higher levels of LPS released, with consequent hyperstimulation of inflammation.
Inflammation also stimulates cell proliferation and influences immune cell downregulation.
Intestinal permeability is another key regulator of this process, with a high release of LPSs
into circulation, which is associated with the progression from NAFLD to NASH [32,68].
Modifications in gut microbiota have been associated with NAFLD, with significant changes
occurring due to the evolution of liver fibrosis. In particular, it is observed that there is a
loss of bacterial diversity associated with the depletion of Lactobacillus and Bifidobacterium
spp. in association with the increase in Ruminococcus and Escherichia spp. when fibrosis is
detected. In this condition, changes in gut-derived metabolites are mandatory, in particular,
BA changes are crucial in the development of obesity-associated HCC [69,70]. In obesity,
higher levels of DCA are observed, and this stimulates the expression of the SASP in hep-
atic stellate cells, which release inflammatory cytokines that raise the risk of HCC. Similar
effects are observed in HCC that occurred in patients with non-alcoholic steatohepatitis.
The activation of TLR in NASH models by LPS or bacterial DNA also activates HSCs,
leading to fibrosis [69,70]. In patients with non-alcoholic steatohepatitis (NASH)-related
cirrhosis and HCC, Bacteroides and Ruminococcaceae are increased, with a relative reduction
in Bifidobacterium and Akkermansia [63]. Ren et al. analyzed fecal samples of 75 patients
with cirrhosis and early HCC, 40 cirrhotic patients and 75 healthy controls from a heteroge-
neous Chinese population to identify possible genomic biomarkers of HCC. Patients with
early HCC showed a greater microbial diversity and an increase in Actinobacteria phylum
and Gemmiger, Parabacteroides and Paraprevotella genera in contrast to cirrhotic controls;
moreover, butyrate-producing bacteria were decreased while LPS-producing bacteria were
increased [62]. Also, an increased fecal abundance of Gram-negative E. coli has been found
in the stool of cirrhotic patients with HCC, and this may lead to enhanced intestinal and
hepatic inflammation mediated by the LPS-TLR4-NF-kB pathway. This was recapitulated
in a mouse model of diethylnitrosamine (DEN) plus carbon tetrachloride (CCl4)-induced
HCC, as animals with nonfunctional TLR-4 (TLR4-mut) had a significant reduction in
tumor number and size but no difference in tumor incidence when compared to TLR-4
wild-type mice exposed to the same oncogenic toxins [37]. Gut sterilization obtained by
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the administration of antibiotics decreased LPS serum levels and was associated with an
effect on tumor size and number similar to TLR-4 mutation, further confirming that gut
microbiota-driven inflammation favors HCC progression [37]. Recent studies have also
focused on the role of intratumor microbiota [65,66]. Li et al. [67] analyzed tissues derived
from 29 patients with HBV-related HCC using next-generation sequencing (NGS) and
discovered a lower bacterial diversity in tumor samples compared to non-tumor ones. HCC
tissues were also divided into two subtypes: one with bacteria predominance (Bacteria-T)
and the other with virus predominance (Virus-T). In Bacteria-T, E. coli, Shigella dysenteriae,
Babesia bigemina and Pannonibacter phragmitetus were enriched, while HBV was prevalent in
Virus-T. Bacteria-T HCC was characterized by larger size and capsular invasion and a higher
prevalence of M2 macrophages in the TME compared to Virus-T [71,72]. Compared to
patients with HCC or liver cirrhosis, the gut microbiota of patients affected by intrahepatic
CCA (iCCA) is enriched in four genera (Lactobacillus, Actinomyces, Peptostreptococcaceae and
Alloscardovia), and Ruminococcaceae abundance was positively associated with vascular
invasion [72]. In vitro experiments showed that the most described intratumor microbiome
was composed of Burkholderiales, Pseudomonadales, Xanthomonadales, Bacillales and
Clostridiales. Moreover, Paraburkholderia fungorum was associated with CA19-9 levels
and located in the paracancerous tissues [73]. Other bacteria involved in cholangiocarcino-
genesis are H. pylori, H. hepaticus and Opisthorchis viverrini, and the most abundant genera
identified in the biliary microbiota were Enterococcus, Streptococcus, Bacteroides, Klebsiella
and Pyramidobacter spp. [74]. Figure 1 summarizes the relationship between the impairment
of gut–liver axis homeostasis and hepatic tumorigenesis. Table 1 synthesizes the main
features of gut microbiota composition in primary liver cancers.

Table 1. Microbiota composition in primary liver cancer.

Study Model Tumor Microbiota Composition Other Features

Observational, fecal sample
(healthy vs. cirrhosis vs.

early HCC) [61]
early HCC

↑ Actinobacteria, Klebsiella and
Haemophilus (producing LPS)

↓ Ruminococcus, Oscillibacter,
Faecalibacterium, Clostridium IV,
Coprococcus (butyrate-producing

bacteria families)

Fecal microbial diversity was
decreased from healthy controls to
cirrhosis, but it was increased from

cirrhosis to early HCC with
cirrhosis

Observational,
HBV-related HCC (B-HCC) vs.

non-HBV and non-HCV-related
HCC (NBNC-HCC) [67]

HCC

↑Escherichia,
Shigella,

Enterococcus

↓ Faecalibacterium, Ruminococcus,
Ruminoclostridium

Higher species richness of fecal
microbiota of B-HCC vs. others

Observational
NAFLD-related cirrhosis and

HCC vs. NAFLD-related
cirrhosis without HCC vs.

healthy controls [63]

HCC
↑ Bacteroides and Ruminococcaceae

↓ Bifidobacterium, Akkermansia

Akkermansia and Bifidobacterium
were inversely correlated with

calprotectin concentration, which,
in turn, was associated with

humoral and cellular inflammatory
markers

Case–control
HBV-related HCC tissues vs.

chronic hepatitis [69]
HCC ↑ E. coli

S. dysenteriae

↓ Intratumoral microbial
heterogeneity of HCC tissues

decreased compared with that of
nontumor tissues

Observational
CCA vs. HCC vs. liver cirrhosis

vs. healthy [71]
CCA

↑ Lactobacillus, Actinomyces,
Peptostreptococcaceae, and

Alloscardovia
↑ α-diversities and β-diversities

compared to other groups

Observational, in vitro
tumor tissue vs. paracancerous

tumor [72]
CCA

↑ Burkholderiales, Pseudomonadales,
Xanthomonadales, Bacillales and

Clostridiales

P. fungorum higher in the
paracancerous tissues and

negatively correlated with CA19.9

Abbreviations: CCA, cholangiocarcinoma; HBV, hepatitis B virus; HCV, hepatitis C virus; HCC, hepatocellular
carcinoma; NAFLD, non-alcoholic fatty liver disease.
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pathway, which causes DNA damage through the production of ROS. LPS also inhibits apoptosis 
in hepatocytes, enhancing cell replication and favoring the epithelial-to-mesenchymal cell 
transition. LTA also influences the phenotype of HSCs, leading to their senescence. BT also 
stimulates the upregulation of immune checkpoint molecules, resulting in increased levels of 
peripheral anergic cells, such as Tregs, and the loss of CD-8 T cells and NK cells. Abbreviations: 
LPS, lipopolysaccharide; LTA, lipoteichoic acid; TLR, Toll-like receptor; NFkB, nuclear factor k beta; 
COX2-PGE2, cyclooxygenase prostaglandin 2; JNK, Janus Kinase; IL, interleukin; SASP, senescence-
associated secretory phenotype; HSCs, hepatic stellate cells; TIGIT, T-cell immunoglobulin and 
immunoreceptor tyrosine-based inhibitory motif; PD1, Programmed Death 1; PD-L1, Programmed 
Death Ligand 1; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; ETM, epithelial-to-mesenchymal 
transition; ROS, reactive oxygen species; Tregs, regulatory T-cells; CD, cluster of differentiation; NK, 
natural killer. 
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Figure 1. Gut dysbiosis and chronic inflammation leads to increased intestinal permeability, en-
hancing translocation of enterotoxins, bacteria and their fragments into the bloodstream. LPS and
LTA share similar mechanisms, such as stimulating the TLR-MyD88-NFkB pathway, which is a
well-known driver of inflammation and cell proliferation, and the activation of the COX2-PGE2
pathway, which causes DNA damage through the production of ROS. LPS also inhibits apoptosis in
hepatocytes, enhancing cell replication and favoring the epithelial-to-mesenchymal cell transition.
LTA also influences the phenotype of HSCs, leading to their senescence. BT also stimulates the
upregulation of immune checkpoint molecules, resulting in increased levels of peripheral anergic
cells, such as Tregs, and the loss of CD-8 T cells and NK cells. Abbreviations: LPS, lipopolysac-
charide; LTA, lipoteichoic acid; TLR, Toll-like receptor; NFkB, nuclear factor k beta; COX2-PGE2,
cyclooxygenase prostaglandin 2; JNK, Janus Kinase; IL, interleukin; SASP, senescence-associated
secretory phenotype; HSCs, hepatic stellate cells; TIGIT, T-cell immunoglobulin and immunoreceptor
tyrosine-based inhibitory motif; PD1, Programmed Death 1; PD-L1, Programmed Death Ligand
1; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; ETM, epithelial-to-mesenchymal transition; ROS,
reactive oxygen species; Tregs, regulatory T-cells; CD, cluster of differentiation; NK, natural killer.

2. Gut Metabolome

While the “direct” effect of bacterial products on inflammation and tumorigenesis
has been well established, understanding the role of gut metabolites in the pathogenesis
of primary hepatobiliary cancers is a page yet to be written. The gut microbiota acts as a
bioreactor of metabolic functions through the enzymatic transformation of endogenous
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and exogenous substances into its metabolites, influencing host homeostasis. Gut dysbiosis
alters the levels of metabolites, including those involved in carcinogenesis, causing dramatic
consequences [75,76]. Data on the role of gut-derived metabolites in carcinogenesis are
accumulating; here, we describe the main results on the role of BAs, SCFAs, ethanol, BCAAs
and indole-derived products.

2.1. Bile Acids

BAs are steroid derivatives of amphipathic molecules produced in the liver and are
transformed by the gut microbiota into signaling agents. Despite the fact that the pro-
duction of primary BAs is a prerogative of the host, secondary BAs are derived from
an active transformation mediated by the gut microbiota through a process involving
the deconjugation, dehydroxylation and dehydrogenation of primary BAs mediated by
colonic bacteria with bile salt hydroxylate activity [77]. As a consequence, BAs may be
assimilated into gut-derived metabolites with significant signaling activity. In healthy
conditions, primary BAs are transported with the bile in the intestine, where they are
converted into secondary BAs. BAs participate in several functions, such as the elimination
of cholesterol and catabolites, the emulsification of fat-soluble vitamins, the regulation of
intestinal motility, and the maintenance of balance in the small intestinal and biliary tract
microbiota [31,33,77]. In the colon, the gut microbiota participates in debinding water from
BAs as well as in their deconjugation, dihydroxylation, and dehydrogenation. Regarding
deconjugation, Bacteroides, Clostridium, Lactobacillus, Bifidobacterium, Listeria, and Escherichia
spp. are involved in this process, showing bile salt hydrolase (BSH) activity [78], and
unconjugated primary BAs are further dehydrogenated and 7α-dehydroxylated mainly
by Clostridium spp. forming secondary BAs. In the presence of chronic inflammation,
gut dysbiosis leads to an imbalance in the intrahepatic levels of BAs since it negatively
influences farnesoid X receptor (FXR) expression, a key regulator of BA metabolism and
signaling, resulting in hepatotoxicity [78] through the modulation of hepatic transporters.
This mechanism negatively influences farnesoid X receptor (FXR) expression, leading to
hepatotoxicity. Indeed, excessive levels of BAs damage the plasma membrane, activating
the protein kinase C/MAPK/NFkB pathway that upregulates inflammatory cytokines
such as TNF alpha, IL-1 beta, and IL-6. These cytokines counteract the apoptotic processes
through the JAK-STAT3 and phosphatidylinositol 3-kinase (PI3K) pathways, favoring cell
immortalization [79]. Hydrophobic secondary BAs, including cholic acid (CA), glycocholic
acid (GCA), lithocholic acid (LCA), chenodeoxycholic acid (CDCA), and deoxycholic acid
(DCA), are the main ones responsible for hepatocyte death [80]. Their action appears to be
mediated by the activation of TNF-related apoptosis-inducing ligand receptor (TRAILR)
and Fas death receptor signaling pathways [81]. Another mechanism that leads to tumorige-
nesis is the exaggerated activation of apoptotic pathways directly or indirectly mediated by
BAs; indeed, BAs mediate the transfer of Fas-containing vesicles to hepatocyte membranes.
The interaction between Fas and a death-inducing signaling complex composed of the
Fas-associated death domain and procaspases 8 and 10 activates apoptosis; specifically,
procaspases are activated into caspases 8 and 10, and Bax is translocated into mitochondria.
Other mechanisms include cytochrome c release and caspase 9 activation [82]. Moreover,
the release of cytochrome c can occur through the direct action of BAs in Bax translocation
and through BA-induced reactive oxygen species (ROS) production [79]. Finally, BAs (DCA
and G-CDCA) induce endoplasmic reticulum (ER) stress, resulting in the release of Ca2+
in the cytoplasm and the further promotion of oxidative stress [83]. The stimulation of
proliferative pathways through the activation of an inflammatory cascade that leads to the
upregulation of gene signaling is another common mechanism involved in tumorigenesis
mediated by BAs: BAs upregulate Early growth response-1 (Egr-1), which is required for
the development of liver inflammation during cholestasis, via MAPK signaling [80] directly
or via previous activation of FXR, which heterodimerizes with RXR and modulates gene
expression [84]. Furthermore, CDCA and DCA activate epithelial growth factor receptor
(EGFR) and upregulate Egr-1, causing the production of vascular endothelial cell adhesion
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molecule-1 (VCAM-1), IL-1β, and IL-10 in hepatocytes [85]. Moreover, damage to the
plasmatic membrane by toxic BAs triggers protein kinase C (PKC), which, in turn, activates
the MAPK cascade, leading to the activation of NF-kB and the production of IL-6, IL-1 beta,
and TNF alpha [79,86]. FXR is the most important nuclear receptor for BAs involved in
the process of hepatocarcinogenesis. Another mechanism of hepatocarcinogenesis influ-
enced by BAs is related to the inhibition of FXR signaling. FXR inhibits HCC development
through the modulation of several metabolic pathways involving BAs, glucose, and lipids,
the suppression of liver inflammation, the promotion of tissue repair after liver injury, the
expression of partial tumor suppressor genes, and the inhibition of transcription of multiple
oncogenes [87,88]. When binding to caspase 8, FXR prevents the activation and conduction
of apoptotic signals in a ligand-independent pathway. During liver injury, in response
to high levels of TRAIL, TNFα, and Fas ligand, FXR expression reduces, suggesting that
the decrease in FXR in hepatocytes precedes apoptosis [81]. BAs can downregulate FXR
through the reduction of sirtuin 1 (SIRT1), a transcriptional regulator of FXR expression
in hepatocytes [89]. This results in sustained activation of the Wnt/β-catenin pathway
and increased risk of hepatocarcinogenesis [90]. A diet enriched in lipids increases the
levels of the gut microbiota-derived DCA, which is known to cause DNA damage. In
hepatic stellate cells, DCA induces the SASP, turning in the secretion of inflammatory
and tumor-promoting factors in the liver [32] and the overexpression of COX-2 and its
downstream inflammatory cascade, together with TLR-2-mediated signaling [6,25,52]. BAs
also influence the immune response and tolerance against tumors. Commensal bacteria
are important regulators of anti-tumor immunity, and gut microbiome-mediated primary-
to-secondary BA conversion can regulate the accumulation of NK T cells by CXCL16
expression in liver sinusoidal endothelial cells [91]. Primary BAs such as CDCA and toxic
CA increase CXCL16 expression, which binds to its receptor CXCR6 on NKT, thereby
increasing IFN gamma production and inhibiting tumor growth [6]. Lithocholic acid was
also reported to influence the balance between Th17 and T regulatory cells by acting on
the retinoic acid-associated orphan receptors gamma T [91]. As gut-derived metabolites
may modulate the risk of HCC development acting on modulatory signaling pathways,
several drugs, such as FXR agonists, are under evaluation. The inhibition of FXR functions
is associated with impaired cell proliferation and DNA damage, while its activation exerts
a protective role on tumorigenesis [92,93]; in a mouse model, the administration of FXR
agonists (GSK2324) was able to inhibit lipogenesis, the intestinal uptake of lipids and
their intrahepatic accumulation, modulating the levels of monounsaturated fatty acids,
polyunsaturated fatty acids and BAs [94]. It is not known whether BA qualitative changes
observed in CCA patients are a cause or a consequence of the presence of CCA since this
tumor uses BA receptors and may influence BA metabolism. Preliminary evidence reports
that in CCA patients, there is an increase in GCA, a decrease in secondary Bas, and changes
in the ratio between glycoconjugated and tauroconjugated BAs. The tumor-associated
production of IL-6 influences the expression of FXR and G Protein-coupled BA Receptor 1,
known as TGR5 receptors. Patients with CCA and vascular invasion show higher levels
of glycochenodeoxycholic acid (GCDCA), taurocholic acid (TCA), glycodeoxycholic acid
(GDCA), taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). On
the other hand, in this study, the levels of IL-6, as well as those of CDCA, were lower
in the group with vascular invasion than in patients without vascular invasion, which is
discordant with previous observations on the association between BA accumulation, the
increase in IL-6 and downregulation of FXR and cytochrome (CYP) 7A1, the key enzyme
for BA synthesis. The existence of interrelationships among gut microbiota, BA profile,
serum levels of cytokines, and iCCA patients’ outcomes deserves to be explored in larger
studies [94]. Thus, BAs may damage the liver, stimulating carcinogenesis through the
intrahepatic accumulation or the modulation of the main receptors of BAs, which leads to
chronic inflammation, insufficient apoptotic processes, and aberrant cell proliferation.
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2.2. Choline and TMAO

Choline is a product derived from the catabolism of dietary compounds such as
meat and egg yolk. Gut microbiota promotes its metabolism into trimethylamine (TMA),
mainly bacteria belonging to Firmicutes and Proteobacteria phyla (Anaerococcus hydrogenalis,
Clostridium asparagiforme, C. hathewayi, C. sporogenes, E. fergusonii, Proteus penneri, Providencia
rettgeri and Edwardsiella tarda) [95–97]. TMA obtained from this process reaches the portal
circulation, and it is converted in the liver by flavin monooxygenase 3 into trimethylamine-
N-oxide (TMAO). TMAO is associated with an increased risk of cardiovascular disease,
as it promotes the synthesis of proinflammatory cytokines and the release of ROS from
endothelial cells [98–101]. The role of choline in carcinogenesis is controversial. Dietary
choline intake positively correlates with the occurrence of colorectal and prostatic can-
cers [102,103], even if a meta-analysis reported a protective role of this metabolite against
tumorigenesis [104]. Moreover, in a recent study, high levels of dietary choline were able
to reduce the risk of steatotic liver disease in humans; conversely, lower levels led to the
accumulation of intrahepatic triglycerides, resulting in a higher risk of metabolic-associated
disease, including HCC. [105–107]. Liu et al. demonstrated in a large Chinese population
that patients with high plasma levels of TMAO and low choline showed a higher risk
of developing liver cancers compared to individuals with high choline and low TMAO
plasma levels, but the underlying mechanism has not been elucidated yet [108]. TMAO
may stimulate the activation of mammalian target of rapamycin (mTOR) signaling through
the upregulation of the periostin (POSTN) gene, as observed in a model of Hepa 1–6 cells
and Huh7 cells exposed to TNF [109,110]. POSTN is a gene involved in tumorigenesis,
the modulation of the tumor microenvironment, intravascular tumor dissemination and
metastases [111]. Another trial conducted on 40 healthy men documented that fish con-
sumption induced high TMAO production among individuals with low gut microbiota
diversity and higher Firmicutes to Bacteroidetes ratio, recapitulating the essential contribution
of gut microbiota in determining plasma levels of TMA and TMAO metabolites [112]. An
interesting field of research is the functional interplay between BA metabolism and TMAO.
The combination of TMAO and a high-fat diet (HFD) seems to have a synergistic effect on
NAFLD development since TMAO could influence BA metabolism towards the increased
synthesis of FXR-antagonists [113]; as we mentioned above [90], FXR inhibition is asso-
ciated with spontaneous HCC development through the Wnt/β-catenin pathway. More
studies are needed to understand whether dietary restrictions or gut microbiota manipu-
lation toward lower TMA production could prevent HCC development and progression,
especially in NAFLD-NASH-HCC. Preclinical studies showed that a choline-depleting
diet may also stimulate CCA development. Rats treated with 2 acetylaminofluorene fed
with a choline-devoid diet showed the occurrence of CCA after 6 months in 38% of cases,
while a diet enriched with choline prevented tumorigenesis. Similar results were obtained
using other tumor-inducing substances in association with a low-choline diet [114]. A
low-choline and high-methionine diet for 6–12 months in mice caused the occurrence of
primary liver tumors (both HCC and CCA). In all cases, osteopontin was upregulated and
able to activate the beta-catenin signaling pathway and cause a decrease in endothelial
cadherin [114]. No data about the effects of TMAO in CCA are reported in the literature. To
summarize, low levels of choline and higher levels of TMAO are associated with a higher
risk of liver cancer occurrence since choline influences intrahepatic fat deposition, leading
to hepatotoxicity, and TMAO is involved in the stimulation of abnormal cell proliferation.

2.3. Indoles

Indoles are gut microbiota products derived from tryptophan metabolism that are pro-
duced by many bacterial species, mainly by E. coli. Indoles may cross the intestinal barrier
and reach the liver, where they are converted in a two-step process into 3-hydroxyindole
(indoxyl) and conjugated with sulfate in indoxyl sulfate. Moreover, molecules of indoxyl
may dimerize to form the blue dye indigo [115,116]. These products act as aryl hydrocarbon
nuclear receptors (AhRs). In the presence of indole derivatives (indoles), intestinal cells
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express AhRs, promoting immune cell development and intestinal barrier permeability.
In the presence of inflammatory conditions such as chronic liver diseases, indole levels
are reduced [117]. In a study by Krishnan et al., exposure to a high-fat diet significantly
inhibited indole-3-acetate intestinal levels, resulting in the disruption of the intestinal
barrier, overexpression of inflammatory cytokines, and inhibition of immune cells [118].
The anti-inflammatory effects of indoles may be due to the direct action on the host in-
testinal barrier and are partially attributed to changes in gut microbiota metabolism with
no influence on its composition. Indoles also reduce fatty acid oxidation [119]. The oral
supplementation of indoles reverts inflammatory processes [118] and may be evaluated in
patients with chronic inflammatory diseases, including primary hepatobiliary cancers.

2.4. Short-Chain Fatty Acids

SCFAs are produced by the intestinal microbiota from the fermentation of indigestible
carbohydrates. They are involved in the homeostasis of the intestinal epithelial barrier, and
contribute to the maintenance of gut microbiota diversity [120–124]. Acetate, propionate,
and butyrate are the main SCFAs produced in healthy individuals, with a molar ratio in the
human colon of 60:20:20. Acetate derives from anaerobic bacteria such as A. muciniphila and
Bacteroides spp; in normal conditions, it is involved in lipid synthesis, glucose metabolism,
and immunity regulation [125]. Propionate is obtained during glycolysis through the
succinate pathway and is commonly produced by the enzyme methylmanolyl-Coenzyme
A (CoA) decarboxylase of Gram-negative bacteria such as Akkermansia muciniphila and
Roseburia inulinivorans; it is involved in lipid metabolism, inhibits lipogenesis and favors
liver gluconeogenesis [125,126]. Butyrate derives from Clostridium clusters IV and XIVa
metabolism, and it is produced via glycolysis from the combination of two acetyl CoA
molecules to form acetoacetyl CoA, which is reduced in butyryl CoA. Butyrate is finally
obtained from the butyryl CoA acetate CoA transferase pathway or through the phospho
butyrate and butyrate kinase pathway [125,127]. Butyrate is involved in the regulation of
intestinal barrier permeability and intestinal epithelial cell metabolism, and it acts as an
inhibitor of carcinogenesis in the colon [128]. SCFAs modulate human health via several
pathways. First, they interact with GPR41, GPR43, and GPR109A, which activate the
phospholipase C beta, the protein kinase A (PKA), and protein kinase C (PKC), leading to
ERK activation. SCFAs also modulate the immune system, enhancing the production of
macrophages, dendritic cells, and CD 4+ T cells. Moreover, butyrate inhibits inflammation
in the colon, enhancing the production of T-regulatory cells and IL-10 through the GPR109A
receptor [125,129]. In HCC patients, stool analysis revealed that SCFA-producing bacteria
such as butyrate-producing Lachnospira, Ruminococcus, and Butyricicoccus are less repre-
sented [130]. Other studies showed an association of SCFAs with hepatocarcinogenesis [46].
Mice with elevated BAs and hyperbilirubinemia, when fed with inulin to induce SCFA
production, showed higher liver inflammation, neutrophil influx and risk of developing
HCC [131]. Enrichment in beneficial bacteria such as Blautia and Lactobacillus spp. may in-
crease sodium butyrate levels with the aim of reducing inflammation and bile acids such as
DCA [132,133]. SCFAs could also contribute to the development of an immunosuppressive
microenvironment and HCC progression by promoting the production of IL-10 by micro-
biota antigen-specific T helper (Th) 1 cells or suppressing inflammatory macrophages in
the lamina propria [134]. Indeed, some studies showed increased circulating levels of IL-10
and T-regulatory cells (T regs) after exposure to butyrate [135,136]. In a mouse model of
hepatitis B virus-induced HCC, it was noted that SCFA administration reduced the number
of dysplastic nodules and HCC in HBx transgenic mice, downregulating some genes criti-
cally involved in tumor progression, such as several growth factors, PI3K, Wnt, Vascular
Endothelial Growth Factor (VEGF) and Ras [134]. It is recognized that SCFAs interfere with
the cancer cell cycle through DNA epigenetic modifications [137] and histone deacetylase
activity (HDAC) inhibition, which is a critical regulator of gene transcription that is often
found to be dysregulated in cancer [138]. A recent study showed that Lactobacillus reuteri
administration in HCC-recipient mice was positively associated with increased acetate
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plasma levels and contrasts tumor growth [139]. Also, L. reuteri could inhibit type 3 innate
lymphoid cells (ILC3s), a subtype of tissue-resident lymphocytes, to produce IL-17A, a
cytokine with a well-known role in favoring HCC development [139–141]. Researchers
showed that acetate itself is able to downregulate ILC3 functions by blocking HDAC activ-
ity; thus, they documented that the combination of acetate plus anti-PD-1 therapy could
enhance the immune response in HCC mice models receiving ICIs, decreasing IL-17A
mRNA levels [139]. Moreover, supplementation with probiotics can be used for the same
purpose; some bacteria, such as Bifidobacterium pseudolongum, produce acetate, which,
through the interaction with GPR43 on hepatocytes, inhibits cell proliferation and induces
apoptosis in a model of NAFLD-HCC mice [142]. Finally, SCFAs can activate the CD-8
T-cell response in patients receiving anti-PD-1 therapy by the release of IL-17 [143] and
exert anti-tumor activity that inhibits CTLA-4 on dendritic cells and T cells. Butyrate, on
the contrary, may stimulate an anergic phenotype that enhances T-regulatory cells. Butyrate
metabolism is highly activated in patients with HCC compared with healthy individuals,
resulting in reduced plasma levels of butyrate. Butyrate supplementation or inhibition
of its catabolism significantly reduced liver tumorigenesis in a process that influences
intracellular calcium homeostasis and the production of ROS. Moreover, higher levels of
butyrate were associated with higher efficacy of tyrosine kinase inhibitor-based therapy;
the administration of encapsulated pegylated butyrate and sorafenib nanoparticles pro-
longed drug retention time and optimized the anti-tumor response [144]. In vitro studies
also demonstrated that CCA cells treated with butyrate showed a positive effect on cilia
formation and acetylated tubulin levels. In HuCCT1 cell lines, migration, and mitosis were
inhibited by the administration of butyrate. No effects were observed in non-tumor mature
cells. Butyrate stimulates the effects of HDAC inhibition and reduces the levels of cyclin
D1, vimentin, and other proteins involved in cell proliferation [145,146]. Thus, the interplay
between SCFAs and HCC is complex and depends on multiple factors, including the degree
of dysbiosis, the presence of other metabolites, such as BAs, and the conditioning of TME
and the anti-tumor immune response [135].

2.5. Ethanol

In physiologic conditions, small amounts of endogenous ethanol are produced after the
intake of alcohol-free food as metabolic intermediaries or products [147,148]. In the case of
intestinal dysbiosis, the abundance of high alcohol producers such as Klebsiella pneumoniae
increases, contributing to the pathogenesis of disorders such as the autobrewery syndrome
or alcohol-mediated liver damage [148–151]. Also, other members of the gut microbiota,
such as Proteobacteria, more specifically E. coli [149], and yeasts, such as Saccaromyces
cerevisiae and Candida spp., play an important role in endogenous ethanol production [152].
The mechanisms of ethanol-induced carcinogenesis are closely related to its metabolism.
Ethanol is converted into acetaldehyde by three pathways: (1) alcohol dehydrogenase
(ADH), which leads to the formation of acetaldehyde and reduced nicotinamide adenine
dinucleotide (NADH); (2) cytochrome P450 2E1 (CYP2E1), with the formation of reactive
oxygen species; (3) catalase, but to a much lesser extent. Once formed, acetaldehyde is
metabolized into acetate by acetaldehyde dehydrogenase (ALDH) [153,154]. Acetaldehyde
is a well-known carcinogen since it interferes with DNA synthesis and repair [155–157].
Moreover, it causes structural and functional alterations to proteins to which it binds [158].
Levels of acetaldehyde do not always correlate with alcohol consumption, as the activity of
ADH and ALDH is primarily responsible for the amount of acetaldehyde generated. The
expression and activity of these enzymes depend on genetic factors [155]; however, the oral
microbiome can also convert ethanol to acetaldehyde by oxidation, while further conver-
sion in acetate is limited [159,160]. In the oral cavity, mainly Gram-positive aerobic bacteria
and yeasts appeared associated with higher acetaldehyde production, with an increased
risk of developing oral cavity malignancy [161]; moreover, compared to germ-free rats, con-
ventional animals showed higher levels of intracolic acetaldehyde and a more pronounced
mucosal injury and cellular hyper-regeneration [162]. Acetaldehyde does not appear to
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play a crucial role in hepatocarcinogenesis due to its effective hepatic metabolism and,
consequently, low intrahepatic levels of this compound. Liver damage related to ethanol
is rather driven by ROS production. As stated above, ethanol-mediated ROS formation
involves CYP2E1; the chronic consumption of ethanol can induce and make this pathway
predominant [163]. Moreover, NADH derived from the ADH pathway shuttles into mito-
chondria and generates electron leakage from the mitochondrial respiratory chain, forming
ROS. ROS interact with lipids, generating lipid peroxidation products, such as trans-4-
hydroxy-2-nonenal (4HNE), which can be converted to 2,3-epoxy-4-hydroxynonenal. This
compound reacts with deoxyadenosine or deoxycytidine to form exocyclic etheno-DNA
adducts such as 1,N6-ethenoadenine or 3,N4-ethenocytosine, causing DNA damage. To
note, acetaldehyde and nitric oxide derived from inducible nitric oxide synthase induced
by ethanol inhibit the DNA repair system; furthermore, acetaldehyde also increases the
burden of ROS indirectly by injuring mitochondria, resulting in an inadequate reoxidation
of the large quantities of nicotinamide adenine dinucleotide (NADH) that are produced
through the alcohol dehydrogenase (ADH) reaction. As mitochondrial damage occurs, this
cascade of events leading to apoptosis is initiated [164–166]. Thus, ethanol induces liver
damage indirectly through the exaggerated production of ROS, which causes mitochondrial
dysfunction or directly acting on DNA stability.

2.6. Branched-Chain Amino Acids

BCAAs are essential amino acids with an aliphatic chain that are involved in multiple
anabolic processes, such as gluconeogenesis. They are degraded by the branched-chain
aminotransferases (BCATs) 1 and 2 into branched-chain alpha ketoacids, which are funda-
mental for the skeletal muscle and the nervous system [167,168]. From the muscle, BCAAs
may be converted by the branched-chain alpha ketoacid dehydrogenase to be released
and utilized for gluconeogenesis. Free BCAAs stimulate the release of insulin and its
receptor, the insulin receptor substrate (IRS1), leading to the activation of the PI3K/protein
kinase B (AKT)/mTOR complex 1 (mTORC1); BCAAs may also stimulate the direct ac-
tivation of the mTORC1 pathway, which is involved in cell proliferation, angiogenesis
and apoptosis [167–172]. In the presence of gut dysbiosis, such as in HCC, BCAA levels
increased not only in plasma but even in the tumor tissue and the surrounding area; inter-
estingly, the downregulation of the catabolic enzymes of BCAAs is reported in tumor cells,
leading to BCAA accumulation and mTORC1 activation. BCAA levels were also associated
with tumor size and tumor number in a mice model of HCC. Another mechanism of HCC
progression related to BCAAs is the production of mitochondrial distress through the
accumulation of branched-chain ketoacids. The administration of BCAAs with diet seems
to inhibit this process, suggesting that oral supplementation may enhance the anti-tumor re-
sponse through the modulation of the gut microbiota; BCAAs may alter the gut microbiota
composition, reducing serum levels. BCAA supplementation with diet increases the abun-
dance of Ruminococcus flavefaciens and Bifidobacterium strains while reducing Proteobacteria,
which are involved in several dysmetabolic conditions [164–169]. Intratumor degradation
of valine, leucine, and isoleucine is observed in CCA due to the upregulation of BCAT 1
and BCAT 2 receptors. The levels of these amino acids are negatively associated with tumor
prognosis [173]. In conclusion, dietary BCAAs may reduce the risk of tumorigenesis; on
the contrary, gut dysbiosis and chronic inflammation through the modulation of enzymes
involved in BCAA metabolism may cause intratumor accumulation of BCAAs, resulting in
cell survival and the promotion of angiogenesis.

Table 2 and Figure 2 summarize the main gut-derived metabolites and their role in
hepatocarcinogenesis.
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Table 2. Gut derived metabolites in hepatocarcinogenesis.

Gut Metabolite Mechanism of Action Effects Reference

Bile Acids

DCA induces SASP phenotype in HSCs

DCA and G-CDCA induce endoplasmic reticulum
(ER) stress with Ca2+ release and promotion of ROS

CA, GCA, LCA and CDCA interact with TRAIL and
Fas > PKC/MAPK/NFkB and JAk-STAT3 and

the PI3-K

CDCA and DCA act on EGFR, on Erg-1/MAPK
signaling [80] and PKC/MAPK/NFkB

BAs reduce FXR activity through SIRT1 in
hepatocytes via the Wnt/β-catenin pathway

fibrogenesis

chronic inflammation

chronic inflammation,
fibrogenesis

cell proliferation

cell proliferation

[32]

[6,25,83]

[81,82]

[79,80,85]

[90]

Choline and TMAo

↑ ROS

↓ intrahepatic triglycerides, resulting in a higher risk
of metabolic-associated disease, including HCC

[101–103]

activation of mTOR signaling
upregulation POSTN gene

↑ f FXR-antagonists
↑ Wnt/β-catenin pathway

DNA damage

cell necrosis

cell proliferation

[98–101]

[105–107]

[109–111]

[90,114]

SCFAs

GPR41, GPR43 or GPR109/PKC/ERK, PKA/ERK
activation

DNA epigenetic modifications and HDAC inhibition

Butyrate ↑ regulatory T cells

↑ IL-10 by microbiota antigen-specific Th 1 cells
↓macrophages in the lamina propria

cell proliferation

DNA damage

immune suppression

[125,129]

[137]

[139]

[134]

Ethanol ↑ ADH, NADH, CYP2E1

DNA synthesis and repair
mucosal injury and cellular

DNA instability
cell necrosis

[153,154,162,
164]

BCAA

↑ IRS1/PI3K/AKT/mTORC1

↑ catabolic enzymes of BCAAs in tumor cells,

↑ accumulation of branched-chain ketoacids

cell proliferation,
angiogenesis and apoptosis [167–172]

Indoles

↓ indole-3-acetate intestinal levels in HFD

↓ fatty acid oxidation

disruption of the intestinal
barrier, overexpression of

inflammatory cytokines and
inhibition of immune cells

[117–119]

Abbreviations: alcohol dehydrogenase (ADH), bile acids (BAs), branched-chain amino acids (BCAAs), chenodeoxy-
cholic acid (CDCA), deoxycholic acid (DCA), endoplasmic reticulum (ER), farnesoid X receptor (FXR), glycocholic
acid (GCA), hepatic stellate cells (HSCs), histone deacetylase activity (HDAC), lithocholic acid (LCA), mammalian
target of rapamycin (mTOR), nicotinamide adenine dinucleotide (NADH), periostin (POSTN), prostaglandin E2
(PGE2), reactive oxygen species (ROS), senescence-associated secretory phenotype (SASP), short-chain fatty acids
(SCFAs), TNF related apoptosis inducing ligand (TRAIL), trimethylamine-N-oxide (TMAo).
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deeply influencing tumorigenesis. Dysbiosis is associated with BA retention and increased levels of 
secondary BAs, especially deoxycholic acid, which drives liver damage, aberrant liver cell 
proliferation and HCC promotion by the downregulation of FXR expression and the upregulation 
of the Wnt/β-catenin pathway. In CCA, a decrease in secondary BAs and changes in the 
glycoconjugated to tauroconjugated BAs ratio is described. High TMAO levels deriving from 
bacterial choline metabolism are associated with liver cancers, whereas high-choline diets exert a 
protective effect. Indole derivatives are important for immune cell development and intestinal 
barrier protection; a reduction in indole levels is typical of chronic liver diseases and high-fat diets. 
Among SCFAs, butyrate seems to have contradictory effects on HCC, sustaining cancer progression 
in some studies, and increasing immunotherapy efficacy in others, whereas butyrate seems to 

Figure 2. Gut dysbiosis leads to increased intestinal permeability and alterations of the gut–liver axis,
leading to liver inflammation. The reiteration of this mechanism promotes an immunosuppressive
microenvironment that favors the occurrence of primary liver cancers, including HCC and CCA.
Moreover, during dysbiosis, a shift in gut-derived metabolites occurs, deeply influencing tumorige-
nesis. Dysbiosis is associated with BA retention and increased levels of secondary BAs, especially
deoxycholic acid, which drives liver damage, aberrant liver cell proliferation and HCC promotion
by the downregulation of FXR expression and the upregulation of the Wnt/β-catenin pathway. In
CCA, a decrease in secondary BAs and changes in the glycoconjugated to tauroconjugated BAs ratio
is described. High TMAO levels deriving from bacterial choline metabolism are associated with liver
cancers, whereas high-choline diets exert a protective effect. Indole derivatives are important for
immune cell development and intestinal barrier protection; a reduction in indole levels is typical of
chronic liver diseases and high-fat diets. Among SCFAs, butyrate seems to have contradictory effects
on HCC, sustaining cancer progression in some studies, and increasing immunotherapy efficacy in
others, whereas butyrate seems to reduce cell mitosis in CCA. COnversely, acetate can contrast HCC
progression by ILC3 inhibition and interfering with HDAC activity. Ethanol is a well-recognized car-
cinogenic agent; other than diet, increased ethanol plasma levels can derive from ethanol-producing
bacteria, such as Klebsiella pneumoniae, which is over-represented in gut dysbiosis. Finally, high BCAA
tumor levels and high BCAA intratumor metabolism have been associated with HCC and CCA.
Differently, BCAA administration with diet seems to inhibit this process, suggesting a reciprocal
relationship between dysbiosis and BCAA metabolism. Abbreviations: HCC: hepatocellular carci-
noma; CCA: cholangiocarcinoma; FXR: farnesoid X receptor; TMAO: trimethylamine N-oxide; SCFAs:
short-chain fatty acids; HDACs: histone deacetylases; BCAAs: branched-chain amino acids; ILC3s:
type 3 innate lymphoid cells; BAs: bile acids. Created with Biorender.com.

3. Discussion and Future Perspectives

Gut-derived metabolites are gatekeepers of liver homeostasis, inflammation, and
tumorigenesis. Their quantification for the diagnosis or their use for the treatment of
primary liver tumors has gained attention, thanks to the progress of metagenomics and
proteomics techniques [6,174]. Liquid biopsy is based on these premises, employing the
detection of a combination of products in biological material (stool, blood, urine) to identify
the presence of a tumor and describe its metabolic features. A well-known application of
liquid biopsy has been reported in colorectal cancer. Through the assessment of a panel
of gut microbiome-associated serum metabolites derived from blood and fecal samples, a
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specific signature in colorectal cancer has been demonstrated, as well as the possibility of
discriminating adenomas from tumors. This panel was superior to the carcinoembryonic
antigen marker, with a high accuracy in detecting early-stage colorectal cancer [175]. Re-
garding gut-derived metabolites, the catabolism of BCAAs has been reported in several
types of malignancies, leading to low levels in blood or saliva, and blood tryptophan
levels were altered in patients with lung cancer and colorectal and pancreatic cancers [176].
Unfortunately, no significant similar studies are reported concerning HCC, except for low
levels of butyrate in patients with early HCC. Similarly, the analysis of intratumor gut
microbiota and its metabolites is another field of research for both HCC and CCA, promis-
ing to give novel information on the aggressiveness and resistance of tumor cells and the
likelihood of response during systemic treatment [177]. Another promising field of the
application of metabolomics regards HCC systemic therapy, specifically in the evaluation
of the anti-tumor response [178]. Many studies are focused on the role of the gut microbiota
as a key player in immunomodulation and as a biomarker of treatment response [179].
Changes in the gut microbiota have been associated with the development of early HCC.
A high Firmicutes/Bacteroidetes ratio has been associated with a lower rate of response
to immunotherapy, while the Prevotella/Bacteroides ratio has shown a positive association
with the response in patients receiving Nivolumab. How gut microbiota may influence
the anti-tumor response is not completely defined, and it is reported that different bacteria
may stimulate immune cells differently; indeed, Bacteroides fragilis is able to activate CD-4
T cells to produce IFN gamma, while Bifidobacterium enhances the response to anti-PD-L1
and anti-PD-1, thus activating CD-8 T cells [180–184]. Therefore, the prevalence of these
species that cause the activation of the immune system may elicit anti-tumor immunity in
patients who respond to immunotherapy. As a confirmation, studies also suggest that the
administration of Bacteroides, the sensitization of T cells to LPS, and the modulation of the
gut microbiota may revert the resistance to immunotherapy and ameliorate the anti-tumor
response [185–187]. As reported, gut-derived metabolites such as SCFAs show similar
effects and may act on other pathways linked to inflammation through the modulation of
intestinal permeability, cell proliferation, apoptosis, and angiogenesis [143,145]. Similarly,
the oral administration of indoles may downregulate the inflammatory pathways involved
in hepatocarcinogenesis. In CCA, Jin et al. observed that gut microbiota composition may
be a prognostic marker of tumor progression, as patients who rapidly progressed showed a
higher abundance of phylum Pseudomonadota compared with patients with slower tumor
progression [186]. In this context, fecal microbiota transplantation (FMT), correcting gut
dysbiosis and providing a community of bacteria producing anti-inflammatory substances
may restore the integrity of the gut barrier, stimulate the immune system, and rebal-
ance gut microbiota-derived metabolites, favoring the engraftment of Faecalibacterium and
Akkermansia spp. [188,189]. Despite these reports, few studies have analyzed the possible
role of FMT on HCC promotion and evolution. However, ongoing studies are evaluating
the effects of FMT on HCC therapies. Two clinical trials are evaluating whether FMT
from patients with HCC sensitive to Atezolizumab/Bevacizumab may revert a phenotype
of resistance to therapy in other patients affected by HCC [190]. A clinical trial of FMT
has also been performed in 10 patients with primary sclerosing cholangitis, resulting in
the amelioration of intestinal bacterial diversity with a sustained clinical response in the
following 24 weeks, with no adverse events being reported. FMT in this contest may reduce
the risk of developing CCA, but further data are needed to confirm this hypothesis [191].
Moreover, the use of intestinal microbial strains engineered to metabolize substances such
as ammonia or to produce BSH represents a novel strategy to influence liver homeostasis
and prevent HCC. These strains are superior compared to wild-type microbes, as they
can be directed specifically to the pathogenic molecule or metabolic pathways of interest,
sparing the remaining microbial community [192]. Concerning CCA prevention, another
strategy may target specific gut bacteria using bacteriophages in patients with PSC, a
strategy with reported efficacy in reducing bacterial translocation to bile ducts in mice
models [193,194]. All these results are limited by the absence of large randomized clinical
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trials or meta-analyses on patients. Moreover, the current knowledge of gut microbiota
and its involvement in hepatocarcinogenesis is prevalently based on animal models or on
samples of fecal microbiota from patients. These models are bidimensional and limited,
as they lack the continuous internal and external stimuli that, in real life, influence the
metabolism and functions of gut microbiota and its production of metabolites. In the
future, the progression of gene sequencing and machine learning-based data analysis will
guarantee more reproducible gut microbiota signatures that potentially will also be used
as biomarkers.

4. Conclusions

In conclusion, evidence suggests a promising role for the gut metabolome as a critical
biomarker that must be included in patient evaluation to guarantee the best personalized
therapy in the oncological setting. Despite these radiant visions, high costs and the need for
multiple platforms and technologies for gut metabolome analysis still limit the diffusion of
this analysis in clinical practice. The lack of large randomized clinical trials aimed at the
specific analysis of gut-derived metabolites during anti-cancer therapy is another gap in
knowledge that should be considered.
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