Identifying Malnutrition Risk in the Elderly: A Single- and Multi-Parameter Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.2.1. Study Group
2.2.2. Data Collection
2.2.3. Assessment of Cognitive Performance
2.2.4. Evaluation of Depressive Conditions
2.2.5. Vital Signs Assessment
2.2.6. Assessment of the Ability to Perform Daily Living Activities
2.2.7. Assessment of Physical Fitness
2.2.8. Assessment of Nutritional Status
2.2.9. Appetite Assessment
2.2.10. Anthropometric Measurements
2.2.11. Body Composition
2.2.12. Statistical Analysis
3. Results
3.1. Physical Fitness and Body Composition
3.2. Energy, Metabolism, and Nutritional Assessment
3.3. Determination of Optimal Cut-Off Points for Continuous Parameters Influencing Malnutrition Risk
The Overall Characteristic of Classification Metrics Results
3.4. Identification of Parameter Profiles Influencing the Risk of Malnutrition in a Multivariate Approach
Comparative Analysis of ROC Curves for Competing Models
4. Discussion
Limitations and Strengths of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Specification of the Parameters Used in the Regression Model
Group of Parameters | Parameters | |
---|---|---|
Incorporated in Regression Model | Not Used Due to Multicollinearity | |
Demographic | sex | marital status |
age | ||
BMI (categories) | ||
education | ||
Lifestyle and behavioral factors, comorbidities, or historical illnesses | smoking | COVID-19 in the past |
daily sleep duration | ||
HT | ||
DM | ||
liver disease | ||
heart disease | ||
hypothyroidism | ||
gout | ||
depression | ||
osteoporosis | ||
hyperlipidemia | ||
Ongoing medication and treatments | statins | - |
hypertension medications | ||
oral diabetes medications | ||
COVID-19 vaccine | ||
SSRI/IMAO | ||
hypothyroidism drugs uthyrox/letrox | ||
Osteoporosis drugs | ||
polypragmasy (taking more than five drugs) | ||
Physical fitness and body composition | grip strength average of two measurements; right and left hand (kg) | extracellular water value (L) |
abdominal obesity | FMI index (kg/m2) | |
WHR | relative fat mass value (%) | |
fat distribution type | ASMI (kg/m2) | |
MAC right arm circumference (cm) | ||
right calf circumference (cm) | ||
fat-free mass value (kg) | ||
skeletal muscle mass (kg) | ||
proportion of muscle mass in total weight (%) | ||
muscle mass | ||
total body water value (L) | ||
FFMI (kg/m2) | ||
phase angle (degrees) | ||
visceral adipose tissue (L) | ||
Energy, metabolism, and nutritional assessment | total energy expenditure (kcal) | resting energy expenditure (kcal) |
energy content (kcal) | ||
GDS score [0–30] | ||
time for up-and-go (s) | ||
SNAQ risk | ||
CNAQ risk | ||
SARC F |
Appendix B. The Multicollinearity Analysis
Predictor | VIF | |
---|---|---|
Value | CI 95% | |
smoking | 1.13 | 1.03–1.53 |
osteoporosis | 1.09 | 1.02–1.59 |
SSRI/IMAO medicine intake | 1.07 | 1.01–1.70 |
grip strength average of two measurements right and left hand | 2.28 | 1.86–2.92 |
skeletal muscle mass | 2.43 | 1.97–3.11 |
GDS score | 1.11 | 1.02–1.55 |
timed up-and-go test result | 1.27 | 1.11–1.61 |
CNAQ risk | 1.12 | 1.03–1.53 |
SARC F | 1.09 | 1.01–1.62 |
Appendix C. Validation Results of the Model Fit to Observed Data
Test | Statistic | Model Logit | ||
---|---|---|---|---|
Value | df | p | ||
HL | χ2 | 3.08 | 6 | 0.799 |
mHL | F | 1.09 | 7 | 0.373 |
OsRo | Z | 1.74 | - | 0.083 |
SstPgeq0.5 | Z | 0.19 | - | 0.850 |
SstPl0.5 | Z | 1.09 | - | 0.275 |
SstBoth | χ2 | 1.22 | 2 | 0.542 |
SllPgeq0.5 | χ2 | 0.04 | 1 | 0.843 |
SllPl0.5 | χ2 | 1.11 | 1 | 0.291 |
SllBoth | χ2 | 1.37 | 2 | 0.504 |
References
- United Nations, Department of Economic Social Affairs, Population Division. World Population Ageing 2019; (ST/ESA/SER.A/444); United Nations: New York, NY, USA, 2020. [Google Scholar]
- Pazan, F.; Wehling, M. Polypharmacy in older adults: A narrative review of definitions, epidemiology and consequences. Eur. Geriatr. Med. 2021, 12, 443–452. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Van Der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H. World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2022, 51, afac205. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.I.; Waitzberg, D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 2003, 22, 235–239. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Azzolino, D.; Arosio, B.; Marzetti, E.; Calvani, R.; Cesari, M. Nutritional status as a mediator of fatigue and its underlying mechanisms in older people. Nutrients 2020, 12, 444. [Google Scholar] [CrossRef]
- Grossman, D.C.; Curry, S.J.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Krist, A.H. Interventions to prevent falls in community-dwelling older adults: US preventive services task force recommendation statement. JAMA 2018, 319, 1696–1704. [Google Scholar] [PubMed]
- Stratton, R.J.; Green, C.J.; Elia, M. Disease-Related Malnutrition: An Evidence-Based Approach to Treatment; CABI: Wallingford, UK, 2003. [Google Scholar]
- Yan, L.L.; Daviglus, M.L.; Liu, K.; Pirzada, A.; Garside, D.B.; Schiffer, L.; Dyer, A.R.; Greenland, P. BMI and health-related quality of life in adults 65 years and older. Obes. Res. 2004, 12, 69–76. [Google Scholar] [CrossRef]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of chronic inflammation in aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Lindner-Rabl, S.; Wagner, V.; Matijevic, A.; Herzog, C.; Lampl, C.; Traub, J.; Roller-Wirnsberger, R. Clinical Interventions to Improve Nutritional Care in Older Adults and Patients in Primary Healthcare—A Scoping Review of Current Practices of Health Care Practitioners. Clin. Interv. Aging 2023, 17, 1–13. [Google Scholar] [CrossRef]
- Gariballa, S. Nutritional support in elderly patients. J. Nutr. Health Aging 2000, 4, 25–27. [Google Scholar]
- Cox, N.J.; Morrison, L.; Ibrahim, K.; Robinson, S.M.; Sayer, A.A.; Roberts, H.C. New horizons in appetite and the anorexia of ageing. Age Ageing 2020, 49, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Montalcini, T.; Romeo, S.; Ferro, Y.; Migliaccio, V.; Gazzaruso, C.; Pujia, A. Osteoporosis in chronic inflammatory disease: The role of malnutrition. Endocrine 2013, 43, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Schürch, M.-A.; Chevalley, T.; Ammann, P.; Bonjour, J.-P. Protein intake and osteoporosis. In Nutritional Aspects of Osteoporosis; A Serono Symposia SA Publication; Springer: Berlin/Heidelberg, Germany, 1998; pp. 141–154. [Google Scholar]
- Kok, R.M.; Heeren, T.J.; Hooijer, C.; Dinkgreve, M.A.; Rooijmans, H.G. The prevalence of depression in elderly medical inpatients. J. Affect. Disord. 1995, 33, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kaipainen, T.; Tiihonen, M.; Hartikainen, S.; Nykänen, I. Prevalence of risk of malnutrition and associated factors in home care clients. J. Nurs. Home Res. 2015, 1, 47–51. [Google Scholar] [CrossRef]
- Cakmak, G.; Öztürk, Z.A. Comparison of malnutrition assessment tools in terms of revealing the relationship between polypharmacy and inappropriate drug use and malnutrition. Prog. Nutr. 2021, 210, e2021210. [Google Scholar]
- Jyrkkä, J.; Enlund, H.; Lavikainen, P.; Sulkava, R.; Hartikainen, S. Association of polypharmacy with nutritional status, functional ability and cognitive capacity over a three-year period in an elderly population. Pharmacoepidemiol. Drug Saf. 2011, 20, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Schilp, J.; Wijnhoven, H.A.; Deeg, D.J.; Visser, M. Early determinants for the development of undernutrition in an older general population: Longitudinal Aging Study Amsterdam. Br. J. Nutr. 2011, 106, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Hickson, M. Malnutrition and ageing: This article is part of a series on ageing edited by Professor Chris Bulpitt. Postgrad. Med. J. 2006, 82, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.; Woolford, S.J.; Patel, H.P. Multi-morbidity and polypharmacy in older people: Challenges and opportunities for clinical practice. Geriatrics 2020, 5, 85. [Google Scholar] [CrossRef]
- Maseda, A.; Gómez-Caamaño, S.; Lorenzo-López, L.; López-López, R.; Diego-Diez, C.; Sanluís-Martínez, V.; Valdiglesias, V.; Millán-Calenti, J.C. Health determinants of nutritional status in community-dwelling older population: The VERISAÚDE study. Public Health Nutr. 2016, 19, 2220–2228. [Google Scholar] [CrossRef]
- Fiske, M.; Moen, A.; Mdala, I.; Straand, J. Malnutrition and Polypharmacy in Older Adult Patients Receiving Home Care Nursing Services: A Cross-sectional Study. J. Am. Med. Dir. Assoc. 2024, 25, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Kok, W.E.; Haverkort, E.B.; Algra, Y.A.; Mollema, J.; Hollaar, V.R.Y.; Naumann, E.; de van der Schueren, M.A.E.; Jerković-Ćosić, K. The association between polypharmacy and malnutrition(risk) in older people: A systematic review. Clin. Nutr. ESPEN 2022, 49, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2019, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shu, H.; Zheng, Y.; Li, C.; Liu, M.; Chen, Z.; He, X. Comparison of fat-free mass index and fat mass index in Chinese adults. Eur. J. Clin. Nutr. 2012, 66, 1004–1007. [Google Scholar] [CrossRef]
- Wobith, M.; Herbst, C.; Lurz, M.; Haberzettl, D.; Fischer, M.; Weimann, A. Evaluation of malnutrition in patients undergoing major abdominal surgery using GLIM criteria and comparing CT and BIA for muscle mass measurement. Clin. Nutr. ESPEN 2022, 50, 148–154. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Bellido, D.; García-García, C.; Talluri, A.; Lukaski, H.C.; García-Almeida, J.M. Future lines of research on phase angle: Strengths and limitations. Rev. Endocr. Metab. Disord. 2023, 24, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Unterberger, S.; Aschauer, R.; Zöhrer, P.A.; Draxler, A.; Aschauer, M.; Kager, B.; Franzke, B.; Strasser, E.-M.; Wagner, K.-H.; Wessner, B. Association of bioelectrical impedance phase angle with physical performance and nutrient intake of older adults. Nutrients 2023, 15, 1458. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- St-Onge, M.P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef]
- Norman, K.; Herpich, C.; Müller-Werdan, U. Role of phase angle in older adults with focus on the geriatric syndromes sarcopenia and frailty. Rev. Endocr. Metab. Disord. 2023, 24, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Macedo, C.; Amaral, T.F.; Rodrigues, J.; Santin, F.; Avesani, C.M. Malnutrition and sarcopenia combined increases the risk for mortality in older adults on hemodialysis. Front. Nutr. 2021, 8, 721941. [Google Scholar] [CrossRef] [PubMed]
- de Blasio, F.; Di Gregorio, A.; de Blasio, F.; Bianco, A.; Bellofiore, B.; Scalfi, L. Malnutrition and sarcopenia assessment in patients with chronic obstructive pulmonary disease according to international diagnostic criteria, and evaluation of raw BIA variables. Respir. Med. 2018, 134, 1–5. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Geneva, 2018 2018 Integrated Care for Older People: Realigning Primary Health Care to Respond to Population Ageing; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Zanetti, M.; Veronese, N.; Riso, S.; Boccardi, V.; Bolli, C.; Cintoni, M.; Francesco, V.D.; Mazza, L.; Onfiani, G.; Zenaro, D.; et al. Polypharmacy and malnutrition in older people: A narrative review. Nutrition 2023, 115, 112134. [Google Scholar] [CrossRef]
- Howie, J. General practice: Changing problems, enduring values. Br. J. Gen. Pract. 2020, 70, 138–139. [Google Scholar] [CrossRef] [PubMed]
- Byl, N.N.; Clever, L.H. Stable chronic disease: A behavioral model. J. Am. Geriatr. Soc. 1977, 25, 408–414. [Google Scholar] [CrossRef]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Mungas, D.; Marshall, S.; Weldon, M.; Haan, M.; Reed, B. Age and education correction of Mini-Mental State Examination for English-and Spanish-speaking elderly. Neurology 1996, 46, 700–706. [Google Scholar] [CrossRef]
- Lincoln, N.; Flannaghan, T. Cognitive behavioral psychotherapy for depression following stroke: A randomized controlled trial. Stroke 2003, 34, 111–115. [Google Scholar] [CrossRef]
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Bird, V.; Rizzo, M.; Meader, N. Which version of the geriatric depression scale is most useful in medical settings and nursing homes? Diagnostic validity meta-analysis. Am. J. Geriatr. Psychiatry 2010, 18, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Pocklington, C.; Gilbody, S.; Manea, L.; McMillan, D. The diagnostic accuracy of brief versions of the Geriatric Depression Scale: A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2016, 31, 837–857. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Bird, V.; Rizzo, M.; Meader, N. Diagnostic validity and added value of the Geriatric Depression Scale for depression in primary care: A meta-analysis of GDS30 and GDS15. J. Affect. Disord. 2010, 125, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index: A simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Morrow, S. Instrumental activities of daily living scale. Am. J. Nurs 1999, 99, 24CC. [Google Scholar] [CrossRef]
- Mathuranath, P.; George, A.; Cherian, P.J.; Mathew, R.; Sarma, P.S. Instrumental activities of daily living scale for dementia screening in elderly people. Int. Psychogeriatr. 2005, 17, 461–474. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Farnham, S.D.; Greenwald, A.G.; Banaji, M.R. Implicit self-esteem. In Social Identity and Social Cognition; Blackwell Publishing: Malden, MA, USA, 1999; pp. 230–248. [Google Scholar]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef]
- Stuck, A.K.; Basile, G.; Freystaetter, G.; de Godoi Rezende Costa Molino, C.; Lang, W.; Bischoff-Ferrari, H.A. Predictive validity of current sarcopenia definitions (EWGSOP2, SDOC, and AWGS2) for clinical outcomes: A scoping review. J. Cachexia Sarcopenia Muscle 2023, 14, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Jang, H.C.; Lim, S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J. Intern. Med. 2016, 31, 643. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.R.; Suriyaarachchi, P.; Gomez, F.; Curcio, C.L.; Boersma, D.; Gunawardene, P.; Demontiero, O.; Duque, G. Phenotype of sarcopenic obesity in older individuals with a history of falling. Arch. Gerontol. Geriatr. 2016, 65, 255–259. [Google Scholar] [CrossRef]
- Balachandran, A.; Krawczyk, S.N.; Potiaumpai, M.; Signorile, J.F. High-speed circuit training vs hypertrophy training to improve physical function in sarcopenic obese adults: A randomized controlled trial. Exp. Gerontol. 2014, 60, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Poggiogalle, E.; Lubrano, C.; Sergi, G.; Coin, A.; Gnessi, L.; Mariani, S.; Lenzi, A.; Donini, L.M. Sarcopenic obesity and metabolic syndrome in adult Caucasian subjects. J. Nutr. Health Aging 2016, 20, 958–963. [Google Scholar] [CrossRef]
- Scott, D.; Shore-Lorenti, C.; McMillan, L.; Mesinovic, J.; Clark, R.A.; Hayes, A.; Sanders, K.M.; Duque, G.; Ebeling, P.R. Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch. Gerontol. Geriatr. 2018, 75, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Hawkins, M.; Abramowitz, M.K. Association of sarcopenia with eGFR and misclassification of obesity in adults with CKD in the United States. Clin. J. Am. Soc. Nephrol. 2014, 9, 2079–2088. [Google Scholar] [CrossRef]
- Siervo, M.; Stephan, B.; Nasti, G.; Colantuoni, A. Ageing, adiposity indexes and low muscle mass in a clinical sample of overweight and obese women. Obes. Res. Clin. Pract. 2012, 6, e63–e70. [Google Scholar] [CrossRef]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef]
- Muscariello, E.; Nasti, G.; Siervo, M.; Di Maro, M.; Lapi, D.; D’Addio, G.; Colantuoni, A. Dietary protein intake in sarcopenic obese older women. Clin. Interv. Aging 2016, 11, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Siervo, M.; Prado, C.M.; Mire, E.; Broyles, S.; Wells, J.C.; Heymsfield, S.; Katzmarzyk, P.T. Body composition indices of a load-capacity model: Gender- and BMI-specific reference curves. Public Health Nutr. 2015, 18, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Van Aller, C.; Lara, J.; Stephan, B.C.M.; Donini, L.M.; Heymsfield, S.; Katzmarzyk, P.T.; Wells, J.C.K.; Prado, C.M.; Siervo, M. Sarcopenic obesity and overall mortality: Results from the application of novel models of body composition phenotypes to the National Health and Nutrition Examination Survey 1999–2004. Clin. Nutr. 2019, 38, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y.; Vellas, B.; Garry, P. Mini Nutritional Assessment: A Practical Assessment Tool for Grading the Nutritional State of Elderly Patients; Serdi Publishing Company: Paris, France, 1997; Volume 1. [Google Scholar]
- Guigoz, Y.; Lauque, S.; Vellas, B.J. Identifying the elderly at risk for malnutrition: The Mini Nutritional Assessment. Clin. Geriatr. Med. 2002, 18, 737–757. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Villars, H.; Abellan, G.; Soto, M.E.; Rolland, Y.; Guigoz, Y.; Morley, J.E.; Chumlea, W.; Salva, A.; Rubenstein, L.Z.; et al. Overview of the MNA--Its history and challenges. J. Nutr. Health Aging 2006, 10, 456–463; discussion 463–465. [Google Scholar] [PubMed]
- Wilson, M.M.; Thomas, D.R.; Rubenstein, L.Z.; Chibnall, J.T.; Anderson, S.; Baxi, A.; Diebold, M.R.; Morley, J.E. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 2005, 82, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Andreae, C.; Strömberg, A.; Sawatzky, R.; Årestedt, K. Psychometric evaluation of two appetite questionnaires in patients with heart failure. J. Card. Fail. 2015, 21, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Helfenstein, S.F.; Uster, A.; Rühlin, M.; Pless, M.; Ballmer, P.E.; Imoberdorf, R. Are four simple questions able to predict weight loss in outpatients with metastatic cancer? A prospective cohort study assessing the simplified nutritional appetite questionnaire. Nutr. Cancer 2016, 68, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shen, J. Usefulness of Simplified Nutritional Appetite Questionnaire (SNAQ) in appetite assessment in elder patients with liver cirrhosis. J. Nutr. Health Aging 2018, 22, 911–915. [Google Scholar] [CrossRef]
- Hanisah, R.; Suzana, S.; Lee, F.S. Validation of screening tools to assess appetite among geriatric patients. J. Nutr. Health Aging 2012, 16, 660–665. [Google Scholar] [CrossRef]
- Ä°lhan, B.; Bahat, G.; Oren, M.M.; Kiliç, C.; Durmazoglu, S.; Karan, M.A. Reliability and validity of Turkish version of the Simplified Nutritional Appetite Questionnaire (SNAQ). J. Nutr. Health Aging 2018, 22, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- World Health Organization. Global Strategy for the Prevention and Control of Noncommunicable Diseases: Report by the Director-General; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Bosy-Westphal, A.; Schautz, B.; Later, W.; Kehayias, J.J.; Gallagher, D.; Müller, M.J. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur. J. Clin. Nutr. 2013, 67, S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Jensen, B.; Braun, W.; Pourhassan, M.; Gallagher, D.; Müller, M.J. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur. J. Clin. Nutr. 2017, 71, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.J.; Bell, S.J.; Chertow, G.M.; Chumlea, W.C.; Knox, T.A.; Kotler, D.P.; Lukaski, H.C.; Schoeller, D.A. Bioelectrical impedance methods in clinical research: A follow-up to the NIH Technology Assessment Conference. Nutrition 1999, 15, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Slinde, F.; Bark, A.; Jansson, J.; Rossander-Hulthén, L. Bioelectrical impedance variation in healthy subjects during 12 h in the supine position. Clin. Nutr. 2003, 22, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.; Braun, W.; Geisler, C.; Both, M.; Klückmann, K.; Müller, M.J.; Bosy-Westphal, A. Limitations of Fat-Free Mass for the Assessment of Muscle Mass in Obesity. Obes. Facts. 2019, 12, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Peine, S.; Knabe, S.; Carrero, I.; Brundert, M.; Wilhelm, J.; Ewert, A.; Denzer, U.; Jensen, B.; Lilburn, P. Generation of normal ranges for measures of body composition in adults based on bioelectrical impedance analysis using the seca mBCA. Int. J. Body Compos. Res. 2013, 11, 67. [Google Scholar]
- Reljic, D.; Zarafat, D.; Jensen, B.; Herrmann, H.J.; Neurath, M.F.; Konturek, P.C.; Zopf, Y. Phase angle and vector analysis from multifrequency segmental bioelectrical impedance analysis: New reference data for older adults. J. Physiol. Pharmacol. 2020, 71, 491–499. [Google Scholar] [CrossRef]
- de Araújo, B.E.; Kowalski, V.; Leites, G.M.; da Silva Fink, J.; Silva, F.M. AND-ASPEN and ESPEN consensus, and GLIM criteria for malnutrition identification in AECOPD patients: A longitudinal study comparing concurrent and predictive validity. Eur. J. Clin. Nutr. 2022, 76, 685–692. [Google Scholar] [CrossRef]
- Guigoz, Y.; Vellas, B. Nutritional assessment in older adults: MNA® 25 years of a screening tool & a reference standard for care and research; what next? J. Nutr. Health Aging 2021, 25, 528–583. [Google Scholar]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.B.; Foley, A.L.; Barnard, R.; Isenring, E.A.; Miller, M.D. Nutritional screening in community-dwelling older adults: A systematic literature review. Asia Pac. J. Clin. Nutr. 2010, 19, 440–449. [Google Scholar] [PubMed]
- Donini, L.M.; Stephan, B.C.; Rosano, A.; Molfino, A.; Poggiogalle, E.; Lenzi, A.; Siervo, M.; Muscaritoli, M. What are the risk factors for malnutrition in older-aged institutionalized adults? Nutrients 2020, 12, 2857. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Gell, N.M.; Wingood, M.; Schollmeyer, J.; Tarleton, E. Malnutrition risk, rurality, and falls among community-dwelling older adults. J. Nutr. Health Aging 2021, 25, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Gümüşsoy, M.; Atmış, V.; Yalçın, A.; Bahşi, R.; Yiğit, S.; Arı, S.; Dokuyan, H.C.; Gözükara, M.G.; Silay, K. Malnutrition-sarcopenia syndrome and all-cause mortality in hospitalized older people. Clin. Nutr. 2021, 40, 5475–5481. [Google Scholar] [CrossRef] [PubMed]
- Norazman, C.W.; Adznam, S.N.A.; Jamaluddin, R. Malnutrition as key predictor of physical frailty among Malaysian older adults. Nutrients 2020, 12, 1713. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chattopadhyay, A. Malnutrition among older adults in India: Does gender play a role? Aging Health Res. 2023, 3, 100143. [Google Scholar] [CrossRef]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in older adults—Recent advances and remaining challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Pedrolli, C.; Klersy, C.; Bonardi, C.; Quarleri, L.; Cappello, S.; Turri, A.; Rondanelli, M.; Caccialanza, R. Nutritional status in older persons according to healthcare setting: A systematic review and meta-analysis of prevalence data using MNA®. Clin. Nutr. 2016, 35, 1282–1290. [Google Scholar] [CrossRef]
- La Torre, M.; Ziparo, V.; Nigri, G.; Cavallini, M.; Balducci, G.; Ramacciato, G. Malnutrition and pancreatic surgery: Prevalence and outcomes. J. Surg. Oncol. 2013, 107, 702–708. [Google Scholar] [CrossRef]
- Guo, W.; Ou, G.; Li, X.; Huang, J.; Liu, J.; Wei, H. Screening of the nutritional risk of patients with gastric carcinoma before operation by NRS 2002 and its relationship with postoperative results. J. Gastroenterol. Hepatol. 2010, 25, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Visser, M.; Corish, C.; Geisler, C.; De Groot, L.; Cruz-Jentoft, A.; Lohrmann, C.; O’connor, E.; Schindler, K.; De Van Der Schueren, M. Joint action malnutrition in the elderly (MaNuEL) knowledge hub: Summary of project findings. Eur. Geriatr. Med. 2020, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Yokomachi, J.; Fukuda, T.; Mizushima, Y.; Ishizaka, H.; Matsumoto, K.; Kambe, T.; Inoue, S.; Nishikawa, K.; Toyama, Y.; Takahashi, R. Clinical usefulness of phase angle as an indicator of muscle wasting and malnutrition in inpatients with cardiovascular diseases. Asia Pac. J. Clin. Nutr. 2023, 32, 297. [Google Scholar] [PubMed]
- Hirose, S.; Nakajima, T.; Nozawa, N.; Katayanagi, S.; Ishizaka, H.; Mizushima, Y.; Matsumoto, K.; Nishikawa, K.; Toyama, Y.; Takahashi, R. Phase angle as an indicator of sarcopenia, malnutrition, and cachexia in inpatients with cardiovascular diseases. J. Clin. Med. 2020, 9, 2554. [Google Scholar] [CrossRef] [PubMed]
- Castillo Martínez, L.; Colín Ramírez, E.; Orea Tejeda, A.; Asensio Lafuente, E.; Bernal Rosales, L.P.; Rebollar González, V.; Narváez David, R.; Dorantes García, J. Bioelectrical impedance and strength measurements in patients with heart failure: Comparison with functional class. Nutrition 2007, 23, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Noritake, K.; Nakashima, D.; Fujii, K.; Yamada, K. Relationship between nutritional status and phase angle as a noninvasive method to predict malnutrition by sex in older inpatients. Nagoya J. Med. Sci. 2021, 83, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Soundar, E.P.; Genton, L.; Pichard, C. Can phase angle determined by bioelectrical impedance analysis assess nutritional risk? A comparison between healthy and hospitalized subjects. Clin. Nutr. 2012, 31, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J. Parenter. Enteral. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.; Genton, L.; Karsegard, V.; Raguso, C.; Dupertuis, Y.; Pichard, C. Percentiles (10, 25, 75 and 90th) for phase angle (PhA), determined by bioelectrical impedance (BIA), in 2740 healthy adults aged 20–75 yr. Clin. Nutr. 2004, 23, 758. [Google Scholar]
- Trayhurn, P.; Wood, I. Signalling role of adipose tissue: Adipokines and inflammation in obesity. Biochem. Soc. Trans. 2005, 33, 1078–1081. [Google Scholar] [CrossRef]
- Jensen, B.; Braun, W.; Both, M.; Gallagher, D.; Clark, P.; González, D.L.; Klueckmann, K.; Bosy-Westphal, A. Configuration of bioelectrical impedance measurements affects results for phase angle. Med. Eng. Phys. 2020, 84, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, J.M.; Elasy, T.; Jensen, G.L. The relationship between body mass index and self-reported functional limitation among older adults: A gender difference. J. Am. Geriatr. Soc. 2001, 49, 398–403. [Google Scholar] [CrossRef]
- Matias, C.; Nunes, C.; Francisco, S.; Tomeleri, C.; Cyrino, E.; Sardinha, L.; Silva, A. Phase angle predicts physical function in older adults. Arch. Gerontol. Geriatr. 2020, 90, 104151. [Google Scholar] [CrossRef] [PubMed]
- Wirth, R.; Volkert, D.; Rösler, A.; Sieber, C.C.; Bauer, J.M. Bioelectric impedance phase angle is associated with hospital mortality of geriatric patients. Arch. Gerontol. Geriatr. 2010, 51, 290–294. [Google Scholar] [CrossRef]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Hida, T.; Ito, K.; Tsushima, M.; Morozumi, M.; Machino, M.; Ota, K.; Seki, T.; et al. A low phase angle measured with bioelectrical impedance analysis is associated with osteoporosis and is a risk factor for osteoporosis in community-dwelling people: The Yakumo study. Arch. Osteoporos. 2018, 13, 39. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Shiota, A.; Nakayama, N.; Saito, Y.; Maeda, T.; Maeda, Y.; Nakayama, K. Prevalence and Associated Factors of Malnutrition and Sarcopenia in a Daycare Facility: A Cross-Sectional Study. Healthcare 2020, 8, 576. [Google Scholar] [CrossRef]
- Lu, Y.; Karagounis, L.G.; Ng, T.P.; Carre, C.; Narang, V.; Wong, G.; Tan, C.T.Y.; Zin Nyunt, M.S.; Gao, Q.; Abel, B. Systemic and metabolic signature of sarcopenia in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 309–317. [Google Scholar] [CrossRef]
- Beaudart, C.; Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.-Y.; Lengelé, L.; Bruyère, O. Malnutrition as a strong predictor of the onset of sarcopenia. Nutrients 2019, 11, 2883. [Google Scholar] [CrossRef]
- Jeejeebhoy, K.N. Malnutrition, fatigue, frailty, vulnerability, sarcopenia and cachexia: Overlap of clinical features. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 213–219. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L.; Wang, H.; Hao, Q.; Dong, B.; Yang, M. Malnutrition-sarcopenia syndrome predicts mortality in hospitalized older patients. Sci. Rep. 2017, 7, 3171. [Google Scholar] [CrossRef] [PubMed]
- Poirier, P.; Eckel, R.H. Obesity and cardiovascular disease. Curr. Atheroscler. Rep. 2002, 4, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hajifathalian, K.; Ezzati, M.; Woodward, M.; Rimm, E.B.; Danaei, G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet 2014, 383, 970–983. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Gottesman, R.F.; Sharrett, A.R.; Tapia, A.L.; DavisThomas, S.; Windham, B.G.; Coker, L.; Schneider, A.L.C.; Alonso, A.; Coresh, J.; et al. Midlife vascular risk factors and midlife cognitive status in relation to prevalence of mild cognitive impairment and dementia in later life: The Atherosclerosis Risk in Communities Study. Alzheimers Dement. 2018, 14, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Singh-Manoux, A.; Dugravot, A.; Shipley, M.; Brunner, E.J.; Elbaz, A.; Sabia, S.; Kivimaki, M. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement. 2018, 14, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hoy, W.E. Age-dependent decline of association between obesity and coronary heart disease: A cohort study in a remote Australian Aboriginal community. BMJ Open 2013, 3, e004042. [Google Scholar] [CrossRef] [PubMed]
- Bosello, O.; Vanzo, A. Obesity paradox and aging. Eat. Weight. Disord. 2021, 26, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Pinto, A.; Giusti, A.M.; Lenzi, A.; Poggiogalle, E. Obesity or BMI Paradox? Beneath the Tip of the Iceberg. Front. Nutr. 2020, 7, 53. [Google Scholar] [CrossRef]
- Mezian, K.; Angerová, Y.; Kara, M.; Özçakar, L. Obesity paradox in sarcopenia and knee osteoarthritis: Comment on the article by Andrews et al. ACR Open Rheumatol. 2021, 3, 812–813. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Ren, Y.; Wang, Y.; Fang, J.; Yue, H.; Ma, S.; Guan, F. Aging and age-related diseases: From mechanisms to therapeutic strategies. Biogerontology 2021, 22, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Nobili, A.; Marengoni, A.; Tettamanti, M.; Salerno, F.; Pasina, L.; Franchi, C.; Iorio, A.; Marcucci, M.; Corrao, S.; Licata, G. Association between clusters of diseases and polypharmacy in hospitalized elderly patients: Results from the REPOSI study. Eur. J. Intern. Med. 2011, 22, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Bonda, D.J.; Lee, H.G.; Camins, A.; Pallàs, M.; Casadesus, G.; Smith, M.A.; Zhu, X. The sirtuin pathway in ageing and Alzheimer disease: Mechanistic and therapeutic considerations. Lancet Neurol. 2011, 10, 275–279. [Google Scholar] [CrossRef]
- Hoel, R.W.; Connolly, R.M.G.; Takahashi, P.Y. Polypharmacy management in older patients. Mayo Clin. Proc. 2021, 96, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Strand, L.M.; Morley, P.C.; Cipolle, R.J.; Ramsey, R.; Lamsam, G.D. Drug-related problems: Their structure and function. Drug Intell. Clin. Pharm. 1990, 24, 1093–1097. [Google Scholar] [CrossRef]
- Hanlon, J.T.; Pieper, C.F.; Hajjar, E.R.; Sloane, R.J.; Lindblad, C.I.; Ruby, C.M.; Schmader, K.E. Incidence and predictors of all and preventable adverse drug reactions in frail elderly persons after hospital stay. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 511–515. [Google Scholar] [CrossRef]
- Dhalwani, N.N.; Fahami, R.; Sathanapally, H.; Seidu, S.; Davies, M.J.; Khunti, K. Association between polypharmacy and falls in older adults: A longitudinal study from England. BMJ Open 2017, 7, e016358. [Google Scholar] [CrossRef] [PubMed]
- Nobili, A.; Garattini, S.; Mannucci, P.M. Multiple diseases and polypharmacy in the elderly: Challenges for the internist of the third millennium. J. Comorb. 2011, 1, 28–44. [Google Scholar] [CrossRef]
- Amasene, M.; Medrano, M.; Echeverria, I.; Urquiza, M.; Rodriguez-Larrad, A.; Diez, A.; Labayen, I.; Ariadna, B.-B. Malnutrition and poor physical function are Associated with higher Comorbidity Index in hospitalized older adults. Front. Nutr. 2022, 9, 920485. [Google Scholar] [CrossRef]
- Kose, E.; Hirai, T.; Seki, T. Change in number of potentially inappropriate medications impacts on the nutritional status in a convalescent rehabilitation setting. Geriatr. Gerontol. Int. 2019, 19, 44–50. [Google Scholar] [CrossRef]
- Kose, E.; Wakabayashi, H.; Yasuno, N. Polypharmacy and malnutrition management of elderly perioperative patients with cancer: A systematic review. Nutrients 2021, 13, 1961. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Itoh, T.; Yabe, A.; Imai, S.; Nakamura, Y.; Mizokami, Y.; Okouchi, Y.; Ikeshita, A.; Kominato, H. Polypharmacy is associated with malnutrition and activities of daily living disability among daycare facility users: A cross-sectional study. Medicine 2021, 100, e27073. [Google Scholar] [CrossRef] [PubMed]
- Ricca, V.; Mannucci, E.; Di Bernardo, M.; Rizzello, S.; Cabras, R.; Rotella, C. Sertraline enhances the effects of cognitive-behavioral treatment on weight reduction of obese patients. J. Endocrinol. Investig. 1996, 19, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Tecott, L.H.; Sun, L.M.; Akana, S.F.; Strack, A.M.; Lowenstein, D.H.; Dallman, M.F.; Julius, D. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995, 374, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Paz-Filho, G.; Mastronardi, C.; Licinio, J.; Wong, M.-L. Is increased antidepressant exposure a contributory factor to the obesity pandemic? Transl. Psychiatry 2016, 6, e759. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.L.; Meszaros, Z.S.; Khan, R.; Nihalani, N. How to control weight gain when prescribing antidepressants. Curr. Psychiatry Rep. 2007, 6, 43. [Google Scholar]
- Frieling, H.; Bleich, S. Tranylcypromine: New perspectives on an “old” drug. Eur. Arch. Psychiatry Clin. Neurosci. 2006, 256, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.; Gill, B.; El-Halabi, S.; Chen-Li, D.; Lipsitz, O.; Rosenblat, J.D.; Van Rheenen, T.E.; Rodrigues, N.B.; Mansur, R.B.; Majeed, A.; et al. Antidepressant Medications and Weight Change: A Narrative Review. Obesity 2020, 28, 2064–2072. [Google Scholar] [CrossRef] [PubMed]
- Schorr, A.V.; Yehuda, I.; Tamir, S. Ethnic Differences in Loneliness, Depression, and Malnutrition Among Older Adults During COVID-19 Quarantine. J. Nutr. Health Aging 2021, 25, 311–317. [Google Scholar] [CrossRef]
- German, L.; Feldblum, I.; Bilenko, N.; Castel, H.; Harman-Boehm, I.; Shahar, D. Depressive symptoms and risk for malnutrition among hospitalized elderly people. J. Nutr. Health Aging 2008, 12, 313–318. [Google Scholar] [CrossRef]
- Kirk, B.; Zanker, J.; Hassan, E.B.; Bird, S.; Brennan-Olsen, S.; Duque, G. Sarcopenia definitions and outcomes consortium (SDOC) criteria are strongly associated with malnutrition, depression, falls, and fractures in high-risk older persons. J. Am. Med. Dir. Assoc. 2021, 22, 741–745. [Google Scholar] [CrossRef]
- Ulugerger Avci, G.; Suzan, V.; Bektan Kanat, B.; Unal, D.; Emiroglu Gedik, T.; Doventas, A.; Suna Erdincler, D.; Yavuzer, H. Depressive symptoms are associated with sarcopenia and malnutrition in older adults. Psychogeriatr. 2023, 23, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Kiesswetter, E.; Colombo, M.G.; Meisinger, C.; Peters, A.; Thorand, B.; Holle, R.; Ladwig, K.-H.; Schulz, H.; Grill, E.; Diekmann, R. Malnutrition and related risk factors in older adults from different health-care settings: An enable study. Public Health Nutr. 2020, 23, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, C.S.; Joshipura, K.; Silliman, R.A.; Miller, B.; Douglas, C.W. Oral health problems and significant weight loss among community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M366–M371. [Google Scholar] [CrossRef] [PubMed]
- Alley, D.E.; Koster, A.; Mackey, D.; Cawthon, P.; Ferrucci, L.; Simonsick, E.M.; Yu, B.; Hardy, S.; Goodpaster, B.; Sarkisian, C.; et al. Hospitalization and change in body composition and strength in a population-based cohort of older persons. J. Am. Geriatr. Soc. 2010, 58, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Izawa, S.; Enoki, H.; Hasegawa, J.; Hirose, T.; Kuzuya, M. Factors associated with deterioration of mini nutritional assessment-short form status of nursing home residents during a 2-year period. J. Nutr. Health Aging 2014, 18, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Johansson, Y.; Bachrach-Lindström, M.; Carstensen, J.; Ek, A.-C. Malnutrition in a home-living older population: Prevalence, incidence and risk factors. A prospective study. J. Clin. Nurs. 2009, 18, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.; Sidenvall, B.; Malmberg, B.; Christensson, L. Who will become malnourished? A prospective study of factors associated with malnutrition in older persons living at home. J. Nutr. Health Aging 2009, 13, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.C.; Wolfson, C.; Payette, H. Predictors of Nutritional Risk in Community-dwelling Seniors. Can. J. Public Health 2007, 98, 331–336. [Google Scholar] [CrossRef]
- Stephen, W.C.; Janssen, I. Influence of physical activity on age-related weight loss in the elderly. J. Phys. Act. Health. 2010, 7, 78–86. [Google Scholar] [CrossRef]
- Okabe, Y.; Furuta, M.; Akifusa, S.; Takeuchi, K.; Adachi, M.; Kinoshita, T.; Kikutani, T.; Nakamura, S.; Yamashita, Y. Swallowing function and nutritional status in Japanese elderly people receiving home-care services: A 1-year longitudinal study. J. Nutr. Health Aging 2016, 20, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Tang, S.T.; Wang, C.; Huang, G.H. Trajectory and determinants of nutritional health in older patients during and six-month post-hospitalisation. J. Clin. Nurs. 2009, 18, 3299–3307. [Google Scholar] [CrossRef] [PubMed]
- Smoliner, C.; Norman, K.; Wagner, K.-H.; Hartig, W.; Lochs, H.; Pirlich, M. Malnutrition and depression in the institutionalised elderly. Br. J. Nutr. 2009, 102, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Jiang, J.; Fu, H.; Zhang, W.; Yang, L.; Yang, M. Malnutrition in Relation to Muscle Mass, Muscle Quality, and Muscle Strength in Hospitalized Older Adults. J. Am. Med. Dir. Assoc. 2022, 23, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Flood, A.; Chung, A.; Parker, H.; Kearns, V.; O’Sullivan, T.A. The use of hand grip strength as a predictor of nutrition status in hospital patients. Clin. Nutr. 2014, 33, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Bakkal, H.; Dizdar, O.S.; Erdem, S.; Kulakoğlu, S.; Akcakaya, B.; Katırcılar, Y.; Uludag, K. The relationship between hand grip strength and nutritional status determined by malnutrition inflammation score and biochemical parameters in hemodialysis patients. J. Ren. Nutr. 2020, 30, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.A.; Meskers, C.G.M.; Trappenburg, M.C.; Verlaan, S.; Reijnierse, E.M.; Whittaker, A.C.; Maier, A.B. Malnutrition is associated with dynamic physical performance. Aging Clin. Exp. Res. 2020, 32, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Russo, A.; Liperoti, R.; Tosato, M.; Barillaro, C.; Pahor, M.; Bernabei, R.; Onder, G. Anorexia, physical function, and incident disability among the frail elderly population: Results from the ilSIRENTE study. J. Am. Med. Dir. Assoc. 2010, 11, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Ascencio, E.J.; Cieza-Gómez, G.D.; Carrillo-Larco, R.M.; Ortiz, P.J. Timed up and go test predicts mortality in older adults in Peru: A population-based cohort study. BMC Geriatr. 2022, 22, 61. [Google Scholar] [CrossRef]
- Wleklik, M.; Lisiak, M.; Andreae, C.; Uchmanowicz, I. Psychometric evaluation of appetite questionnaires in elderly polish patients with heart failure. Patient Prefer. Adherence 2019, 13, 1751–1759. [Google Scholar] [CrossRef]
- Tokudome, Y.; Okumura, K.; Kumagai, Y.; Hirano, H.; Kim, H.; Morishita, S.; Watanabe, Y. Development of the Japanese version of the Council on Nutrition Appetite Questionnaire and its simplified versions, and evaluation of their reliability, validity, and reproducibility. J. Epidemiol. 2017, 27, 524–530. [Google Scholar] [CrossRef]
- Yaxley, A.; Crotty, M.; Miller, M. Identifying Malnutrition in an Elderly Ambulatory Rehabilitation Population: Agreement between Mini Nutritional Assessment and Validated Screening Tools. Healthcare 2015, 3, 822–829. [Google Scholar] [CrossRef]
- Pierik, V.D.; Meskers, C.G.; Van Ancum, J.M.; Numans, S.T.; Verlaan, S.; Scheerman, K.; Kruizinga, R.C.; Maier, A.B. High risk of malnutrition is associated with low muscle mass in older hospitalized patients-a prospective cohort study. BMC Geriatr. 2017, 17, 118. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, L.; Van Wijngaarden, J.; Pacifico, J.; Reijnierse, E.; Meskers, C.; Maier, A. Association between malnutrition and stages of sarcopenia in geriatric rehabilitation inpatients: RESORT. Clin. Nutr. 2021, 40, 4090–4096. [Google Scholar] [CrossRef]
- Swan, L.; Martin, N.; Horgan, N.F.; Warters, A.; O’Sullivan, M. Assessing Sarcopenia, Frailty, and Malnutrition in Community-Dwelling Dependant Older Adults—An Exploratory Home-Based Study of an Underserved Group in Research. Int. J. Environ. Res. Public Health 2022, 19, 16133. [Google Scholar] [CrossRef]
- Cervera-Díaz, M.D.C.; López-Gómez, J.J.; García-Virto, V.; Aguado-Hernández, H.J.; De Luis-Román, D.A. Prevalence of sarcopenia in patients older than 75 years admitted for hip fracture. Endocrinol. Diab. Nutr. 2023, 70, 396–407. [Google Scholar] [CrossRef] [PubMed]
Trait | Total Sample, N = 154 | Risk of Malnutrition | p | |
---|---|---|---|---|
Yes, N = 58 | No, N = 96 | |||
Sex | ||||
Female N (%) | 119 (77.27%) | 48 (82.76%) | 71 (73.96%) | 0.207 |
Male N (%) | 35 (22.73%) | 10 (17.24%) | 25 (26.04%) | |
Age, years, median (Q1, Q3) | 69.00 (65.00, 72.00) | 69.00 (65.00,73.0) | 69.00 (65.75,72.0) | 0.74 |
Marital status | ||||
Divorced, N (%) | 27 (17.53%) | 12 (20.69%) | 15 (15.63%) | 0.511 |
Married, N (%) | 71 (46.10%) | 24 (41.38%) | 47 (48.96%) | |
Single, N (%) | 12 (7.79%) | 3 (5.17%) | 9 (9.38%) | |
Widowed, N (%) | 44 (28.57%) | 19 (32.76%) | 25 (26.04%) | |
Education | ||||
Higher, N (%) | 73 (47.40%) | 25 (43.10%) | 48 (50%) | 0.418 |
Primary, N (%) | 9 (5.84%) | 5 (8.62%) | 4 (4.17%) | |
Secondary, N (%) | 72 (46.75%) | 28 (48.28%) | 44 (45.83%) | |
Lifestyle | ||||
Smoking status, N (%) | 14 (9.09%) | 8 (13.79%) | 6 (6.25%) | 0.115 |
Sleep duration, N (%) | ||||
up to 6 h/day | 42 (27.27%) | 17 (29.31%) | 25 (26.04%) | 0.659 |
over 6 h/day | 112 (72.73%) | 41 (70.69%) | 71 (73.96%) | |
Diseases * | ||||
Hypertension, N (%) | 83 (53.90%) | 30 (51.72%) | 53 (55.21%) | 0.674 |
Diabetes type 2, N (%) | 22 (14.29%) | 10 (17.24%) | 12 (12.50%) | 0.415 |
Liver disease, N (%) | 14 (9.09%) | 6 (10.34%) | 8 (8.33%) | 0.674 |
Heart disease, N (%) | 40 (25.97%) | 19 (32.76%) | 21 (21.88%) | 0.136 |
Hypothyroidism, N (%) | 26 (16.88%) | 13 (22.41%) | 13 (13.54%) | 0.154 |
Gout, N (%) | 15 (9.74%) | 8 (13.79%) | 7 (7.29%) | 0.187 |
Depression, N (%) | 14 (9.09%) | 9 (15.52%) | 5 (5.21%) | 0.031 |
Osteoporosis, N (%) | 16 (10.39%) | 10 (17.24%) | 6 (6.25%) | 0.030 |
Hyperlipidemia, N (%) | 55 (35.71%) | 22 (37.93%) | 33 (34.38%) | 0.655 |
COVID-19 in the past, N (%) | 70 (45.45%) | 23 (39.66%) | 47 (48.96%) | 0.261 |
Medication * | ||||
Statins, N (%) | 62 (40.26%) | 27 (46.55%) | 35 (36.46%) | 0.216 |
Hypertensive medication, N (%) | 82 (53.25%) | 29 (50.00%) | 53 (55.21%) | 0.530 |
Oral diabetes medications, N (%) | 21 (13.64%) | 10 (17.24%) | 11 (11.46%) | 0.311 |
COVID-19 vaccine, N (%) | 119 (77.27%) | 48 (82.76%) | 71 (73.96%) | 0.207 |
SSRI/MAOI **, N (%) | 17 (11.04%) | 11 (18.97%) | 6 (6.25%) | 0.015 |
Hypothyroidism medication, N (%) | 20 (12.99%) | 8 (13.79%) | 12 (12.50%) | 0.817 |
Polypharmacy, N (%) | 50 (32.5%) | 24 (41.38%) | 26 (27.08%) | 0.066 |
Trait | Total Sample, N = 154 | Risk of Malnutrition | p | |
---|---|---|---|---|
Yes, N = 58 | No, N = 96 | |||
Median (Q1, Q3) | Median (Q1, Q3) | Median (Q1, Q3) | ||
GS (kg) | 20.10 (15.43, 25.69) | 20.28 (15.40, 25.00) | 20.05 (15.69, 27.88) | 0.487 |
AO, N (%) | 72 (46.75%) | 27 (46.55%) | 45 (46.88%) | 0.969 |
BMI | 0.747 | |||
Normal, N (%) | 85 (55.19%) | 34 (58.62%) | 51 (53.13%) | |
Obesity, N (%) | 21 (13.64%) | 8 (13.79%) | 13 (13.54%) | |
Overweight, N (%) | 48 (31.17) | 16 (27.59%) | 32 (33.33%) | |
WHR | 0.84 (0.80, 0.91) | 0.85 (0.81, 0.90) | 0.84 (0.80, 0.94) | 0.865 |
FDT | 0.220 | |||
Android, N (%) | 94 (61.04%) | 39 (67.24%) | 55 (57.29%) | |
Gynoid, N (%) | 60 (38.96%) | 19 (32.76%) | 41 (42.71%) | |
MAC (cm) | 29.00 (27.00, 31.75) | 28.50 (26.00, 31.00) | 29.00 (27.75, 32.00) | 0.161 |
CC (cm) | 36.00 (35.00, 38.00) | 36.00 (34.25, 38.75) | 37.00 (35.00, 38.00) | 0.527 |
RFM (%) | 40.17 (34.79, 45.28) | 39.77 (34.89, 44.38) | 40.65 (34.31, 45.39) | 0.824 |
FFM (kg) | 43.14 (38.89, 50.85) | 41.01 (37.45, 47.68) | 44.72 (40.03, 51.81) | 0.037 |
SMM (kg) | 20.15 (17.29, 24.43) | 18.35 (16.79, 23.03) | 20.98 (17.84, 24.91) | 0.014 |
PMMTW (%) | 27.24 (25.07, 30.39) | 26.74 (25.40, 29.01) | 27.46 (24.97, 31.13) | 0.354 |
MM | 0.053 | |||
High, N (%) | 146 (94.81%) | 52 (89.66%) | 94 (97.92%) | |
Low, N (%) | 8 (5.19%) | 6 (10.34%) | 2 (2.08%) | |
ASMI (kg/m2) | 7.67 (6.86, 8.98) | 7.27 (6.62, 8.63) | 7.95 (7.14, 9.18) | 0.020 |
TBW (L) | 32.67 (29.26, 38.01) | 31.11 (28.09, 35.78) | 34.00 (30.04, 38.78) | 0.041 |
ECW (L) | 15.44 (13.87, 17.21) | 15.03 (13.62, 16.53) | 15.75 (14.06, 17.29) | 0.141 |
FFMI (kg/m2) | 16.81 (15.45, 18.99) | 16.43 (14.96, 18.48) | 17.17 (15.66, 19.14) | 0.051 |
FMI (kg/m2) | 10.99 (8.70, 13.47) | 10.87 (8.38, 13.32) | 11.14 (8.75, 13.53) | 0.514 |
PA (degrees) | 5.31 (5.02, 5.82) | 5.15 (4.95, 5.57) | 5.49 (5.07, 5.97) | 0.008 |
VAT (L) | 1.84 (1.31, 2.47) | 1.79 (1.31, 2.40) | 1.87 (1.25, 2.56) | 0.811 |
Trait | Total Sample N = 154 | Risk of Malnutrition | p | |
---|---|---|---|---|
Yes, n = 58 | No, n = 96 | |||
Median (Q1, Q3) | Median (Q1, Q3) | Median (Q1, Q3) | ||
TEE (kcal/day) | 2197.17 (2028.97, 2410.06) | 2173.83 (1996.63, 2308.88) | 2217.52 (2043.36, 2443.14) | 0.114 |
REE (kcal/day) | 1348.71 (1255.39, 1480.11) | 1297.85 (1241.09, 1442.25) | 1360.97 (1283.55, 1487.73) | 0.065 |
TEC (kcal) | 317,415.55 (270,696.0, 387,667.5) | 310,418.40 (257,826.68, 371,170.7) | 332,081.30 (279,880.1, 389,083.4) | 0.259 |
GDS score [0–30] | 4.00 (1.00, 9.00) | 7.50 (2.00, 11.00) | 3.00 (1.00, 5.25) | <0.001 |
TUG (s) | 9.89 (8.92, 11.68) | 10.59 (9.16, 12.29) | 9.51 (8.78, 11.28) | 0.015 |
SNAQ low score, N, (%) | 46 (29.87%) | 26 (44.83%) | 20 (20.83%) | 0.002 |
CNAQ low score, N, (%) | 67 (43.51%) | 38 (65.52%) | 29 (30.21%) | <0.001 |
SARC F low score, N, (%) | 15 (9.74%) | 11 (18.97%) | 4 (4.17%) | 0.003 |
Parameter | Cut-Off Point | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
GS | ≥20.15 kg | 0.53 | 0.53 | 0.53 | 0.47 |
WHR | ≥0.81 | 0.49 | 0.78 | 0.31 | 0.49 |
MAC | ≤26.00 cm | 0.63 | 0.28 | 0.84 | 0.57 |
CC | ≤33.00 cm | 0.62 | 0.22 | 0.85 | 0.53 |
BMI | ≤25.83 kg/m2 | 0.66 | 0.41 | 0.80 | 0.56 |
RFM | ≤41.61% | 0.52 | 0.67 | 0.43 | 0.51 |
FFM | ≤42.83 kg | 0.62 | 0.64 | 0.60 | 0.60 |
SMM | ≤19.33 kg | 0.62 | 0.62 | 0.63 | 0.62 |
PMTW | ≤29.05% | 0.53 | 0.78 | 0.39 | 0.54 |
ASMI | ≤6.91 kg/m2 | 0.66 | 0.41 | 0.81 | 0.61 |
TBW | ≤32.28 L | 0.62 | 0.62 | 0.61 | 0.60 |
ECW | ≤15.13 L | 0.59 | 0.63 | 0.63 | 0.57 |
FFMI | ≤15.45 L kg/m2 | 0.64 | 0.36 | 0.81 | 0.59 |
FMI | ≤11.62 L kg/m2 | 0.53 | 0.66 | 0.46 | 0.53 |
PA | ≤5.72° | 0.58 | 0.86 | 0.42 | 0.62 |
VAT | ≤2.05 L | 0.53 | 0.69 | 0.43 | 0.51 |
TEE | ≤2336.13 kcal | 0.54 | 0.78 | 0.40 | 0.58 |
REE | ≤1297.85 kcal | 0.64 | 0.52 | 0.71 | 0.59 |
TEC | ≤285,067 kcal | 0.60 | 0.40 | 0.73 | 0.55 |
GDS [0–30] | ≥5.00 | 0.67 | 0.67 | 0.68 | 0.69 |
TUG | ≥9.61 s | 0.58 | 0.67 | 0.63 | 0.62 |
Predictors | The Occurrence of the Risk of Malnutrution | ||
---|---|---|---|
OR | CI 95% | p | |
(Intercept) | 0.14 | 0.07–0.28 | <0.001 |
Smoking [no] | Reference category | ||
Smoking [yes] | 7.08 | 1.90–28.65 | 0.004 |
Osteoporosis [no] | Reference category | ||
Osteoporosis [yes] | 4.89 | 1.34–19.49 | 0.019 |
SSRI/MAOI medication [no] | Reference category | ||
SSRI/MAOI medication [yes] | 4.42 | 1.11–19.64 | 0.040 |
Grip strength average of two measurements; right and left hand (centered by the optimal cutoff value = 20.15 kg) | 1.07 | 1.00–1.15 | 0.068 |
Skeletal muscle mass (centered by the optimal cutoff value = 19.33 kg) | 0.86 | 0.76–0.95 | 0.008 |
GDS score (centered by the optimal cutoff value = 5.0) | 1.07 | 0.99–1.16 | 0.077 |
Timed up-and-go test result (centered by the optimal cutoff value = 9.61 s) | 1.22 | 1.00–1.50 | 0.052 |
CNAQ normal appetite | Reference level | ||
CNAQ decreased appetite | 4.34 | 1.89–10.46 | 0.001 |
SARC F no risk of sarcopenia | Reference level | ||
SARC at risk of sarcopenia | 5.95 | 1.29–31.47 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawowicz, K.; Mirończuk-Chodakowska, I.; Cyuńczyk, M.; Witkowska, A.M. Identifying Malnutrition Risk in the Elderly: A Single- and Multi-Parameter Approach. Nutrients 2024, 16, 2537. https://doi.org/10.3390/nu16152537
Kujawowicz K, Mirończuk-Chodakowska I, Cyuńczyk M, Witkowska AM. Identifying Malnutrition Risk in the Elderly: A Single- and Multi-Parameter Approach. Nutrients. 2024; 16(15):2537. https://doi.org/10.3390/nu16152537
Chicago/Turabian StyleKujawowicz, Karolina, Iwona Mirończuk-Chodakowska, Monika Cyuńczyk, and Anna Maria Witkowska. 2024. "Identifying Malnutrition Risk in the Elderly: A Single- and Multi-Parameter Approach" Nutrients 16, no. 15: 2537. https://doi.org/10.3390/nu16152537
APA StyleKujawowicz, K., Mirończuk-Chodakowska, I., Cyuńczyk, M., & Witkowska, A. M. (2024). Identifying Malnutrition Risk in the Elderly: A Single- and Multi-Parameter Approach. Nutrients, 16(15), 2537. https://doi.org/10.3390/nu16152537