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Abstract: Objective: Obesity is associated with an exacerbated metabolic condition that is mediated
through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of
the present study was to explore the impact of astaxanthin supplementation in conjunction with
a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and
serum lipid levels in obese males. Material and Methods: This study is a randomized control
trial design; 60 obese males were randomly divided into four groups of 15, including the control
group (CG), supplement group (SG), training group (TG), and combined training and supplement
group (TSG). The participants were subjected to 12 weeks of astaxanthin (AST) supplementation
[20 mg/d capsule, once/d] or CrossFit training or a combination of both interventions. The training
regimen comprised 36 sessions of CrossFit, each lasting 60 min, conducted three times per week. The
metabolic indices, body composition, anthropometrical, cardio-respiratory, and also some plasma
adipo-myokine factors, including decorin (DCN), activin A, myostatin (MST), transforming growth
factor (TGF)-β1, and follistatin (FST), were examined 12 and 72 h before the initiation of the main
interventional protocols, and then 72 h after the final session of the training protocol. Results: There
was no significant difference in the baseline data between the groups (p > 0.05). There were significant
interactions between group x time for DCN (η2 = 0.82), activin A (η2 = 0.50), FST (η2 = 0.92), MST
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(η2 = 0.75), and TGFB-1 (η2 = 0.67) (p < 0.001 for all the variables). Significantly changes showed for
DCN in TSG compared to TG and SG and also TG compared to SG (p = 0.0001); for activin A in SG
compared to TG (p = 0.01) and TSG (p = 0.002); for FST in SG compared to TG and TSG (p = 0.0001),
also in TSG compared to TG (p = 0.0001); for MST in SG, TG, and TSG compared to CG (p = 0.0001) and
also in TSG compared to SG (p = 0.0001) and TG (p = 0.001); for TGFB-1 in SG, TG, and TSG compared
to CG (p = 0.0001) and also TSG compared to SG (p = 0.0001) and TG (p = 0.001). Conclusions:
The 12-week CrossFit training concurrent with AST supplementation reduced anthropometric and
metabolic factors and also serum lipid levels while producing positive changes in body composition
and cardiovascular factors. Increased FST and DCN and reduced activin A, MST, and TGF-β1 were
other affirmative responses to both interventions.

Keywords: exercise; astaxanthin supplementation; myokines; obesity

1. Introduction

A positive energy balance, which stems from high energy consumption in proportion
to energy expenditure, causes fat accumulation in adipose tissues, especially white adipose
tissue, leading to obesity in the long term [1]. The adipocytes in obesity gradually un-
dergo hypertrophy and hyperplasia followed by inflammation through attracting systemic
monocytes/macrophages. Infiltrated macrophages in the white adipose tissue release some
pro-inflammatory cytokines culminating in a phenomenon, namely, meta-inflammation
or chronic low-grade inflammation [2,3]. This produced hyper-inflammation in obesity is
associated with insulin resistance (IR) in both adipose and peripheral tissues [4]. As for
white adipose tissue, IR is paralleled with releasing free fatty acids into the circulation taken
up by peripheral tissues, such as the liver and skeletal muscles, to exacerbate the condition
of IR [5]. Accrued body fat, and also its inflammatory consequences, alter body compo-
sition and aerobic capacity by decreasing skeletal mass (muscle atrophy) [6]. Increased
adiposity, or rather, the rate of adipose tissue and/or its distribution, is also associated
with secreting some signaling molecules including myokines and adipocytokines, termed
adipo-myokines, from adipocytes and other metabolic tissues, which leads to metabolic
syndromes such as IR, glucose intolerance, and hyperlipidemia [7].

The transforming growth factor (TGF)-β superfamily is composed of 33 members
including TGF-β1-3, activins, myostatin (also known as growth differentiation factor-8
[GDF8]), and bone morphogenetic proteins (BMPs); among them, TGF-β1, activin A, and
myostatin (MST) are the components with an intimate relationship with obesity [8]. Various
mechanisms have been highlighted to increase their expression and also secretion into
circulation related to obesity, including inflammation and accumulated lipids in adipose and
muscle tissues [9–11]. It also should be mentioned that these factors have a facilitating effect
on the secretion of each other [12–14]. The majority of obese and type 2 diabetic individuals
and also ob/ob and db/db animals are faced with an imbalance/increase in the release
and concentration of TGF-β members, probably as a compensatory mechanism [9,11,15,16].
Such released alterations associated with obesity in adipocytokines/myokines intensify
metabolic conditions, such as IR, hyperglycemia, and hyperlipidemia, through influencing
adipose, skeletal muscle, hepatic, and pancreatic tissues [17,18].

Increased energy expenditure is the most common intervention against obesity [19].
Elevated brown adipose tissues and also increased muscle mass partly belong to a pro-
cedure to escalate body energy expenditure [20]. As obesity-related lipid accumulation
can change adipokine and myokine release, physical exercise along with some salutary
alterations in adipose and skeletal muscle tissues is mediated by increasing some other
adipokines/myokines [21]. Follestatin (FST) and decorin (DCN) are two local and secre-
tory proteins whose concentrations change with positive energy balance [22,23]. FST is
a glycoprotein enacting a conflicting role against TGF-β superfamily ligands and also its
circulating concentration, which is released from the liver, and is dependent on increased
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energy demands during acute exercise and long-term fasting [23]. Elevated tissue and
circulating levels of FST are accordant with brown adipose tissue [24] and increasing muscle
mass [25]. Additionally, DCN is a small leucine-rich proteoglycan overexpressing in adi-
pose tissue and in small amounts in skeletal muscles, and its expression and concentration
in obese animals and patients is also increased [22]. Therefore, DCN may have a role in
the normal function of adipose tissue and also in the pathogenesis of adiposity. It has
been disclosed that physical exercise increases the production of FST and DCN levels, and
thereby maintains muscle mass and mitigates fat accrual. The major mechanism of this
resultant function is referred to as the inhibition of the signaling of three TGF-β members,
including TGF-β1, MST, and activin A [26–30]. With respect to the above-mentioned, it
is critical to adopt the mode of physical exercise with the characteristics of both prevent-
ing lipid accumulation and maintaining skeletal muscle mass, as it is a large metabolic
organ playing essential roles in internal body homeostasis, energy expenditure, and insulin
sensitivity [31].

CrossFit is categorized as high-intensity functional training (HIFT), which is defined
by a mixed approach that integrates several aspects of fitness, such as endurance and
strength [32]. This type of training includes workout sequences with rest periods in between
sets [33]. This kind of training has acute physiological consequences that include elevated
blood lactate levels [34,35], elevated testosterone, improved cortisol promotion [36], and
elevated IL-6 and IL-10 activity [33]. It also triggers adaptive reactions that include higher
muscular endurance, better aerobic capacity, increased lean body mass, better body fat
utilization, or decreased body fat [32]. All of these changes associated with CrossFit
training are beneficial for improving the detrimental effects related to obesity as well as
increased lipid oxidation. The utilization of dietary supplementation concurrent with
physical exercise may expedite reaching the aim of improving the metabolic conditions
produced by obese patients.

Astaxanthin (AST), a compound of 3, 3′-dihydroxy-β, β-carotene-4, 4′-dione extracted
from Haematococcus pluvialis algae, functions as an anti-obesity agent by enhancing energy
expenditure, specifically by promoting lipid metabolism [37]. Although it has been well
documented that AST can eliminate the detrimental consequences triggered by obesity [38],
there is scant evidence about its effects on changes in adipocytokines and myokines in-
cluding TGF-β1, activin A, MST, FST, and DCN, which have cardinal roles during obesity.
By having in mind that circulating changes in these factors can accordingly alter other
metabolic factors and also to the best of our knowledge, there is no document about
the circulating changes in these adipo-myokines in relation to CrossFit training, we were
prompted to find out the circulating changes in some adipo-myokines and metabolic factors
following 12 weeks of CrossFit training along with AST supplementation. Considering the
positive effects of CrossFit and AST supplementation on obesity and the lack of studies
that examine the simultaneous effects of CrossFit training and AST supplementation on
the mentioned adipo-myokines, we designed this study for the first time to answer this
question: Do CrossFit training and AST supplementation each have an effect on adipo-
myokines? Can CrossFit training and AST supplementation improve adipo-myokines at
the same time?

2. Methods

The study is a double-blind, parallel-group randomized control trial designed to
compare the independent and combined effects of astaxanthin and CrossFit Training. The
subjects were recruited in the research through the publication of the call. People whose
body mass index (BMI) was greater than 30 kg/m2 and who had not engaged in any regular
physical activity for the previous six months were included in the study. Individuals who
did not consume alcohol and had no past medical history of endocrine, metabolic, or
cardiovascular disorders were eligible for inclusion. The participants with joint diseases or
physical limitations were excluded, as were those taking prescription drugs or supplements
that could affect the metabolism of muscle and adipose tissue. A physical examination
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conducted by an examiner was completed by all the participants during the initial visit.
Additionally, the study procedures were elucidated at this time, and the participants were
provided with a written consent form and the Physical Activity Readiness Questionnaire
(PAR-Q).

The study was approved by the National Research and Ethics Committee (Ethics code:
IR.IAU.DAMGHAN.REC.1401.035) and the Iranian Registry of Clinical Trials (IRCTID:
IRCT20151228025732N76). The procedures were conducted in accordance with the most
recent version of the Declaration of Helsinki.

3. Experimental Design

A week before the training sessions started, the participants went through a familiar-
ization session where all the study protocols were discussed. Each participant had their
height, weight, and body composition measured before being randomized into one of four
equal groups of 17 participants: training group (TG), control group (CG), supplement group
(SG), and training + supplement group (TSG) (Figure 1). Randomization was performed
according to a computer-generated allocation schedule through our research by using a
fixed block size of eight (using a permuted block design with a computer random number
generator). Astaxanthin and placebo were administered in a double-blind fashion in the
guise of tablets that were identical in taste, color, and appearance. They were prepacked
in bottles and placed into blurred study kits that were sequentially numbered for each
subject according to the randomization schedule. The instructions for either the actual
exercise program or the placebo exercise program were also placed into each kit. The
allocation sequence was concealed from the research assistant enrolling and assessing the
participants. Related kits were opened only after the enrolled participants completed all the
baseline assessments and it was time to allocate the intervention. All the researchers and
those involved in the concluded assessment were blinded to the group assignments and
all the tests were then conducted by a research assistant blinded to the group assignments.
Additionally, the training was supervised by two additional research assistants who were
not involved in any other aspect of the study and were blinded to whether the subjects
were on astaxanthin or placebo. All the data entry and statistical analysis were performed
by another research assistant in a blinded manner.

There were 11 participants in each group at the end of the study after 24 volunteers
from different groups withdrew for issues at work. Posttests were conducted for each
group 48 h following the final session, and baseline evaluations were acquired 48 h prior to
the start of the training protocols. An identical diet was followed by the participants in the
training regimens 48 h prior to the baseline and final measures.

In the third session, the measurements of VO2peak and body composition variables
were given along with instructions on how to perform the training regimens. The two
training groups (TG and TSG) started the 12-week exercise training program with three
sessions per week after the baseline measures. Throughout the trial, the control group was
told to continue living as they now did. Every measurement was taken in the same light
(within about an hour) and with the same ambient temperature (about 20 ◦C and around
55% humidity).
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Figure 1. Flow chart of the participants.

4. Training Protocols

In this study, the high-intensity functional training (HIFT) program was CrossFit, with
a total of 36 sessions that lasted up to 60 min each. A CrossFit trainer with certification
oversaw all the aspects of the training sessions. During the first two training sessions, the
participants were introduced to basic activities that are frequently used in CrossFit training.
These motions included pull-ups, kettlebell swings, medicine ball cleans, squats, deadlifts,
presses, jerks, and barbell workouts. The first two days were spent without doing any
extra exercise.

From day three onwards, every training session adhered to a set schedule that com-
prised five to thirty minutes of the Workout of the Day (WOD), which was performed at a
high level of intensity based on each person’s capacity and fitness level, and ten to fifteen
minutes of stretching and warm-up. The workout included bodyweight movements like
squats and pull-ups, weightlifting activities like kettlebell swings and front squats, and
aerobic workouts like running and jumping rope. Using the CrossFit training template [39]
and offered in single, couplet, or triplet modalities, these workouts were continuously
altered and performed for time, repetitions, or weight.

Every participant had their own weights and movements prescribed and docu-
mented [40]. The participants’ completion times, rounds and repetitions completed, weights
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utilized, and any necessary deviations from the prescribed workout were recorded depend-
ing on the structure of the WOD. For the entire training group, the average times for each
WOD and the total average WOD time per week were determined.

5. Supplementation of Astaxanthin and Placebo

After meeting the eligibility requirements, the participants were randomized to re-
ceive either a daily dosage of 20 mg of astaxanthin capsules (Marine Product Tech. Inc.,
Seongnam, South Korea) or an identical placebo, which was administered once a day with
breakfast for a period of 12 weeks. The placebo was in the form of a 20 mg/day raw corn
starch capsule. The need of consuming 80% or more of the supplied supplements was set
down in the intervention’s definition of adherence.

6. Nutrient Intake and Dietary Analysis

Three-day food records (two weekdays and one weekend day) were obtained before
and after the study to assess changes in habitual dietary intake over time. Each food item
was individually entered into Diet Analysis Plus version 10 (Cengage, Boston, MA, USA),
and total energy consumption and the amount of energy derived from proteins, fats, and
carbohydrates were determined (Table 1).

Table 1. Mean (±SD) values of nutritional intake in the four study groups.

CG SG TG TSG

Pre Post Pre Post Pre Post Pre Post

Energy
(kcal/d) 2260 ± 47 2269 ± 56 2278 ± 101 2149 ± 100 2269 ± 117 2141 ± 117 2273 ± 157 2129 ± 126

CHO
(g/d) 281 ± 31.4 283 ± 33.3 279.4 ± 27.1 261 ± 27.5 289 ± 48.6 261 ± 39.2 288 ± 38.6 259 ± 29.1

Fat
(g/d) 82.2 ± 11.0 81 ± 9.8 86.5 ± 10.7 75 ± 11.2 83.4 ± 12.4 73.1 ± 11.2 80.8 ± 13.87 70.2 ± 11.3

Protein
(g/d) 104 ± 12.0 106 ± 11.3 101 ± 13.5 93 ± 12.6 103 ± 14.8 94 ± 11.7 102 ± 14.5 90 ± 13.5

CG: control group; SG: supplement group; TG: training group; TSG: training supplement group.

7. Blood Markers

Every testing process followed the established guidelines and was carried out between
the hours of 8 and 10 in the morning. Blood samples were obtained from the right arm
during a fasting state 12 h and 72 h prior to the first exercise session, and 72 h after the
previous session. Following their transfer to EDTA-containing tubes, these blood samples
were centrifuged for 10 min at 3000 rpm and then refrigerated at −70 ◦C.

• The plasma concentrations of TGF-β, decorin, myostatin, follistatin, and myostatin
were measured with the R&D Systems (Boston Biochem, Boston, MA, USA) enzyme-
linked immunosorbent assay (ELISA) kits.

• According to the R&D Systems guidelines, plasma activin A was quantified using
ELISA (R&D Systems DAC00B) with intra- and inter-assay coefficients of variation
less than 5%.

8. Statistical Analysis

The sample size was selected to detect a statistical difference between the study
variables at a 95% confidence interval (CI) and a power value equal to or greater than 80%.
Data analysis was carried out using the SPSS software (version 24).

• The threshold for establishing statistical significance was a p-value of less than 0.05.
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• All the data were characterized using descriptive statistics, which are expressed as
means ± standard deviation. The Shapiro/Wilk test was utilized to assess the normal-
ity of the data distribution.

• An ANOVA repeated measures test conducted in two ways was used to determine the
group × time interaction.

• One-way ANOVA was used to evaluate the baseline data for each of the four groups,
and Fisher LSD post hoc tests were used. Pairwise comparisons were used to ascertain
mean differences in the cases where an ANOVA indicated a significant difference.

• Classified as trivial (<0.2), small (0.2–0.6), moderate (0.6–1.2), large (1.2–2.0), and very
large (2.0–4.0). ESs were given as partial eta-squared.

9. Results

Fifty-two of the initial 120 volunteers for the study were ineligible to participate.
Following a review, 68 individuals with a mean age of 27.6 ± 8.4, height of 167.8 ± 3.1 cm,
weight of 94.7 ± 2.0 kg, and BMI of 33.6 ± 1.4 kg/m2 were selected at random and placed
into four distinct groups of 17.

Examining the changes between and within the groups for energy, carbohydrates, fat,
and protein did not show significant differences between the groups and within the groups
(p > 0.05).

The comparison of baseline values for DCN (p = 0.91), activin A (p = 0.30), FST
(p = 0.99), MST (p = 0.75), and TGFB-1 (p = 0.46) showed that there were no significant
differences among the four groups.

The changes in DCN levels in CG were not significant after 12 weeks (p = 0.97), while
significant increases were observed in SG (p = 0.0001), TG (p = 0.0001), and TSG (p = 0.0001).
The interactions of group and time for DCN (p = 0.0001, η2 = 0.82) were statistically
significant. The results of the post hoc test revealed that after 12 weeks of training, the
changes in DCN in SG (p = 0.017), TG (p = 0.0001), and TSG (p = 0.0001) were significantly
different from the changes in CG. The increase in DCN in TSG was significantly higher in
comparison to TG (p = 0.001) and SG (p = 0.0001). This significantly different increase was
also reported in TG in comparison to SG (p = 0.0001) (Figure 2).

Nutrients 2024, 16, x FOR PEER REVIEW 7 of 19 
 

 

• All the data were characterized using descriptive statistics, which are expressed as 
means ± standard deviation. The Shapiro/Wilk test was utilized to assess the normal-
ity of the data distribution. 

• An ANOVA repeated measures test conducted in two ways was used to determine 
the group × time interaction. 

• One-way ANOVA was used to evaluate the baseline data for each of the four groups, 
and Fisher LSD post hoc tests were used. Pairwise comparisons were used to ascer-
tain mean differences in the cases where an ANOVA indicated a significant differ-
ence. 

• Effect sizes (ESs) are classified as trivial (<0.2), small (0.2–0.6), moderate (0.6–1.2), 
large (1.2–2.0), and very large (2.0–4.0). ESs were given as partial eta-squared. 

9. Results 
Fifty-two of the initial 120 volunteers for the study were ineligible to participate. Fol-

lowing a review, 68 individuals with a mean age of 27.6 ± 8.4, height of 167.8 ± 3.1 cm, 
weight of 94.7 ± 2.0 kg, and BMI of 33.6 ± 1.4 kg/m2 were selected at random and placed 
into four distinct groups of 17. 

Examining the changes between and within the groups for energy, carbohydrates, 
fat, and protein did not show significant differences between the groups and within the 
groups (p > 0.05). 

The comparison of baseline values for DCN (p = 0.91), activin A (p = 0.30), FST (p = 
0.99), MST (p = 0.75), and TGFB-1 (p = 0.46) showed that there were no significant differ-
ences among the four groups. 

The changes in DCN levels in CG were not significant after 12 weeks (p = 0.97), while 
significant increases were observed in SG (p = 0.0001), TG (p = 0.0001), and TSG (p = 0.0001). 
The interactions of group and time for DCN (p = 0.0001, η2 = 0.82) were statistically signif-
icant. The results of the post hoc test revealed that after 12 weeks of training, the changes 
in DCN in SG (p = 0.017), TG (p = 0.0001), and TSG (p = 0.0001) were significantly different 
from the changes in CG. The increase in DCN in TSG was significantly higher in compar-
ison to TG (p = 0.001) and SG (p = 0.0001). This significantly different increase was also 
reported in TG in comparison to SG (p = 0.0001) (Figure 2). 

 
Figure 2. The mean ± standard deviation (SD) values of decorin before and after the training. * shows 
significant differences with the control group (p < 0.05). # depicts significant interaction between time 
and group (p < 0.05). € discloses significant interaction between time and group (p < 0.05). Control 
(CG), supplement (SG), training (TG), and training+ supplement (TSG) groups. & indicates signifi-
cant differences with the pretest values (p < 0.05). 

 
0

2

4

6

8

10

12

14

16

CG SG TG TSG

D
ec

or
in

 (m
g/

dl
)

Pre Post

&& &# 

* 

* 

* 

€ 

Figure 2. The mean ± standard deviation (SD) values of decorin before and after the training. * shows
significant differences with the control group (p < 0.05). # depicts significant interaction between time
and group (p < 0.05). € discloses significant interaction between time and group (p < 0.05). Control
(CG), supplement (SG), training (TG), and training+ supplement (TSG) groups. & indicates significant
differences with the pretest values (p < 0.05).

There was a significant increase in activin A after 12 weeks of study in CG (p = 0.047),
TG (p = 0.0001), and TSG (p = 0.0001) while the decrease in SG (p = 0.17) was not significant.
The interactions of group and time for activin A (p = 0.0001, η2 = 0.50) were statistically
significant. The results of the post hoc test revealed that after 12 weeks of training, the
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changes in activin A in SG (p = 0.021), TG (p = 0.0001), and TSG (p = 0.0001) were significantly
different from the changes in CG. This significant difference was also reported in SG in
comparison to TG (p = 0.01) and TSG (p = 0.002) while the decrease in activin A in TSG was
not significantly higher in comparison to TG (p = 0.56) (Figure 3).
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Figure 3. The mean ± standard deviation (SD) values of activin A before and after the training.
* shows significant differences with the control group (p < 0.05). & indicates significant differences
with the pretest values (p < 0.05). # discloses significant interaction between time and group (p < 0.05).
Control (CG), supplement (SG), training (TG), and training+ supplement (TSG) groups.

After 12 weeks of study, FST decreased significantly in CG (p = 0.020) and increased
significantly in SG (p = 0.0001), TG (p = 0.0001), and TSG (p = 0.0001). The interactions of
group and time for FST (p = 0.0001, η2 = 0.92) were statistically significant. The results of the
post hoc test revealed that after 12 weeks of training, the changes in FST in SG (p = 0.0001),
TG (p = 0.0001), and TSG (p = 0.0001) were significantly different from the changes in CG.
This significant difference was also reported in SG in comparison to TG (p = 0.0001) and
TSG (p = 0.0001); also, the decrease in FST in TSG was significantly higher in comparison to
TG (p = 0.0001) (Figure 4).
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Figure 4. The mean ± standard deviation (SD) values for follistatin before and after the training.
* indicates significant differences with the control group (p < 0.05). & shows significant differences
with the pretest values (p < 0.05). # discloses significant interaction between time and group (p < 0.05).
€ depicts significant interaction between time and group (p < 0.05). Control (CG), supplement (SG),
training (TG), and training+ supplement (TSG) groups.

The results of the analyses showed that after 12 weeks of the study period, the in-
creased levels of MST in CG were not significant (p = 0.34) while MST has been decreased
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significantly in SG (p = 0.0001), TG (p = 0.0001), and TSG (p = 0.0001). The interactions of
group and time for MST (p = 0.0001, η2 = 0.75) were statistically significant. The pairwise
comparison of the changes between the study groups showed that the changes in MST in
SG (p = 0.0001), TG (p = 0.0001), and TSG (p = 0.0001) were significantly different from the
changes in CG. This significant difference was also reported in TSG in comparison to SG
(p = 0.0001) and TG (p = 0.001), but the decrease in MST in TG was not significantly higher
in comparison to SG (p = 0.054) (Figure 5).
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Figure 5. The mean ± standard deviation (SD) values for myostatin before and after the training.
* indicates significant differences with the control group (p < 0.05). & significant differences with the
pretest values (p < 0.05). # shows significant interaction between time and group (p < 0.05). € discloses
significant interaction between time and group (p < 0.05). Control (CG), supplement (SG), training
(TG), and training+ supplement (TSG) groups.

The posttest values of TGFB-1 were significantly different from the pretest in CG
(p = 0.009), SG (p = 0.005), TG (p = 0.0001), and TSG (p = 0.0001). The interactions of group
and time for TGFB-1 were significant (p = 0.0001, η2 = 0.67). The pairwise comparison of the
changes between the study groups showed that the changes in TGFB-1 in SG (p = 0.0001),
TG (p = 0.0001), and TSG (p = 0.0001) were significantly different from the changes in CG.
This significant difference was also reported in TSG in comparison to SG (p = 0.0001) and
TG (p = 0.001), but the decrease in TGFB-1 in TG was not significantly higher in comparison
to SG (p = 0.20) (Figure 6).
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Figure 6. The mean ± standard deviation (SD) values for TGFB-1 before and after the training.
* indicates significant differences with the control group (p < 0.05). & shows significant differences
with the pretest values (p < 0.05). # discloses significant interaction between time and group (p < 0.05).
€ depicts significant interaction between time and group (p < 0.05). Control (CG), supplement (SG),
training (TG), and training+ supplement (TSG) groups.
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10. Discussion

In the current study, we attempted to provide a transparent view of the changes in
some adipo-myokine indices (DCN, activin A, FST, MST, and TGFB1) following a 12-week
CrossFit training and AST supplementation in obese individuals. The results indicated that
12 weeks of CrossFit training alone and along with AST supplementation and even AST
administration by itself could change the above-mentioned factors and these changes were
significant between the interventional groups and control group.

Obesity is associated with increased circulatory metabolic factors, including hyperli-
pedemia, hyperinsuliemia, and hyperglycemia; it has been proposed that regular exercise
training and taking food supplements are ideal strategies against obesity and related
comorbidities.

It has been indicated that most of the negative metabolic effects of obesity are caused
by the imbalance of adipo-myokines. Obesity is associated with increasing some members
of the TGF-β family such as MST and activin A [8,41] and DCN [42] and diminished FST
concentration [43]. Decorin is a small leucine-rich proteoglycan that increases in concentra-
tion in response to fat accumulation and its related inflammatory and metabolic changes
during obesity [42]. Such local upregulation and increases in circulatory concentration in
obese patients can regulate some functions, including the regulation of angiogenesis and
vascular skeleton in adipose tissue [44]; the nullification/sequestration of 1q complement
component through binding to it and protecting against its effects on IR [45]; playing as a
decoy receptor for secretory adipocyte, namely resistin, that through this action reduces
IR [46]; interaction with upregulated TGF-β during obesity to reduce its inflammatory
and fibrotic actions; and the inhibition of adipogenic differentiation in adipose tissue [47].
In agreement with our results, it has been shown that DCN circulation and its muscular
expression are elevated following both acute resistance exercise and chronic endurance
training [26,29]. Its expression mediated by exercise is influenced by the intensity used in
exercise, such that high-intensity exercise reduces its expression while moderate exercise
upregulates DCN expression in skeletal muscle [48,49]. It has been reported that DCN
expression is under the control of the balance of the tissue inhibitor of metalloproteinases-2
(TIMP-2) and matrix metalloproteinase-2 (MMP-2) in such a manner that a higher expres-
sion of MMPs is associated with more degeneration of DCN protein [50]. It has been
revealed that this balance is deranged during high-intensity exercise in favor of a higher
MMP-2 concentration [49]. Promoted DCN expression and its circulating levels during exer-
cise may partly refer to the regulation by growth hormone (GH) since it has been disclosed
that GH released in response to exercise was associated with increased serum DCN [51,52].
Some other documents reported that increased GH effects on DCN are mediated by si-
multaneous elevation in insulin-like growth hormone-1 (IGF-1) [51]. An increased DCN
level following exercise has a beneficial effect on obesity-produced metabolic disorders
through a multiplicity of mechanisms involving skeletal muscle. One of these mechanisms
is precluding other adipo-myokines such as MST and TGF-β as an inhibitory factor of
myogenesis, and also downregulating muscle-specific RING finger protein 1 (muRF1) and
antrogin 1 as the degenerating components of muscle protein [27,53]. Elevating the upregu-
lation of FST may be a pathway through which DCN can mitigate the above-mentioned
factors [54]. With these functions, DCN upregulates myogenic MyoD protein to promote
myoblast differentiation and as a result, muscle hypertrophy [55]. It has also been shown
that AST increases MMPs, especially MMP-2, which thereby degenerates fibrotic com-
ponents formed by TGF-β and inflammation conditions [56]. In this context, DCN is a
component of the extracellular matrix (ECM) [57] that is released into the circulation by the
action of MMPs. In this context, we found in the current study that DCN concentration is
increased following 12 weeks of supplementation with AST. Thus, we can conclude that
some positive effects of AST on muscle [58], which are associated with metabolic benefits,
may rebound to increasing circulating DCN concentration. However, this part of the study
needs to be further investigated in the future to help the obese community.
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The attenuation of three members of the TGF-β family by blocking their receptors and
downstream signals and also reducing their expression/concentration can protect the body
against metabolic disorders [59]. Lifestyle changes, or rather, the contribution of regular
exercise and sound nutrition can be a beneficial strategy to improve metabolic status [60].
Activin A is an inflammatory mediator and can change its expression and circulation
following exercise [61], although there is a discrepancy in findings in this context (some
showed an increase and some a decrease) [62]. However, it has been indicated that exercises
with different intensities could mitigate the activin A concentration [62]. Although there is
a lack of information about the response of activin A to exercise, limited previous reports
pinpointed an increased expression of activin A secondary to exercise [61]. Conflicting with
the previous findings, our finding showed a reduction in plasma activin A concentration
following the 12-week CrossFit training. The probable mechanisms for such attenuation
in the activin A concentration are referred to as the stress induced by exercise. The stress
associated with exercise increases glucocorticoid secretion, which in turn mitigates activin
A production [63]. On the other hand, endurance exercise reduces plasma glucose levels
and negative energy balance. The established energy poverty negatively regulates activin A
concentration [64]. Besides, resistance training also reduces the concentration of this TGF-β
member by subjecting the exercising muscle to mechanical strain [65]. While increased
activin A signaling is associated with the elevation of collagen III expression, the production
of pro-inflammatory cytokines in macrophages can produce adipose fibrosis [66]. Reduced
lipolysis is another upshot of the upregulation of activin A expression. Mitigating the
expression of catecholamine receptors on adipose tissue by limiting the CCAAT enhancer
binding protein alpha (C/EBPα) expression, increasing FFA accumulation in peripheral
organs [67], mitochondrial dysfunction [68], and promoting muscle atrophy [69] may be
some mechanisms whereby activin A attenuates lipolysis. In addition, modulating insulin
secretion by pancreatic β-cells and suppressing the expression of transmembrane glucose
transporter 4 (GLUT4) are other mechanisms to engender IR following increased activin A
signaling [70].

MST, as a member of the TGF-β family, is a negative regulator of muscle mass, which is
a leading tissue in promoting insulin-stimulated glucose. It should be mentioned that MST
elevates muscle atrophy via protein degeneration induced by the increased activation of
ubiquitin-proteases [71]. Compromising muscle glucose uptake through mitigating GLUT4
and AMPK is another mechanism that MST can use to worsen metabolic disorders related
to obesity [72]. Last but not least, MST suppresses the differentiation of brown adipose
tissues by inhibiting irisin expression in adipocytes [73]. The results related to the alteration
of MST expression and its circulating concentration in response to resistance/strength
and endurance training are conflicted in such a way that some reports pinpointed an in-
crease [74] and others reported a decrease [75–77]. By the same token and in total agreement
with our finding, the majority of the previous reports disclosed that both chronic and acute
resistance and endurance exercises mitigate MST mRNA expression in skeletal muscle and
its plasma levels [77–80]. Additionally, six-month moderate-intensity aerobic training [77]
and eight-week resistance training [75] dampened the muscle and circulating levels of
MST. Besides, it has been illustrated that its concentration abated in diabetic rats following
four-week swim training [81]. Also, it has also been claimed that there is a positive rela-
tionship between muscle mass and MST concentration, suggesting skeletal muscle is the
main source of MST release [82]. Accordingly, 12-month combined training in patients with
kidney disease elevated plasma MST levels [83]. Increased MST induced by exercise has
been ascribed to a normal response to promoted muscle mass through which this factor
can be enacted as an inhibitory agent to excess muscle growth [84]. Such disparity between
our finding and the previous investigations that reported an increase in this factor may
reflect the used training modality, the time at which specimens were obtained, and the
rate of incurred inflammation in the body during the exercise session. It has been revealed
that training that uses more type II fibers type than type I fibers may be associated with
a higher MST concentration [85]. Interestingly, it should be mentioned that if the blood
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samples are obtained instantly and up to 24 h after the exercise session, the MST levels are
still high related to its baseline [78,79]. Besides, pro-inflammatory cytokines upregulate
the expression of the MST gene [86]. The likely mechanisms whereby exercise reduces the
expression and consequently, the concentration of MST levels may involve the following
items: There has been a negative correlation between the concentration of irisin and FST
with MST [87,88]. In this regard, 12-week combined training revealed that the serum
concentration of both irisin and FST increased, while the serum MST level reduced [87].
Our results also were consistent with previous reports [89,90]. Increased levels of circu-
lating irisin can activate the AKT signaling pathway, which consequently impacts MST
synthesis [91]. Also, exercise training is associated with the increased secretion of IGF-1 and
testosterone hormones. Both hormones activate the PI3K/PTEN/AKT pathway, which in
turn mitigates circulating MST levels [92,93]. Testosterone additionally activates the Notch
signaling pathway to elevate Mighty expression and as a result, inhibits the MST pathway
in skeletal muscle [94]. The above-mentioned mechanisms inhibiting MST expression and
its signaling can be accompanied by escalating muscle mass, promoting lipid oxidation,
altering body composition, and improving glucose tolerance and insulin sensitivity.

Increased TGF-β1 in the aftermath of adiposity is accompanied by the activating of its
downstream, known as Smad3. Smad3 can bind to both the gene promoters of PGC-1α
and insulin in adipose tissue and pancreas, respectively. Upon binding, their transcription
is blocked, which in turn reduces brown adipose tissue and insulin release from pancreatic
cells [95–97]. In more general terms, the majority of the findings indicated an increased
TGF-β1 expression in skeletal muscle following both endurance training and mechanical
loading [98,99]. In contrary to our results, it has been shown that three different con-
tractions, isometric, concentric, and eccentric, with four days of sciatic nerve stimulation
altered the TGF-β1 mRNA levels of gastrocnemius muscle [100]. The promoted circulating
levels of TGF-β1 following exercise have been ascribed to increased pro-inflammatory
cytokines [101], consequent damages in skeletal muscle [102], compromised oxidative
stress condition, and the reduced activity of antioxidant enzymes [103]. In any case, its
overproduction is associated with forming fibrosis and muscle atrophy and also dampens
metabolic adaptation to exercise [104,105]. In contrast to some previous studies, our finding
showed a reduction in TGF-β1circulation after 12 weeks of CrossFit training that is concor-
dant with previous evidence [99]. Exercise training reduces TGF-β1 expression through
several mechanisms, including (1) mitigating oxidative stress and increasing antioxidant
capacity which are responsible for ROS removal. This deed defies the function of ROS
on the proteodegeneration of TGF-β1 from the latency-associated peptide/latent TGF-β1
binding protein (LAP/LTBP) complex [106,107]. It has been indicated that the mechanical
loading of training protocol is accompanied by increasing Notch activation, which in turn
blocks TGF-β1 signaling [108]. In addition, exercise training can inhibit the activation of
NF-κB in macrophages, thereby attenuating TGF-β1 expression by macrophages [109].

The reduced activation of macrophages and their inflammatory mediators are ac-
companied by precluding the release of these members of the TGF-β family. The other
mechanisms through which AST can suppress the expression of these family include
increased antioxidant capacity [110], diminished ROS and oxidative stress [111], the damp-
ened expression and activation of MMPs [112], the inhibited infiltration of inflammatory
M1 macrophages into the tissues [113], and elevated circulating irisin [114].

FST is a monomeric glycosylated protein expressed in copious tissues including the
testis, pituitary, muscle, liver, and adipose tissues [115]. In humans, circulating FST is often
dependent on its release from the liver, although skeletal muscles and adipocytes have
a critical role in this regard [30]. It has been suggested that its circulation is reduced in
obese and diabetic patients [116]. Glucagon to insulin ratio is the main factor controlling
FST secretion from the liver in such a manner that increased insulin concentration and its
signaling into the liver reduces the expression and consequently, FST secretion through
inactivating forkhead box protein O1 (FOXO1) [117]. Reduced expression in the white
adipose tissue of obese individuals may be a compensatory response since FST increases
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adipogenesis through suppressing the inhibitory role of TGF-β members on adipogene-
sis [43]. Importantly, the increased concentration of TGF-β members like activin A and
MST, as a compensatory pathway, reduces FST concentration, and thereby, the inhibitory
effect of FST on the expression/concentration of TGF-β members may be eliminated [118].
However, FST is a stress-responding protein that responds to stressful conditions such as
energy deficiency by increasing its expression and secretion [119]. It has been revealed
that circulating FST levels are elevated following exercise sessions [30]. Exercise causes a
negative energy balance which is associated with an increase in glucagon secretion and as
a result, a promotion in FST release from the liver [120]. Furthermore, elevated glucagon
devastates the complex of glucokinase regulator/glucokinase (GCKR-GCK) in the liver that
in turn increases FST secretion [121,122]. Increased inflammation during exercise sessions
may be another mechanism through which FST can be elevated in circulation [123]. Positive
response to glucagon to insulin ratio, pro-inflammatory cytokines, and TGF-β members
suggest the several roles of FST in relation to energy metabolism, immune regulation, and
the protection of obese patients against the negative effects of TGF-β members. FST has
enormous functions in the body and we can list some of them as follows: reduces serum
levels of glucose, insulin, TGs, cholesterol, and FFAs; increases muscle mass; and also
mitigates macrophage infiltration into the tissues and consequently, their pro-inflammatory
production [118,124]. The above-mentioned effects induced by increased FST concentration
can be accompanied by an improvement in metabolic disorders related to obesity.

In spite of the metabolic benefits resulting from the administration of AST, there is no
document related to changes in FST concentration as a leading factor in providing metabolic
improvement during or following AST supplementation that should be considered in future
investigations. In any case, in the current study, we found an increase in FST after AST
administration. This elevation is probably rebounded to reduced insulin concentration, as
a main agent to control FST concentration, following AST supplementation [125] which
attenuated the circulating members of the TGF-β family including activin A, MST, and
TGF-β1, since these mitigating effects can release FST bound to these factors [56].

These circulating adipo-myokines were selected in this study because changes in each
of them with any intervention influence many metabolic organs such as muscles, the liver,
and the pancreas. The examination of the morphological and functional factors related to
the metabolic disorders induced by obesity is another strength of the current study.

Our study had some limitations, including the following: First, our study does not
include any female participants. Since females naturally have more adipose tissues and
also less androgens influencing the changes in those adipo-myokines, it would be better
to evaluate the differences in the changes in the metabolic and adipo-myokines factors
between females and males. Second, we did not delve into the mRNA expression of
adipo-myokines in at least adipose and muscle tissues. Third, the status of the immune
system was not assessed, since this system is a main component to alter the expression and
concentration of these adipo-myokines.

11. Conclusions

The 12-week CrossFit training along with AST supplementation improved metabolic
factors related to insulin, glucose, and lipid profiles. Additionally, this 12-week exercise
training supplemented with AST resulted in divergent findings in adipo-myokiness such
that the plasma levels of DNC and FST were elevated while three members of the TGF-β
family including activin A, MST, and TGF-β1 were diminished.
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