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Abstract: Diabetes has become one of the most prevalent global epidemics, significantly impacting
both the economy and the health of individuals. Diabetes is associated with numerous complications,
such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intesti-
nal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and
chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused
on developing various methods to control diabetes. A promising strategy is the use of probiotics for
diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the
human intestine and help improve the balance of intestinal microbiota. In this review, we summarize
the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic
studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes
is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, in-
creased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great
potential for the prevention and management of diabetes.

Keywords: T2DM; probiotics; gut microbiota

1. Introduction
1.1. Diabetes Mellitus

Diabetes mellitus is a chronic metabolic disease that is characterized by high blood
sugar levels and circulation insulin, leading to significant morbidity and mortality world-
wide [1]. According to the International Diabetes Federation Diabetes Atlas (9th edition),
approximately 463 million adults globally suffer from diabetes. This number is projected to
rise to 578 million (10.2% of the total population) by 2030 [2], making diabetes one of the
most serious threats to human health in the 21st century. Diabetes mellitus is characterized
by elevated blood glucose levels due to defects in insulin secretion and/or action [3]. Dia-
betes is classified into type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM),
and gestational diabetes mellitus (GDM) based on genetics, etiology, and diagnostic cri-
teria. The most common form of diabetes is T2DM, which accounts for 90% of global
diabetes cases. Therefore, T2DM is the main target of diabetes prevention and treatment [4].
The main objective of this review is to discuss the effects of probiotics on T2DM and the
underlying mechanisms.

The detrimental effects of diabetes have long been recognized. The main clinical symp-
toms of diabetes are increased food and water intake, increased urination, and body weight
loss [4]. Diabetes can cause complications in multiple organs, such as the cardiovascular
system, eyes, kidneys, and nerves, severely reducing the quality of life of patients. These
complications have significant impacts on health—for example, significantly increased risk
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of heart disease and stroke [4,5]. Recent studies showed that the incidence and mortality of
cardiovascular and cerebrovascular diseases in patients with diabetes were about 3.5-fold
higher than those in non-diabetic patients. Diabetes patients are prone to hypertension,
coronary heart disease, and myocardial infarction [6]. Diabetes can also cause serious
damage to the glomeruli, leading to proteinuria, hypertension, a gradual decline in re-
nal function, and potentially renal failure [7]. Moreover, diabetes can cause neuritis and
peripheral neuropathy, resulting in foot ulcers and necrosis and sometimes necessitating
amputation in severe cases [8]. In addition, diabetes can cause retinopathy, accompanied by
the risk of blindness [9]. Recent research showed that patients with diabetes are at a higher
risk of being infected with the 2019 novel coronavirus (COVID-19) [10,11]. Currently, the
key strategies for managing diabetes include blood sugar monitoring, diet control, and
exercise to maintain blood sugar in the appropriate range.

Currently, insulin injections, oral hypoglycemic drugs, and lifestyle management are
the main treatments for diabetes [12]. However, a long-term regime of insulin injection may
lead to insulin resistance, which may aggravate T2DM symptoms [13]. Moreover, T2DM is
often associated with insulin resistance, making direct insulin injections less effective [14].
Hypoglycemic drugs may have side effects, including gastrointestinal discomfort and
allergic reactions, as well as causing tissue damage to the liver, kidney, and nervous
system [15]. Therefore, many researchers have been seeking treatments that have minimal
side effects and can quickly and effectively control or even cure diabetes.

Besides innate genetic genes, certain unhealthy lifestyles are closely related to diabetes,
including a lack of exercise, frequent intake of a high-sugar and high-fat diet, smoking,
and alcohol abuse [16,17]. Overnutrition due to ingestion of a diet rich in sugar and fat
is the most common cause of the development of diabetes. Intestinal microorganisms
serve as a crucial link between diet and human health. Studies have shown that the
metabolites produced by the host’s intestinal microorganisms are closely related to the risk
of diabetes [18]. Therefore, probiotics can be used to regulate the structure and metabolism
of intestinal flora when ingested as dietary supplements, thereby managing and inhibiting
the development of diabetes.

1.2. Gut Microbiota

Recent epidemiological, physiological, and omics findings, along with cell-based
and animal experimental results, indicate that a significant portion of the environmental
impact on human health and disease risk may be mediated or modified by the microbial
community [19]. These microbiotas include numerous interacting bacteria, archaea, phages,
eukaryotic viruses, and fungi that coexist on the surface of the human body and in all body
cavities, with most of them being mutually beneficial [19]. The number of genomes of all
intestinal microbial genes in an individual is more than an order of magnitude greater than
the human genome. Most of the microorganisms that inhabit the human body reside in
the intestine and are influenced by lifestyle, drugs, and host genetics, especially dietary
feeding during infancy. The intestinal microbiota regulates host immunity [20], digestive
ability [21], intestinal endocrine function [22], neural signaling [23], drug metabolism [24],
and the elimination of toxins by producing a variety of compounds that affect the host [25].

Much evidence has shown that gut microbiota influences the capacity of the distal
intestine to secret hormones regulating blood glucose. Patients who have undergone com-
plete colectomy have an increased risk of T2DM compared to those who do not have the
surgery [26]. Mechanistic studies in mice have shown that hyperglycemia may increase in-
testinal barrier permeability by disrupting the tight junction integrity of glucose transporter
2 (GLUT2)-dependent intestinal epithelial cells, leading to mucosal leakage [27]. Therefore,
there is significant interest in understanding whether abnormal gut microbiota contributes
to the onset or maintenance of elevated blood glucose in T2DM and its precursor states.
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1.3. Probiotics

Probiotics are live microorganisms that provide health benefits to the host when taken
as dietary supplements. Probiotics can reduce the abundance of harmful bacteria in the in-
testinal flora and increase the abundance of beneficial bacteria, thereby regulating intestinal
metabolism. In addition, probiotics increase the integrity of the intestinal barrier, thereby
alleviating intestinal inflammation and reducing the risk of pathogen infection. When
administered in adequate amounts (at least 106 CFU), probiotics can improve the balance
of intestinal microorganisms and engage in the metabolism of the host [28]. In recent years,
probiotics have been used to beneficially modulate the abundance of intestinal microbiota.
According to a new classification of the genus previously known as Lactobacillus proposed
in 2020 [29,30], new names were used when referring to the former genus Lactobacillus in
this review.

Commonly reported probiotics include lactic acid bacteria (e.g., lactobacilli (formerly
Lactobacillus), Bifidobacterium, Streptococcus), non-lactic acid-producing bacteria (e.g., Bacillus,
Propionibacterium), non-pathogenic yeasts (e.g., Saccharomyces cerevisiae), and non-spore-
forming and non-flagellated cocci [31]. Among them, lactobacilli and Bifidobacterium have
been the most extensively studied extensively. Lactobacilli includes different species, among
which the probiotics are Lab. acidophilus, Lbs. rhamnosus, Lab. delbrueckii subsp. bulgaricus,
Lmb. reuteri, Lbs. casei, Lab. johnsonii, and Lpb. plantarum. Bifidobacterium belongs to the
phylum Actinobacteria, with common probiotic species including B. animalis, B. bifidum, B.
breve, B. infantis, B. lactis, and B. longum [32]. The ability of different probiotics to exert their
biological activity in vivo depends on their specific properties, such as tolerance to acidic
pH environments, resistance to digestion by bile and pancreatic juice, and high efficiency
of colonization in the intestine [33].

Probiotics have been reported to offer numerous beneficial biological functions in the
host intestine. For instance, probiotic supplementation may strengthen the junction of
intestinal epithelial cells and improve the integrity of the gastric mucosal barrier, resulting
in enhanced intestinal barrier function [28,34]. Moreover, probiotics can regulate intestinal
motility via mutual communication between the probiotic flora in the intestine and the
enteric nervous system, thereby regulating intestinal motility [35,36]. The use of specific
probiotics, such as Lacticaseibacillus (Lbs.) rhamnosus CNCM I-3690, Lbs. rhamnosus GG,
and Ultrabiotique [Lactobacillus (Lab.) acidophilus, B. lactis, Lactiplantibacillus (Lpb.) plantarum,
and B. breve], can significantly reduce inflammation, improve colitis, and promote mucosal
healing [37]. Probiotics [Lbs. rhamnosus CNCM I-3690, Lpb. plantarum MB452, Lpb. plantarum
GOS42, and Limosilactobacillus (Lmb). fermentum GOS57] were also shown to reduce the risk
of pathogen infection by enhancing the production of intestinal mucins [38,39]. In addition,
probiotics (such as Lbs. rhamnosus JB-1, Lbs. rhamnosus GG, and Lpb. plantarum N14)
activate the intestinal immune system by stimulating innate immune receptors (e.g., Toll-
like receptors (TLRs) and C-type lectin receptors (CLRs)), which promotes the production of
proinflammatory cytokines and stimulates macrophages to initiate phagocytosis [40]. When
probiotics interact with other microbiota in the intestine, they engage in cross-feed and other
interactions, thereby affecting the metabolic capacity of the host’s intestinal microbiota.

2. Negative Effects of Diabetes on the Gut Microbiome

Some bacterial genera are negatively correlated with type 2 diabetes. In the gut mi-
crobiota of T2DM patients, the abundance of Bacteroidetes, Bifidobacterium, Faecalibacterium,
Akkermansia, and Roseburia was reduced. In contrast, the abundance of Fusobacterium,
Ruminococcus, and Blautia in the gut microbiota of T2DM patients is higher than that in
healthy controls [41]. Of note, T2DM can also lead to significant decreases in the abundance
of Bacteroides in the intestine [42,43]. Patients with T2DM have a reduced abundance of
Enterobacteriaceae, Bacteroides 20_3, and Bacteroides vulgaris [44–46]. Roseburia, Faecalibac-
terium, lactobacilli, Ruminococcus, and Blautia belong to the phylum Firmicutes and are
negatively affected by diabetes [42,46,47]. Patients with T2DM generally have reduced
levels of Roseburia as compared with their healthy cohorts [48]. R. intestinalis is positively
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associated with diabetes, while R. inulinivorans and Roseburia_272 are negatively associated
with diabetes [44,46,49]. Other studies have observed a decreased abundance of Faecal-
ibacterium and F. prausnitzii in T2DM patients. F. prausnitzii is a type of Gram-positive
bacterium that can exert anti-inflammatory effects [47,50,51]. Lactobacilli species, such as
Lab. acidophilus and Ligilactobacillus (Lgb). salivarius, are positively associated with T2DM.
By contrast, Ligilactobacillus (Lgb). gasseri, another species within the genus lactobacilli, is
inversely related to diabetes [42,44].

Patients with T2DM exhibit an imbalance in the gastrointestinal microbiota, charac-
terized by an increase in the ratio of Firmicutes to Bacteroidetes and a decrease in lactic
acid-producing species of the genera lactobacilli, Bifidobacterium, and Streptococcus [52].
These microbiotas have the potential to produce short-chain fatty acids (SCFAs) such as
acetate. Acetate can be converted to butyrate through a cross-feeding mechanism [44,53,54].
SCFAs such as butyrate and propionate stimulate glucagon-like peptide-1 (GLP-1), an
incretin hormone that regulates postprandial insulin secretion by increasing insulin release
after glucose ingestion [55–57]. Moreover, SCFAs can regulate intestinal gluconeogenesis
and glucose absorption into the portal vein [56,58]. In addition, T2DM may lead to an
increase in pathogenic bacteria, including Enterobacteriaceae, in the gastrointestinal tract [52].
Dysbiosis and inflammation can weaken the intestinal barrier function, thereby increasing
the risk of leaky gut syndrome [52].

In animal research, mice models are usually chosen because the intestinal structure of
mice is very similar to that of humans. Researchers can induce T2DM in mice to closely
observe the potential causal relationship and possible mechanisms between diabetes and
intestinal microorganisms [59]. Previous studies showed that germ-free mice displayed a
significant increase in adiposity and insulin resistance after receiving gut microbiota trans-
plants from diabetic mice [60]. Consistent with human studies, diabetic rats undergoing
Roux-en-Y gastric bypass (RYGB) surgery had altered gut microbiota, with an increased
abundance of Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria and reduced levels
of Firmicutes and Verrucomicrobia. RYGB surgery reduced body weight and significantly
improved glucose tolerance and insulin sensitivity in diabetic rats [61]. These findings
are comparable to the observations in human studies. Increased intestinal permeability
in T2DM mice leads to higher levels of lipopolysaccharides (LPS) in the blood circulation,
contributing to the progression of obesity and insulin resistance [62,63]. Therefore, diabetes
may increase the abundance of harmful bacteria in the intestinal flora to aggravate intestinal
inflammation and insulin resistance. Increasing the abundance of intestinal probiotics may
alleviate diabetes.

3. Clinical Trial Study on the Use of Probiotics to Manage Diabetes in Humans

Some strains of lactobacilli, Bifidobacterium, and Streptococcus have been reported
to control blood glucose by regulating satiety signals, maintaining gut barrier integrity,
and enhancing the antioxidant activity of pancreatic cells [64,65]. The gut microbiota
increases insulin sensitivity through the TGR5 pathway and reduces the expression of
proinflammatory cytokines (e.g., tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and
interleukin-1 (IL-1)) through nuclear factor kappa-B (NF-κB), which are associated with
insulin resistance and oxidative damage to pancreatic β cells [66–70]. Therefore, the gut
microbial dysbiosis observed in patients with T2DM may contribute to decreased insulin
sensitivity, reduced insulin production, and impaired glucose tolerance.

Probiotic consumption may improve several metabolic disorders caused by T2DM,
including upregulating insulin secretion pathways and reducing systemic inflammation
and oxidative stress [53,71,72]. Currently, there is still uncertainty as to whether the gut
microbial dysbiosis observed in patients with T2DM is a cause or consequence of glycemic
dysregulation. However, in clinical studies, the administration of probiotics containing
bacteria from the genera lactobacilli, Bifidobacterium, and Streptococcus can reverse the gut
microbial imbalance, ultimately positively improving glucose metabolism and glycemic
control [53]. This review summarizes some reports from human randomized controlled
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trials (RCTs) focusing on the effects of probiotic supplementation on glycemic outcomes
in adults with T2DM (Table 1), specifically fasting plasma glucose (FPG), fasting plasma
insulin (FPI), hemoglobin A1c (HbA1c), and homeostasis model assessment of insulin
resistance (HOMA-IR). In these studies, some strains, including Lab. acidophilus, Lbs. casei,
Lbs. rhamnosus, Lab. delbrueckii subsp. bulgaricus, B. breve, B. longum, and S. thermophilus,
significantly improved blood glucose metabolism and reduced inflammatory damage in
T2DM patients [73]. Lpb. plantarum A7 had no effect on glucose metabolism but changed
fatty acid metabolism in T2DM patients [74]. Lab. acidophilus, Lbs. casei, Lab. delbrueckii
subsp. lactis, Bifidobacterium, B. longum, and B. infantis increased insulin production in T2DM
patients [75]. Lactobacilli, Lactococcus, Bifidobacterium, Propionibacterium, and Acetobacter
reduced insulin resistance and systemic inflammation in patients with T2DM [76]. As well
as some other probiotics (Lab. acidophilus Bb12, Lab. acidophilus La5, Lab. acidophilus NCFM,
B. bifidum, Limosilactobacillus (Lmb.) reuteri ADR-1/3, and Lmb. fermentum), they all have a
significant alleviating effect on T2DM [77–82]. These anti-diabetic probiotics have great
potential to become a new clinical treatment for T2DM.

Table 1. T2DM management with probiotics: studies of randomized, double-blind, controlled clinical
trials using human subjects. (FPG: fasting plasma glucose; FPI: fasting plasma insulin; HbA1c:
hemoglobin A1c; HOMA-IR: homeostasis model assessment of insulin resistance; hs-CRP: high-
sensitivity C-reactive protein).

Probiotics Sample Demographics Key
Observations Health Claim Treatment Ref.

Lab. acidophilus (2 × 109 CFU),
Lbs. casei (7 × 109 CFU), Lbs.
rhamnosus (1.5 × 109 CFU),

Lab. delbrueckii subsp.
bulgaricus (2 × 108 CFU), B.

breve (2 × 1010 CFU), B.
longum (7 × 109 CFU), and S.
thermophilus (1.5 × 109 CFU)

from the multispecies
probiotic supplement

(ZistTakhmir Co., Tehran, Iran)
consisted of 7 viable strains.

54 Iranian adults.
(n = 27)

Matched age
(50.51 ± 9.82), sex,

BMI (31.61 ±
6.36), and

medication use.

In probiotic
group, FPG and

hs-CRP decreasd,
and HOMA-IR
and glutathione

increased.

Supplementation
with a

multi-probiotic
blend improves

glucose
metabolism and

reduces
inflammation in

adults with
T2DM.

Once a day for
8 weeks. [73]

Soy milk enriched with Lpb.
plantarum A7 (source

unknown, 2 × 107 CFU).

40 Iranian adults.
(n = 20)

Matched age
(probiotic group:

56.90 ± 1.81;
control group:
53.6 ± 1.6), sex

(21 male/19
female), BMI
(26.68 ± 0.71),

and medication
use.

In probiotic
group,

low-density
cholesterol and

high-density
cholesterol

decreased, but
fasting blood

glucose did not
show any
significant
changes.

Soy milk
containing Lpb.
plantarum A7

changes the lipid
profile.

200 mL/day ×
8 weeks [74]

Lab. acidophilus, Lbs. casei, Lab.
delbrueckii subsp. lactis,

Bifidobacterium, B. longum, and
B. infantis strains from
commercial probiotics,

Hexbio® B-Crobes Laboratory
Sdn. Bhd. (Ipoh, Malaysia),

were mixed at 3 × 1010 CFU in
water.

136 Malaysian
adults (n = 68)

Matched age (52.9
± 9.2), sex, BMI
(29.2 ± 5.6), and
medication use.

In probiotic
group,

FPI and
HbA1c decreased.

Probiotics
supplementation
is associated with
improvements in

HbA1c and
fasting insulin.

250 mL twice
daily for

12 weeks.
[75]

Lactobacilli and Lactococcus
(6 × 1010 CFU),

Bifidobacterium (1 × 1010 CFU),
Propionibacterium (3 × 1010

CFU), and Acetobacter (1 × 106

CFU) from the multiprobiotic
“Symbiter” (Scientific and
Production Company O.D.
Prolisok, Clearwater, FL,

USA).

53 Ukrainian
adults. (probiotic

group, n = 31;
control

group, n = 22)

Age (probiotic
group: 52.23 ±

1.74; control
group: 57.18 ±
2.06). Matched
BMI (34.70 ±
1.29), sex, and

medication use.

In probiotic
group, HOMA-IR

and HbA1c
decreased;

chronic systemic
inflammatory

markers (TNF-α,
IL-1β, and IL-6)

decreased.

A blend of
14 probiotics

reduces insulin
resistance in
patients with

T2DM.

Once a day for
8 weeks [76]
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Table 1. Cont.

Probiotics Sample Demographics Key
Observations Health Claim Treatment Ref.

Probiotic yogurt enriched
with Lab. acidophilus Bb12

(DSM 10140, 3.7 × 106 CFU)
and Lab. acidophilus La5 (Chr.

Hansen, Hoersholm,
Denmark, 3.7 × 106 CFU).

44 Iranian adults.
(n = 22)

Sex ratio:
10 male/32

female, matched
age (53.00 ± 5.9),

BMI (28.36 ±
4.14), and

medication use.

In probiotic
group,

FPG, HbA1c, and
TNF-α decreased.

Probiotic yogurt
may be used as
an alternative

prevention
approach and

treatment method
to control diabetic

complications.

300 g/day ×
8 weeks. [77]

Probiotic yogurt enriched
with Lab. acidophilus La5 (Chr.

Hansen, Hoersholm,
Denmark, 2.1 × 109 CFU) and

B. lactis Bb12 (DSM 10140,
1.8 × 109 CFU).

60 Iranian adults.
(n = 30)

Sex ratio: 23
male/41 female,

matched age
(51.00 ± 7.3), BMI

(28.95 ± 3.65),
and medication

use.

In probiotic
group,

HbA1c and FPG
decreased, and

erythrocyte
superoxide

dismutase and
glutathione
peroxidase
activities
increased.

Probiotic yogurt
improved fasting

blood glucose
and antioxidant
status in T2DM

patients.

300 g/day ×
6 weeks. [78]

Lab. acidophilus NCFM (ATCC
700396, Danisco Inc. (Palo

Alto, CA, USA),
1 × 1010 CFU).

48 Danish adults.
(n = 24)

Matched age
(59.00 ± 6), BMI
(28.1 ± 3.0), sex,
and medication

use.

In probiotic
group,

FPI decreased.

Intake of Lab.
acidophilus NCFM
preserved insulin

sensitivity.

Once a day for
4 weeks. [79]

Lab. Acidophilic (2 × 1010 CFU)
and B. bifidum (2 × 1010 CFU)
from Commercial probiotics,

Fortitech (New York, NY,
USA), and

fructooligosaccharides (2 g).

20 Brazilian
adults (n = 10)

All female,
matched age

(57.50 ± 7.5), BMI
(28.2 ± 0.85), and
medication use.

In probiotic
group, FPG

decreased, and
high-density
lipoprotein
cholesterol
increased.

This probiotic
product can be

used to help
elderly people

with T2DM
maintain normal
blood lipid and

blood sugar
levels.

Once a day for
30 days. [80]

Lmb. reuteri ADR-1
(CCTCC-M207154, 4 × 109

CFU) and ADR-3
(CCTCC-M209263, 2 × 1010

CFU).

74 Chinese adults.
(n = 24–25)

Sex ratio: 38
male/36 female.

Matched age
(47.50 ± 32.5),
BMI (28.04 ±

4.29), and
medication use.

In probiotic
group, HbA1c,

IL-1β, and serum
cholesterol
decreased.

The Lmb. reuteri
strains ADR-1

and ADR-3 have
beneficial effects

on T2DM
patients.

Once a day for
6 months. [81]

Lab. acidophilus, B. bifidum,
Lmb. reuteri, and Lmb.

fermentum (each 2 × 109 CFU)
from commercial probiotics,

Lactocare Zisttakhmir
Company (Tehran, Iran), and

50,000 IU of vitamin D3.

60 Iranian adults.
(n = 30)

Matched age
(71.50 ± 10.9

years), sex, BMI
(29.0 ± 6.2), and
medication use.

In probiotic
group, FPI,

HOMA-IR, and
hs-CRP

decreased, while
serum

HDL-cholesterol
level, NO, TAC,

and QUICKI
(quantitative

insulin sensitivity
check index)

increased.

Supplementation
with probiotics

and vitamin D for
12 weeks has

beneficial effects
on T2DM patients

with coronary
heart disease.

Once every
2 weeks for
12 weeks.

[82]

4. Effects of Various Probiotics on Diabetes in Rodent Studies

Several studies have demonstrated that probiotics can reduce blood sugar levels
to varying degrees. Specifically, Latilactobacillus (Ltb.) sakei OK67 [83], Lbs. rhamnosus
CCFM0528 [84], Lbs. paracasei subsp. paracasei NTU 101 [85], Lpb. plantarum NCU116 [86],
and Lbs. casei CCFM0412 have been shown to effectively lower blood sugar concentrations
in animal models of T2DM [87]. Different probiotics employ different mechanisms for
inhibiting the development of diabetes. The treatment models, mechanisms of action,
action cycles, and dosages of several probiotics are summarized in Table 2. The main
mechanisms by which probiotics control diabetes through regulating intestinal microbiota
lie in improving intestinal barrier integrity, reducing oxidative stress, enhancing immune
response, increasing SCFA production, and providing liver protection (Figure 1).
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Figure 1. The possible mechanisms underlying probiotics’ impact on T2DM. TNF-α: tumor necrosis
factor α; IL: interleukin; SCFAs: short-chain fatty acids; GLP-1: glucagon-like peptide-1; PYY:
peptide YY; GPR43: G-protein coupled receptor 43; TLR 4: Toll-like receptor 4; Nrf 2: nuclear factor
erythroid 2-related factor 2; SOD: superoxide dismutase; GSH: glutathione; CAT: catalase; MDA:
malondialdehyde; TAC: total antioxidant capacity.

For intestinal barrier integrity, some studies have shown that Lpb. plantarum IS 20506
can improve intestinal permeability and reduce LPS entering the blood by increasing the
levels of occludin and ZO-1, thereby strengthening the tight junctions of the intestine [88,89].
Systemic low-grade inflammation arising from immune response in T2DM mice was also
reduced. Research indicates that Lbs. rhamnosus CCFM0528 can significantly inhibit the lev-
els of pro-inflammatory factors TNF-α, IL-6, IL-1β, and IL-8 in T2DM mice, while increase
the production of the anti-inflammatory factor IL-10 [84]. Similarly, there is also a report
showing that Ltb. sakei Probio-65 and Lpb. plantarum Probio-93 reduced the abundance of
harmful bacteria and consequently reduced LPS levels in blood [90]. Regarding oxidative
stress, B. animalis 01 and Lbs. paracasei NL41 can significantly increase the activities of
superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) and significantly
decrease malondialdehyde (MDA) in the liver of T2DM rats, thereby significantly improv-
ing antioxidant capacity (TAC) [91–93]. This process is regulated by Toll-like receptor 4
(TLR 4) and nuclear factor erythroid 2-related factor 2 (Nrf 2) and plays a protective role
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against oxidative damage by alleviating redox stress [94]. G-protein coupled receptor 43
(GPR43) can be activated by the increasing level of SCFAs (such as butyrate) produced
by compound probiotics (Lpb. plantarum, Lab. delbrueckii subsp. bulgaricus, Lbs. casei, Lab.
acidophilus, B. infantis, B. longum, and B. breve). GPR43 modulates intestinal signals of
glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) in intestinal L cells, promotes β-cell
proliferation, reduces appetite, and thus alleviates glucose tolerance, and enhances energy
utilization [91,95–97]. Therefore, probiotics alleviate T2DM by regulating the intestinal
barrier integrity, oxidative stress, immune response, and SCFA production.

4.1. Lacticaseibacillus rhamnosus

Lbs. rhamnosus GG, first isolated in 1983, is a probiotic known for its potent gastric
acid resistance and affinity for intestinal cells. It is now widely used to help control
blood sugar in diabetic patients [98]. In rodent studies, the daily administration of Lbs.
rhamnosus GG (1 × 108 CFU/mL) to mice for four weeks increased glucose tolerance by
reducing endoplasmic reticulum stress [99]. The daily oral administration of 109 CFU/mL
of Lbs. rhamnosus HAO 9 to diabetic mice induced by a high-fat diet significantly lowered
insulin levels, fasting blood sugar, and proinflammatory cytokines IL-6 and TNF-a [100]. In
addition, the administration of Lbs. rhamnosus GG to diabetic mice reduced insulin, glycated
hemoglobin, and fasting blood sugar levels and increased serum GLP-1 levels [101]. In
diabetic rats, the oral administration of Lbs. rhamnosus BSL and Lbs. rhamnosus R23 reduced
insulin resistance by downregulating the expression of glucose-6-phosphatase [102]. Similar
results were observed using 3-month-old male zebrafish [103]. In T2DM mice, a blend of
three types of probiotics containing Lbs. rhamnosus, Lab. acidophilus, and B. bifidum species
(1.8 × 109 CFU) significantly reduced hypothalamic TLR4, IL-6, and NPY and reduced the
serine kinases JNK and IKK [104]. These findings highlight the potential value of these
probiotics of Lbs. rhamnosus species for diabetes management.

4.2. Lacticaseibacillus paracasei

Endotoxemia, characterized by elevated levels of circulating bacterial lipopolysaccha-
ride, has been identified as a trigger for insulin resistance in mice. Suppressing endotoxemia
by probiotic supplementation is considered an effective approach [105]. Treatment with
Lbs. paracasei subsp. paracasei NTU101 has been reported to reduce the risk of T2DM by
increasing levels of Bifidobacterium animalis subsp. lactis 420 and improving the intestinal
environment, which helps maintain intestinal barrier integrity and prevent the transfer of
bacterial lipopolysaccharide into the systemic circulation [106]. Similarly, the presence of
Lbs. paracasei subsp. paracasei G15 and Lbs. casei Q14 in the intestine has been significantly
associated with reduced intestinal mucosal permeability and improved epithelial barrier
function. Additionally, Lbs. paracasei subsp. paracasei BCRC12188 has been shown to reduce
circulating levels of LPS and inflammatory cytokines, including IL-1β and IL-8, and may
alleviate inflammatory states and pancreatic β-cell dysfunction [107]. In SD rats with T2DM,
the daily oral administration of 1010 CFU Lbs. paracasei NL41 for 12 weeks reduced insulin
resistance, HbA1c, glucagon, leptin, and oxidative stress [93]. Therefore, these strains of
Lbs. paracasei genus can alleviate T2DM by regulating intestinal barrier integrity to reduce
LPS and inflammatory damage.

4.3. Lactiplantibacillus plantarum

Among lactic acid bacteria, Lpb. plantarum is a facultative heterofermentative member
that has been shown to have immunomodulatory and anti-inflammatory effects, as well as
promote mucosal barrier integrity [108]. In a high-fat and streptozotocin-induced T2DM
rat model, the oral administration of Lpb. plantarum SS18-5 can control body weight, reduce
fasting blood glucose and insulin levels, and increase liver glycogen levels [109]. The oral
administration of Lpb. plantarum CCFM0236 to diabetic mice not only reduced food intake,
blood glucose, glycated hemoglobin, and leptin levels but also regulated serum insulin
content and HOMA-IR index [110]. In diabetic mice induced by a high-fat diet, treatment
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with Lpb. plantarum Probio-093 significantly reduced body weight and improved blood
glucose levels [90]. In addition, the oral administration of 4 × 109 CFU of Lpb. plantarum
HAC01 daily for 8 weeks reduced FBG, HbA1c, HOMA-IR, and OGTT-AUC in T2DM mice
through AMPK and AKT pathways and increased the area of insulin-positive β cells in
pancreatic islet tissue [111]. Therefore, these strains of the Lpb. plantarum genus have the
potential to alleviate T2DM.

4.4. Bifidobacterium

Bifidobacterium are considered to be the main inhabitants of the intestinal micro-
biota [112]. Bifidobacterium can metabolize host-derived glycans such as human milk
oligosaccharides and mucins [113]. Diabetic patients have lower numbers of Bifidobacterium
and Faecalibacterium prausnitzii in their intestines, both of which are Gram-positive bac-
teria with anti-inflammatory activity [114]. Bifidobacterium has been reported to control
the development of diabetes. In Wistar rats with high-fat diet-induced diabetes, the oral
administration of B. longum Bb46 (1 × 107 CFU/mL) for 28 days reduced fasting blood
glucose, glycated hemoglobin, triglycerides, and total cholesterol [115]. The combination
therapy of different Bifidobacterium species (including B. longum, B. bifidum, B. infantis, and B.
animalis) improved insulin resistance and reduced blood glucose levels in mice [116]. A pro-
biotic mixture (containing 3 × 1011 CFU/g of B. longum, B. infantis, and B. breve) improved
insulin signaling and reduced inflammation in adipose tissue of ApoE-/- rats [117]. The
administration of B. animalis subsp. lactis 420 (1 × 109 CFU/mL) to high-fat-diet-induced
diabetic rats reduced inflammatory cytokines TNF-α and IL-1β, plasminogen activator
inhibitor-1 (PAI-1), and IL-6 in mesenteric adipose tissue while increasing insulin sen-
sitivity [118]. In HFD-fed and STZ-injected T2DM mice, the oral administration of 109

CFU of B. longum DD98 daily for 3 weeks increased butyrate levels in the intestine and
decreased pro-inflammatory cytokine levels in the pancreas, thereby improving insulin
resistance [119]. Inactivated B. longum BR-108 (3.4 × 1012 cells/g) increased body weight
and glucose tolerance while decreasing fat tissue weight, FBG, TC, TG, and nonestesterified
fatty acid in Tsumura Suzuki obese diabetes (TSOD) mice [120]. In another study on T2DM
rats, the daily oral administration of B. animalis 01 (109 CFU) for 15 weeks reduced body
weight, food and water intake, FBG, OGTT-AUC, HbA1c, HOMA-IR, TC, LDL-C, LPS,
TNF-α, ALT, AST, and MDA while increasing IL-10, CAT, GSH, GSH-Px, and SOD. This
probiotic inhibited the development of T2DM through IRS/PI3K/AKT and Keap1/Nrf2
signaling pathway [92]. In summary, these strains of the Bifidobacterium genus significantly
improved the development of T2DM.

Table 2. T2DM management with probiotics: in vivo studies in rodents (FPG: fasting plasma glucose;
FPI: fasting plasma insulin; HbA1c: hemoglobin A1c; HOMA-IR: homeostasis model assessment of
insulin resistance); TC: total cholesterol; TG: total triglycerides; OGTT-AUC: oral glucose tolerance
test-area under the curve; LDL-C: low-density lipoprotein-cholesterol; ALT: alanine transaminase;
AST: aspartate transaminase; GSH-Px: glutathione peroxidase; SOD: superoxide dismutase; GSH:
glutathione; CAT: catalase; MDA: malondialdehyde; IL: interleukin; TLR4: Toll-like receptor 4; NPY:
neuropeptide Y; SCFAs: short-chain fatty acids.

Probiotics Subjects Model Type Effect Mechanism Treatment Ref.

Lpb. plantarum, Lab.
delbrueckii subsp.

bulgaricus bulgaricus,
Lbs. casei, Lab.

acidophilus, B. infantis,
B. longum, B. breve

40 Wistar rats HFD + STZ

In probiotic group,
FPG and insulin

resistance decreased,
and total antioxidant
capacity increased.

Control of T2DM
by increasing

GLP-1 levels and
reducing

oxidative stress.

5 × 1010 CFU/mL
in water, 4 weeks [91]

Lbs. paracasei subsp.
paracasei NL41

18 Sprague
Dawley (SD) rats HFD + STZ

In probiotic group,
insulin resistance,
HbA1c, glucagon,

leptin, and oxidative
stress decreased.

N/A.
1010 CFU, oral
administration,

once per day for
12 weeks

[93]
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Table 2. Cont.

Probiotics Subjects Model Type Effect Mechanism Treatment Ref.

B. longum DD98 and
selenium-enriched B.

longum DD98
48 C57BL/6J mice HFD + STZ

In probiotic group,
FBG, HbA1c, and
insulin resistance

decreased.

Probiotics
increase butyrate

levels in the
intestine and

decrease
pro-inflammatory
cytokine levels in

the pancreas,
thereby

improving insulin
resistance.

1 × 109 CFU, oral
administration,

once per day for
3 weeks

[119]

Inactivated B. longum
BR-108 (IBL)

25 Tsumura
Suzuki obese

diabetes (TSOD)
mice

Spontaneous
obesity

In probiotic group,
body weight and
glucose tolerance

increased, fat tissue
weight, FBG, TC, TG,
and nonestesterified
fatty acid decreased.

Probiotics absorb
cholesterol and

produce
short-chain fatty
acids inhibiting

cholesterol
synthesis in the

liver.

IBL (3.4 × 1012

cells/g), 50, 100,
and 150 mg/kg
BW, for 30 days

[120]

B. animalis 01 24 Sprague
Dawley (SD) rats HFD + STZ

In probiotic group,
body weight, food
and water intake,
FBG, OGTT-AUC,

HbA1c, HOMA-IR,
TC, LDL-C, LPS,

TNF-α, ALT, AST, and
MDA decreased, and

IL-10, CAT, GSH,
GSH-Px, and SOD

increased.

Activation of
IRS/PI3K/AKT
and Keap1/Nrf2

signaling.

109 CFU, oral
administration,

once per day for
15 weeks

[92]

Lbs. rhamnosus, Lab.
acidophilus and B.

bifidum
24 Swiss mice

DIO
(diet-induced

obesity)

In probiotic group,
FBG, food intake,

intestinal
permeability, LPS
translocation, and

systemic low-grade
inflammation

decreased.

Probiotics
significantly

reduce
hypothalamic

TLR4, IL-6, NPY,
and reduce the
serine kinases
JNK and IKK.

1.8 × 109 CFU,
once per day for

5 weeks
[104]

Lpb. plantarum
HAC01 50 C57BL/6J mice HFD + STZ

In probiotic group,
FBG, HbA1c,

HOMA-IR, and
OGTT-AUC

decreased, and islet
insulin-positive β cell
area, and butyric acid

increased.

Activating AMPK
and Akt

pathways in the
liver.

4 × 109 CFU,
once per day for

10 weeks
[111]

Lpb. plantarum
Probio-093 40 C57BL/6J mice HFD

In probiotic group,
α-glucosidase,

α-amylase activity,
body weight, FPG,

and intestinal
inflammation

decreased, and SCFAs
increased.

Probiotics reduce
the abundance of
Deferribacteria and

Proteobacteria,
increases the
abundance of

Actinobacteria and
Bacteroidetes,
regulates the

intestinal barrier,
and enhances

immune
response.

108 CFU, once per
day for 8 weeks

[90]

5. Conclusions

This review discussed the correlation between probiotics, intestinal flora, and diabetes
and the potential ability of probiotics to alleviate diabetes. Firstly, probiotics reduce the
abundance of Gram-negative bacteria by regulating intestinal flora, thereby reducing
LPS levels and leading to reduced immune stress; secondly, probiotics strengthen the
tight junctions of the intestinal epithelial barrier, which also leads to reduced LPS levels;
third, probiotics produce more beneficial short-chain fatty acids (such as butyrate, acetate,
and propionate), thereby enhancing intestinal metabolism; finally, probiotics protect the
liver by reducing oxidative stress. These are the main mechanisms by which probiotics
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alleviate diabetes. Some probiotics from Lbs. rhamnosus, Lbs. paracasei, Lpb. plantarum,
and Bifidobacterium species have many experimental reports proving their anti-diabetic
effects. Currently, anti-diabetic probiotic supplements are still in the clinical trial stage,
and there are no mature commercial products as a treatment method. The present study
may contribute to the development of probiotic supplements with anti-diabetic effects.
However, the underlying mechanism of how the imbalance of intestinal microbes affects
diabetes or vice versa awaits further investigations. In addition, despite the beneficial
effects of probiotics on metabolic diseases, including diabetes, the side effects and health
risks due to long-term intake of probiotics have not yet been fully validated.
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