Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. DNA Sample Collection and Genotyping
2.3. Creatine Supplementation Protocol
2.4. Injury Data Collection
2.5. Anthropometric Data Collection
2.6. Polygenic Potential for Muscle Performance
2.7. Statistical Analysis
3. Results
3.1. Body Mass Index (BMI)
3.2. Fat Mass
3.3. Muscle Mass
3.4. Muscle Injuries
4. Discussion
4.1. Creatine Supplementation
4.2. Genetic Profile and Creatine Supplementation
4.3. ACE I/D Polymorphism
4.4. ACTN3 c.1729C>T Polymorphism
4.5. AMPD1 c.34C>T Polymorphism
4.6. CKM c*800A>G Polymorphism
4.7. MLCK c.49C>T and c.37885C>A Polymorphisms
4.8. Association of TGS with BMI, Muscle Mass Response, and Non-Contact Musculoskeletal Injuries in Professional Football Players
4.9. Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids 2016, 48, 1785–1791. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Rawson, E.S. Nutritional supplements to increase muscle mass. Crit. Rev. Food Sci. Nutr. 1999, 39, 317–328. [Google Scholar] [CrossRef]
- Almeida, D.; Colombini, A.; Machado, M. Creatine supplementation improves performance, but is it safe? Double-blind placebo-controlled study. J. Sports Med. Phys. Fitness 2020, 60, 1034–1039. [Google Scholar] [CrossRef]
- Forbes, S.C.; Candow, D.G.; Neto, J.H.F.; Kennedy, M.D.; Forbes, J.L.; Machado, M.; Bustillo, E.; Gomez-Lopez, J.; Zapata, A.; Antonio, J. Creatine supplementation and endurance performance: Surges and sprints to win the race. J. Int. Soc. Sports Nutr. 2023, 20, 2204071. [Google Scholar] [CrossRef]
- Persky, A.M.; Brazeau, G.A. Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol. Rev. 2001, 53, 161–176. [Google Scholar]
- Ipsiroglu, O.S.; Stromberger, C.; Ilas, J.; Höger, H.; Mühl, A.; Stöckler-Ipsiroglu, S. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci. 2001, 69, 1805–1815. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, S.; Yoon, D.; Sung, D.J. Role of creatine supplementation in exercise-induced muscle damage: A mini review. J. Exerc. Rehabil. 2015, 11, 244–250. [Google Scholar] [CrossRef]
- Mesa, J.L.; Ruiz, J.R.; González-Gross, M.M.; Gutiérrez Sáinz, A.; Castillo Garzón, M.J. Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med. 2002, 32, 903–944. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Genovesi, F.; Nemmer, M.; Carling, C.; Alberti, G.; Howatson, G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: Current knowledge, practical application and future perspectives. Eur. J. Appl. Physiol. 2020, 120, 1965–1996. [Google Scholar] [CrossRef]
- Turner, C.E.; Byblow, W.D.; Gant, N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J. Neurosci. 2015, 35, 1773–1780. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Forbes, S.C.; Candow, D.G.; Santos, H.O. Influence of age, sex, and type of exercise on the efficacy of creatine supplementation on lean body mass: A systematic review and meta-analysis of randomized clinical trials. Nutrition 2022, 103–104, 111791. [Google Scholar] [CrossRef]
- Candow, D.G.; Forbes, S.C.; Roberts, M.D.; Roy, B.D.; Antonio, J.; Smith-Ryan, A.E.; Rawson, E.S.; Gualano, B.; Roschel, H. Creatine O’Clock: Does Timing of Ingestion Really Influence Muscle Mass and Performance? Front. Sports Act. Living 2022, 4, 893714. [Google Scholar] [CrossRef]
- Stecker, R.A.; Harty, P.S.; Jagim, A.R.; Candow, D.G.; Kerksick, C.M. Timing of ergogenic aids and micronutrients on muscle and exercise performance. J. Int. Soc. Sports Nutr. 2019, 16, 37. [Google Scholar] [CrossRef]
- Farshidfar, F.; Pinder, M.A.; Myrie, S.B. Creatine Supplementation and Skeletal Muscle Metabolism for Building Muscle Mass- Review of the Potential Mechanisms of Action. Curr. Protein Pept. Sci. 2017, 18, 1273–1287. [Google Scholar] [CrossRef]
- Wu, S.H.; Chen, K.L.; Hsu, C.; Chen, H.C.; Chen, J.Y.; Yu, S.Y.; Shiu, Y.J. Creatine Supplementation for Muscle Growth: A Scoping Review of Randomized Clinical Trials from 2012 to 2021. Nutrients 2022, 14, 1255. [Google Scholar] [CrossRef]
- Ribeiro, F.; Longobardi, I.; Perim, P.; Duarte, B.; Ferreira, P.; Gualano, B.; Roschel, H.; Saunders, B. Timing of Creatine Supplementation around Exercise: A Real Concern? Nutrients 2021, 13, 2844. [Google Scholar] [CrossRef]
- Hespel, P.; Maughan, R.J.; Greenhaff, P.L. Dietary supplements for football. J. Sports Sci. 2006, 24, 749–761. [Google Scholar] [CrossRef]
- Abreu, R.; Oliveira, C.B.; Costa, J.A.; Brito, J.; Teixeira, V.H. Effects of dietary supplements on athletic performance in elite soccer players: A systematic review. J. Int. Soc. Sports Nutr. 2023, 20, 2236060. [Google Scholar] [CrossRef]
- Jiaming, Y.; Rahimi, M.H. Creatine supplementation effect on recovery following exercise-induced muscle damage: A systematic review and meta-analysis of randomized controlled trials. J. Food Biochem. 2021, 45, e13916. [Google Scholar] [CrossRef]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: An update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef]
- Maestro, A.; Del Coso, J.; Aguilar-Navarro, M.; Gutiérrez-Hellín, J.; Morencos, E.; Revuelta, G.; Ruiz Casares, E.; Perucho, T.; Varillas-Delgado, D. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front. Genet. 2022, 13, 1035899. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Morencos, E.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Mendoza Láiz, N.; Perucho, T.; Maestro, A.; Tellería-Orriols, J.J. Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS ONE 2022, 17, e0274880. [Google Scholar] [CrossRef]
- Puthucheary, Z.; Skipworth, J.R.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ACE gene and human performance: 12 years on. Sports Med. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Eynon, N.; Hanson, E.D.; Lucia, A.; Houweling, P.J.; Garton, F.; North, K.N.; Bishop, D.J. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013, 43, 803–817. [Google Scholar] [CrossRef]
- Norman, B.; Esbjörnsson, M.; Rundqvist, H.; Österlund, T.; Glenmark, B.; Jansson, E. ACTN3 genotype and modulation of skeletal muscle response to exercise in human subjects. J. Appl. Physiol. 2014, 116, 1197–1203. [Google Scholar] [CrossRef]
- Lucia, A.; Martin, M.A.; Esteve-Lanao, J.; San Juan, A.F.; Rubio, J.C.; Olivan, J.; Arenas, J. C34T mutation of the AMPD1 gene in an elite white runner. BMJ Case Rep. 2009, 2009, bcr0720080535. [Google Scholar] [CrossRef]
- Fedotovskaya, O.N.; Danilova, A.A.; Akhmetov, I.I. Effect of AMPD1 gene polymorphism on muscle activity in humans. Bull. Exp. Biol. Med. 2013, 154, 489–491. [Google Scholar] [CrossRef]
- Maltese, P.E.; Venturini, L.; Poplavskaya, E.; Bertelli, M.; Cecchin, S.; Granato, M.; Nikulina, S.Y.; Salmina, A.; Aksyutina, N.; Capelli, E.; et al. Genetic evaluation of AMPD1, CPT2, and PGYM metabolic enzymes in patients with chronic fatigue syndrome. Genet. Mol. Res. 2016, 15, 15038717. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Morencos, E.; Gutierrez-Hellín, J.; Aguilar-Navarro, M.; Maestro, A.; Perucho, T.; Coso, J.D. Association of the CKM rs8111989 Polymorphism with Injury Epidemiology in Football Players. Int. J. Sports Med. 2023, 44, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, Y.; Liang, H.; Yu, D.; Hu, S. A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance. Biol. Sport 2017, 34, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Hoffman, E.P.; Zambraski, E.; Gordish-Dressman, H.; Kearns, A.; Hubal, M.; Harmon, B.; Devaney, J.M. ACTN3 and MLCK genotype associations with exertional muscle damage. J. Appl. Physiol. 2005, 99, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common questions and misconceptions about creatine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2021, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M.; Forbes, S.C. Perspective: Creatine, a Conditionally Essential Nutrient: Building the Case. Adv. Nutr. 2022, 13, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Varillas Delgado, D.; Telleria Orriols, J.J.; Martin Saborido, C. Liver-Metabolizing Genes and Their Relationship to the Performance of Elite Spanish Male Endurance Athletes; a Prospective Transversal Study. Sports Med. Open 2019, 5, 50. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, C.F.; Brownlee, T.E.; Rienzi, E.; Roquero, S.; Moreno, S.; Huertas, G.; Lugioratto, G.; Baumert, P.; Turner, D.C.; Lee, D.; et al. The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS ONE 2020, 15, e0234458. [Google Scholar] [CrossRef] [PubMed]
- Erskine, R.M.; Williams, A.G.; Jones, D.A.; Stewart, C.E.; Degens, H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand. J. Med. Sci. Sports 2014, 24, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, C.F.; Hall, E.C.R.; Brownlee, T.E.; Drust, B.; Williams, A.G.; Erskine, R.M. The Genetic Association with Athlete Status, Physical Performance, and Injury Risk in Soccer. Int. J. Sports Med. 2023, 44, 941–960. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef]
- Woods, D.R.; Humphries, S.E.; Montgomery, H.E. The ACE I/D polymorphism and human physical performance. Trends Endocrinol. Metab. 2000, 11, 416–420. [Google Scholar] [CrossRef]
- Rubio, J.C.; Martin, M.A.; Rabadan, M.; Gomez-Gallego, F.; San Juan, A.F.; Alonso, J.M.; Chicharro, J.L.; Perez, M.; Arenas, J.; Lucia, A. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair performance? J. Appl. Physiol. 2005, 98, 2108–2112. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2020. Nucleic Acids Res. 2020, 48, D682–D688. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Ruiz, J.R.; Rodríguez-Romo, G.; Santiago, C.; Gómez-Gallego, F.; Cano-Nieto, A.; Garatachea, N.; Rodríguez-Moreno, I.; Morán, M.; Lucia, A. Is the ACE I/D polymorphism associated with extreme longevity? A study on a Spanish cohort. J. Renin Angiotensin Aldosterone Syst. 2011, 12, 202–207. [Google Scholar] [CrossRef]
- Bemben, M.G.; Bemben, D.A.; Loftiss, D.D.; Knehans, A.W. Creatine supplementation during resistance training in college football athletes. Med. Sci. Sports Exerc. 2001, 33, 1667–1673. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M.; Bahr, R.; Ekstrand, J. Methods for epidemiological study of injuries to professional football players: Developing the UEFA model. Br. J. Sports Med. 2005, 39, 340–346. [Google Scholar] [CrossRef]
- Fuller, C.W.; Ekstrand, J.; Junge, A.; Andersen, T.E.; Bahr, R.; Dvorak, J.; Hägglund, M.; McCrory, P.; Meeuwisse, W.H. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Br. J. Sports Med. 2006, 40, 193–201. [Google Scholar] [CrossRef]
- Bahr, R.; Clarsen, B.; Derman, W.; Dvorak, J.; Emery, C.A.; Finch, C.F.; Hägglund, M.; Junge, A.; Kemp, S.; Khan, K.M.; et al. International Olympic Committee consensus statement: Methods for recording and reporting of epidemiological data on injury and illness in sport 2020 (including STROBE Extension for Sport Injury and Illness Surveillance (STROBE-SIIS)). Br. J. Sports Med. 2020, 54, 372–389. [Google Scholar] [CrossRef]
- International Society for the Advancement of Kinanthropometry. ISAK: Glasgow, UK, 2016. Available online: https://www.isak.global/WhatIsIsak/ (accessed on 18 June 2024).
- Sebastiá-Rico, J.; Soriano, J.M.; González-Gálvez, N.; Martínez-Sanz, J.M. Body Composition of Male Professional Soccer Players Using Different Measurement Methods: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1160. [Google Scholar] [CrossRef]
- Williams, A.G.; Folland, J.P. Similarity of polygenic profiles limits the potential for elite human physical performance. J. Physiol. 2008, 586, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Hill, W.G. Estimating F-statistics. Annu. Rev. Genet. 2002, 36, 721–750. [Google Scholar] [CrossRef] [PubMed]
- Haley, S.M.; Fragala-Pinkham, M.A. Interpreting change scores of tests and measures used in physical therapy. Phys. Ther. 2006, 86, 735–743. [Google Scholar] [CrossRef]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef]
- Baker, L.B. Sweating Rate and Sweat Sodium Concentration in Athletes: A Review of Methodology and Intra/Interindividual Variability. Sports Med. 2017, 47, 111–128. [Google Scholar] [CrossRef]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Marqués-Jiménez, D.; Caballero-García, A.; Córdova, A.; Fernández-Lázaro, D. Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 757. [Google Scholar] [CrossRef] [PubMed]
- Varillas-Delgado, D.; Gutierrez-Hellín, J.; Maestro, A. Genetic Profile in Genes Associated with Sports Injuries in Elite Endurance Athletes. Int. J. Sports Med. 2023, 44, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Varillas-Delgado, D.; Del Coso, J.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Maestro, A.; Morencos, E. Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. Eur. J. Appl. Physiol. 2022, 122, 1811–1830. [Google Scholar] [CrossRef] [PubMed]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. Genetic association research in football: A systematic review. Eur. J. Sport Sci. 2021, 21, 714–752. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Mezêncio, B.; Amaral, S.; Zanetti, V.; Benatti, F.; Roschel, H.; Gualano, B.; Amadio, A.C.; Serrão, J.C. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players. J. Int. Soc. Sports Nutr. 2014, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Ferreira, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Almada, A.L. Effects of creatine supplementation on body composition, strength, and sprint performance. Med. Sci. Sports Exerc. 1998, 30, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B. Effects of creatine supplementation on performance and training adaptations. Mol. Cell Biochem. 2003, 244, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Fujii, N.; Suzuki, K. Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021, 14, 70. [Google Scholar] [CrossRef]
- Hall, M.; Manetta, E.; Tupper, K. Creatine Supplementation: An Update. Curr. Sports Med. Rep. 2021, 20, 338–344. [Google Scholar] [CrossRef]
- Melián Ortiz, A.; Laguarta-Val, S.; Varillas-Delgado, D. Muscle Work and Its Relationship with ACE and ACTN3 Polymorphisms Are Associated with the Improvement of Explosive Strength. Genes 2021, 12, 1177. [Google Scholar] [CrossRef]
- Myerson, S.; Hemingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar] [CrossRef]
- Jones, A.; Montgomery, H.E.; Woods, D.R. Human performance: A role for the ACE genotype? Exerc. Sport Sci. Rev. 2002, 30, 184–190. [Google Scholar] [CrossRef]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Clos, E.; Pruna, R.; Lundblad, M.; Artells, R.; Esquirol Caussa, J. ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 4055–4061. [Google Scholar] [CrossRef]
- Massidda, M.; Voisin, S.; Culigioni, C.; Piras, F.; Cugia, P.; Yan, X.; Eynon, N.; Calò, C.M. ACTN3 R577X Polymorphism Is Associated with the Incidence and Severity of Injuries in Professional Football Players. Clin. J. Sport Med. 2019, 29, 57–61. [Google Scholar] [CrossRef] [PubMed]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: A systematic review and meta-analysis. J. Sports Sci. 2021, 39, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lin, W.; Jia, M.; Chen, H. Association between ACE and ACTN3 genes polymorphisms and athletic performance in elite and sub-elite Chinese youth male football players. PeerJ 2023, 11, e14893. [Google Scholar] [CrossRef]
- Fischer, H.; Esbjörnsson, M.; Sabina, R.L.; Strömberg, A.; Peyrard-Janvid, M.; Norman, B. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J. Appl. Physiol. 2007, 103, 315–322. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Jakaitienė, A.; Utkus, A.; Hall, E.C.R.; Semenova, E.A.; Andryushchenko, L.B.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. CKM Gene rs8111989 Polymorphism and Power Athlete Status. Genes 2021, 12, 1499. [Google Scholar] [CrossRef]
- Eider, J.; Ahmetov, I.I.; Fedotovskaya, O.N.; Moska, W.; Cieszczyk, P.; Zarebska, A.; Czubek, Z.; Klocek, T.; Stepien-Slodkowska, M.; Maciejewska-Karlowska, A.; et al. CKM gene polymorphism in Russian and Polish rowers. Genetika 2015, 51, 389–392. [Google Scholar] [CrossRef]
- Varillas-Delgado, D. Genes Associated with Muscle, Tendon and Ligament Injury Epidemiology in Women’s Amateur Football Players. Appl. Sci. 2024, 14, 1980. [Google Scholar] [CrossRef]
- Shen, K.; Ramirez, B.; Mapes, B.; Shen, G.R.; Gokhale, V.; Brown, M.E.; Santarsiero, B.; Ishii, Y.; Dudek, S.M.; Wang, T.; et al. Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants. PLoS ONE 2015, 10, e0130515. [Google Scholar] [CrossRef] [PubMed]
- Stull, J.T.; Kamm, K.E.; Vandenboom, R. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch. Biochem. Biophys. 2011, 510, 120–128. [Google Scholar] [CrossRef]
- Sun, J.; Qiao, Y.N.; Tao, T.; Zhao, W.; Wei, L.S.; Li, Y.Q.; Wang, W.; Wang, Y.; Zhou, Y.W.; Zheng, Y.Y.; et al. Distinct Roles of Smooth Muscle and Non-muscle Myosin Light Chain-Mediated Smooth Muscle Contraction. Front. Physiol. 2020, 11, 593966. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Tellería Orriols, J.J.; Del Coso, J. Genetic Profile in Genes Associated with Cardiorespiratory Fitness in Elite Spanish Male Endurance Athletes. Genes 2021, 12, 1230. [Google Scholar] [CrossRef]
- Varillas Delgado, D.; Tellería Orriols, J.J.; Monge Martín, D.; Del Coso, J. Genotype scores in energy and iron-metabolising genes are higher in elite endurance athletes than in nonathlete controls. Appl. Physiol. Nutr. Metab. 2020, 45, 1225–1231. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. ACTN3: More than Just a Gene for Speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [PubMed]
- Wax, B.; Kerksick, C.M.; Jagim, A.R.; Mayo, J.J.; Lyons, B.C.; Kreider, R.B. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021, 13, 1915. [Google Scholar] [CrossRef]
- Tamai, I. Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm. Drug Dispos. 2013, 34, 29–44. [Google Scholar] [CrossRef] [PubMed]
Professional Football Players, n = 161 | |
---|---|
Age, mean (SD) | 26.44 (4.54) |
Weight, mean (SD) | 71.64 (7.23) |
Height, mean (SD) | 180.71 (6.12) |
BMI, mean (SD) | 21.92 (1.75) |
Fat mass %, mean (SD) | 7.02 (1.12) |
Muscle mass %, mean (SD) | 47.65 (1.24) |
Symbol | Gene | dbSNP | Genomic Location | MAF Football Players | MAF (IBS) * | HWE | FIS |
---|---|---|---|---|---|---|---|
ACE | Angiotensin-converting enzyme | rs4646994 | 17q23.3 | 42.5% (I) | 36.7% (I) ** | p = 0.253 | −0.32 |
ACTN3 | Alpha-actinin-3 | rs1815739 | 11q13.2 | 45.3% (T) | 43.9% (T) | p = 0.789 | −0.04 |
AMPD1 | Adenosine monophosphate deaminase 1 | rs17602729 | 1p13.2 | 18.6% (T) | 14.0% (T) | p = 0.587 | −0.18 |
CKM | Muscle-specific creatine kinase | rs8111989 | 19q13.32 | 35.7% (G) | 26.6% (G) | p = 0.101 | −0.34 |
MLCK | Myosin light-chain kinase | rs2700352 | 3q21.1 | 28.5% (T) | 20.1% (T) | p = 0.089 | −0.46 |
Myosin light-chain kinase | rs28497577 | 3q21.1 | 21.7% (A) | 10.3% (A) | p = 0.063 | −0.57 | |
Overall SNPs | p = 0.268 | −0.31 |
Symbol | Gene Name | Polymorphism | dbSNP | Genotype Score | Professional Football Players |
---|---|---|---|---|---|
ACE | Angiotensin-converting enzyme | I/D | rs4646994 | 2 = DD | 53 (32.9%) |
1 = ID | 79 (49.1%) | ||||
0 = II | 29 (18.0%) | ||||
ACTN3 | Alpha-actinin-3 | c.1729C>T | rs1815739 | 2 = CC | 51 (34.6%) |
1 = CT | 74 (46.0%) | ||||
0 = TT | 36 (22.4%) | ||||
AMPD1 | Adenosine monophosphate deaminase 1 | c.34C>T | rs17602729 | 2 = CC | 103 (64.0%) |
1 = CT | 56 (34.8%) | ||||
0 = TT | 2 (1.2%) | ||||
CKM | Muscle-specific creatine kinase | c.*800A>G | rs8111989 | 2 = GG | 19 (11.8%) |
1 = GA | 77 (47.8%) | ||||
0 = AA | 65 (40.4%) | ||||
MLCK | Myosin light-chain kinase | c.49C>T | rs2700352 | 2 = CC | 77 (47.8%) |
1 = CT | 76 (47.2%) | ||||
0 = TT | 8 (5.0%) | ||||
Myosin light-chain kinase | c.37885C>A | rs28497577 | 2 = AA | 3 (1.9%) | |
1 = CA | 64 (39.8%) | ||||
0 = CC | 94 (58.4%) |
Symbol | Gene | Polymorphism | dbSNP | Genotype Score | Responders BMI | Non-Responders BMI | p Value |
---|---|---|---|---|---|---|---|
ACE | Angiotensin-converting enzyme | I/D | rs4646994 | 2 = DD | 18 (43.9%) | 35 (29.2%) | 0.205 |
1 = ID | 16 (39.0%) | 63 (52.5%) | |||||
0 = II | 7 (17.1%) | 22 (18.3%) | |||||
ACTN3 | Alpha-actinin-3 | c.1729C>T | rs1815739 | 2 = CC | 19 (46.3%) ↑ | 32 (26.7%) ↓ | 0.046 |
1 = CT | 13 (31.7%) | 61 (50.8%) | |||||
0 = TT | 9 (22.0%) | 27 (22.5%) | |||||
AMPD1 | Adenosine monophosphate deaminase 1 | c.34C>T | rs17602729 | 2 = CC | 32 (78.0%) ↑ | 71 (59.2%) ↓ | 0.082 |
1 = CT | 9 (22.0%) | 47 (39.2%) | |||||
0 = TT | 0 (0.0%) | 2 (1.7%) | |||||
CKM | Muscle-specific creatine kinase | c.*800A>G | rs8111989 | 2 = GG | 9 (22.0%) ↑ | 10 (8.3%) ↓ | 0.044 |
1 = GA | 19 (46.3%) | 58 (48.4%) | |||||
0 = AA | 13 (31.7%) | 52 (43.3%) | |||||
MLCK | Myosin light-chain kinase | c.49C>T | rs2700352 | 2 = CC | 23 (56.1%) | 54 (45.0%) | 0.457 |
1 = CT | 16 (39.0%) | 60 (50.0%) | |||||
0 = TT | 2 (4.9%) | 6 (5.0%) | |||||
Myosin light-chain kinase | c.37885C>A | rs28497577 | 2 = AA | 3 (7.3%) ↑ | 0 (0.0%) ↓ | 0.010 | |
1 = CA | 17 (41.5%) | 47 (39.2%) | |||||
0 = CC | 21 (51.2%) | 73 (69.8%) |
Symbol | Gene | Polymorphism | dbSNP | Genotype Score | Responders’ Fat Mass | Non-Responders’ Fat Mass | p Value |
---|---|---|---|---|---|---|---|
ACE | Angiotensin-converting enzyme | I/D | rs4646994 | 2 = DD | 17 (47.2%) | 36 (28.8%) | 0.099 |
1 = ID | 15 (41.7%) | 64 (51.2%) | |||||
0 = II | 4 (11.1%) | 25 (20.0%) | |||||
ACTN3 | Alpha-actinin-3 | c.1729C>T | rs1815739 | 2 = CC | 14 (38.9%) | 37 (29.6%) | 0.531 |
1 = CT | 14 (38.9%) | 60 (48.0%) | |||||
0 = TT | 8 (22.2%) | 28 (22.4%) | |||||
AMPD1 | Adenosine monophosphate deaminase 1 | c.34C>T | rs17602729 | 2 = CC | 25 (69.4%) | 78 (62.4%) | 0.417 |
1 = CT | 10 (27.8%) | 46 (36.8%) | |||||
0 = TT | 1 (2.8%) | 1 (0.8%) | |||||
CKM | Muscle-specific creatine kinase | c.*800A>G | rs8111989 | 2 = GG | 4 (11.1%) | 15 (12.0%) | 0.793 |
1 = GA | 19 (52.8%) | 58 (46.8%) | |||||
0 = AA | 13 (36.1%) | 52 (41.6%) | |||||
MLCK | Myosin light-chain kinase | c.49C>T | rs2700352 | 2 = CC | 19 (52.8%) | 58 (46.4)% | 0.752 |
1 = CT | 15 (41.7%) | 61 (48.8%) | |||||
0 = TT | 2 (5.6%) | 6 (4.8%) | |||||
Myosin light-chain kinase | c.37885C>A | rs28497577 | 2 = AA | 2 (5.6%) | 1 (0.8%) | 0.140 | |
1 = CA | 12 (33.3%) | 52 (41.6%) | |||||
0 = CC | 22 (61.1%) | 72 (57.6%) |
Symbol | Gene | Polymorphism | dbSNP | Genotype Score | Responders Muscle Mass | Non-Responders Muscle Mass | p Value |
---|---|---|---|---|---|---|---|
ACE | Angiotensin-converting enzyme | I/D | rs4646994 | 2 = DD | 29 (42.6%) ↑ | 24 (25.8%) ↓ | 0.065 |
1 = ID | 30 (44.1%) | 49 (52.7%) | |||||
0 = II | 9 (13.2%) | 20 (21.5%) | |||||
ACTN3 | Alpha-actinin-3 | c.1729C>T | rs1815739 | 2 = CC | 27 (39.7%) | 24 (25.8%) | 0.106 |
1 = CT | 30 (44.1%) | 44 (47.3%) | |||||
0 = TT | 11 (16.2%) | 25 (26.9%) | |||||
AMPD1 | Adenosine monophosphate deaminase 1 | c.34C>T | rs17602729 | 2 = CC | 53 (77.9%) ↑ | 50 (52.7.8%) ↓ | 0.005 |
1 = CT | 14 (20.6%) ↓ | 42 (45.2%) ↑ | |||||
0 = TT | 1 (1.5%) | 1 (1.1%) | |||||
CKM | Muscle-specific creatine kinase | c.*800A>G | rs8111989 | 2 = GG | 11 (16.2%) | 8 (8.6%) | 0.194 |
1 = GA | 34 (50.0%) | 43 (46.2%) | |||||
0 = AA | 23 (33.8%) | 42 (45.2%) | |||||
MLCK | Myosin light-chain kinase | c.49C>T | rs2700352 | 2 = CC | 34 (50.0%) | 43 (46.2%) | 0.880 |
1 = CT | 31 (45.6%) | 45 (48.4%) | |||||
0 = TT | 3 (4.4%) | 5 (5.4%) | |||||
Myosin light-chain kinase | c.37885C>A | rs28497577 | 2 = AA | 1 (1.5%) | 2 (2.2%) | 0.790 | |
1 = CA | 29 (42.6%) | 35 (37.6%) | |||||
0 = CC | 38 (55.9%) | 56 (60.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varillas-Delgado, D. Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients 2024, 16, 2511. https://doi.org/10.3390/nu16152511
Varillas-Delgado D. Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients. 2024; 16(15):2511. https://doi.org/10.3390/nu16152511
Chicago/Turabian StyleVarillas-Delgado, David. 2024. "Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation" Nutrients 16, no. 15: 2511. https://doi.org/10.3390/nu16152511
APA StyleVarillas-Delgado, D. (2024). Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients, 16(15), 2511. https://doi.org/10.3390/nu16152511