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Abstract: Exceeding a healthy weight significantly elevates the likelihood of developing type 2
diabetes (T2DM). A commercially available singular constituent, available as either purified vitexin
or iso-vitexin, has been associated with a decreased risk of T2DM, but its synergistic effect has
not been reported yet. Vitexin and iso-vitexin were extracted using an ethanol-based solvent from
mung bean seed coat (MBCE) and subsequently purified using preparative liquid chromatography
(Prep-LC). Eleven mixture ratios of vitexin and/or iso-vitexin were determined for their antioxidant
and antihyperglycemic activities. The 1:1.5 ratio of vitexin to iso-vitexin from MBCE demonstrated
the most synergistic effects for enzyme inhibition and glucose uptake in HepG2 cells within an
insulin-resistant system, while these ratios exhibited a significantly lower antioxidant capacity than
that of each individual component. In a gut model system, the ratio of 1:1.5 (vitexin and iso-vitexin)
regulated the gut microbiota composition in overweight individuals by decreasing the growth of
Enterobacteriaceae and Enterococcaceae, while increasing in Ruminococcaceae and Lachnospiraceae. The
application of vitexin/iso-vitexin for 24 h fermentation enhanced a high variety of abundances
of 21 genera resulting in five genera of Parabacteroides, Ruminococcus, Roseburia, Enterocloster, and
Peptacetobacter, which belonged to the phylum Firmicutes, exhibiting high abundant changes of more
than 5%. Only two genera of Proteus and Butyricicoccus belonging to Proteobacteria and Firmicutes
decreased. The findings suggest that these phytochemicals interactions could have synergistic effects
in regulating glycemia, through changes in antihyperglycemic activity and in the gut microbiota in
overweight individuals. This optimal ratio can be utilized by industries to formulate more potent
functional ingredients for functional foods and to create nutraceutical supplements aimed at reducing
the risk of T2DM in overweight individuals.

Keywords: vitexin; iso-vitexin; synergistic effect; antihyperglycemic activity; gut microbiota;
overweight

1. Introduction

Type 2 diabetes mellitus (T2DM) is a growing public health challenge worldwide, asso-
ciated with severe complications that impact healthcare costs and also reduce productivity
and quality of life [1,2]. Being overweight or obese has been proven as the predominant
modifiable risk factor for T2DM, with 90% of adults diagnosed with T2DM in the over-
weight or obese categories [3]. In obese individuals, elevated levels of non-esterified fatty

Nutrients 2024, 16, 3017. https://doi.org/10.3390/nu16173017 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16173017
https://doi.org/10.3390/nu16173017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-6960-0296
https://orcid.org/0000-0002-1277-9299
https://orcid.org/0009-0004-7643-6879
https://orcid.org/0000-0003-1593-9734
https://doi.org/10.3390/nu16173017
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16173017?type=check_update&version=1


Nutrients 2024, 16, 3017 2 of 19

acids (NEFAs), glycerol, hormones, cytokines, proinflammatory agents, and other com-
pounds contribute to insulin resistance, leading to progression toward diabetes due to
impaired β-cell function [4]. The intestinal microbiome in overweight individuals may
play a significant role in the development of T2DM [5]. The gut microbiota perform vital
physiological functions in metabolism, particularly in extracting energy and regulating
local or systemic immunity. Alterations in their composition and function contribute to
the development of obesity and T2DM [6]. However, health-promoting strategies through
lifestyle modifications that slow down the progression of T2DM are beneficial, especially
in overweight individuals [7]. Current evidence strongly suggests that diets rich in plant
foods are associated with a reduced risk of T2DM [8], with the health benefits of plant food
intake related to their contained phenolic compounds [9].

Mung bean (Vigna radiata L.) seed coat (MBC) has low economic value as a by-
product in the vermicelli industry and is also used as animal feed [3]. Adding value
to agricultural by-products is of both scientific and economic interest. Previous studies
showed that MBC contained a high total phenolic content at 33.91 ± 1.06 mg gallic acid
equivalent/g dry weight [10], with potential health benefits as a complementary and
alternative functional ingredient providing antioxidant, anti-inflammatory, anti-diabetic,
and hepatoprotective activities [11]. Over the last decade, several studies have focused on
isolating and identifying bioactive compounds in MBC [12,13]. Vitexin and iso-vitexin were
identified as the two major phenolic compounds in MBC at 15.28 mg/g and 23.74 mg/g,
respectively [14]. Purified vitexin and iso-vitexin, as individual constituents extracted from
specific plant sources such as sea bilberry, passionflower, candle millet, and chaste tree,
have recently attracted increased attention due to their diverse pharmacological effects [15].

Several studies have indicated that efficacy is higher using a combination of com-
pounds compared to single active constituents [16], with the ratios of the combined com-
pounds shown to significantly influence the extent of synergy [17]. However, most vitexin
and iso-vitexin research has focused on studying individual constituents rather than ex-
amining their combined effects, and investigations into the effects of constituents from
MBC have also been limited [18]. Most dietary phenolics are metabolized by colonic mi-
crobiota before absorption, thereby inducing indirect health effects in mammals through
the action of these microorganisms [19]. However, studies on the biological properties of
human microbiota after MBC phenolic consumption in overweight individuals are limited,
while the concept of synergy is of great significance when designing functional foods and
nutraceuticals for promoting human well-being and preventing diseases [20].

Therefore, this research investigated the optimal mixture ratio of vitexin and iso-vitexin
separated from MBC to maximize their antihyperglycemic activities in an insulin resistance
system. The effects of these compounds on gut microbiota in a human gut model were
also studied for overweight individuals. The results will provide a more comprehensive
understanding of the synergistic, combinatory, or antagonistic effects of MBC phenolics on
biological activity to improve insulin resistance and shed light on the relationship between
these compounds and the gut microbiome. This understanding will aid in the development
of strategies to use by-products for ameliorating T2DM in overweight individuals and
promote the usefulness of MBC by-products as valuable functional ingredients in the
industrial food sector for the production of functional foods and nutraceuticals.

2. Materials and Methods
2.1. Chemicals and Reagents

Standard reagents such as vitexin, iso-vitexin, Trolox, alpha-amylase (2 U/mg protein),
alpha-glucosidase (14 U/mg protein), acarbose, MTT, and 2-NBDG were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM) was
obtained from Hyclone (Logan, UT, USA). Fetal bovine serum, non-essential amino acid
cell culture supplement, and Penicillin–Streptomycin were bought from Thermo Fisher
Scientific (Bangkok, Thailand). Other chemicals were purchased from Bang Trading 1992
Co., Ltd. (Bangkok, Thailand) and A&A Reagent Ltd. (Songkhla, Thailand).
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2.2. Plant Material

Mung bean seed coat (MBC) was obtained from Kittitat Co., Ltd. in Bangkok, Thailand,
and transported to the Laboratory of the Biotechnology Department, Kasetsart University.

2.3. Preparation of Vitexin and Iso-Vitexin from Mung Bean Seed Coat

The extraction method followed that outlined by Jaree et al. [12]. A 150 g aliquot of
MBC was dried at 40 ◦C for 24 h. The dried sample was then subjected to dry grinding,
followed by sieving through mesh sizes 0.250 mm and 0.177 mm, and was stored in
vacuum-sealed bags at 3–5 ◦C. One gram of dried sample was then extracted with 23 mL
of 55% ethanol at 65 ◦C under agitation at 1400 rpm for 15 min, and the filtrate was
analyzed by HPLC. The chromatogram of the extracted sample was compared with the
chromatogram of the standard solution obtained using the appropriate mobile phase and
operating conditions of HPLC to confirm that vitexin and iso-vitexin were the major extract
solution components.

2.4. Quantitative Determination of Phenolic Compounds in Mung Bean Seed Coat
Extract (MBCE)
2.4.1. Quantitative Analysis of MBC Phenolic Compounds

Total phenolic compounds were tested by the Folin–Ciocalteu method [21]. Briefly,
20 µL of crude extract solution was mixed with 100 µL of 10% (w/v) Folin–Ciocalteu reagent.
After 7 min, 80 µL of Na2CO3 (7.5%) was added to the mixture and incubated in the dark
at room temperature (25 ◦C) for 1 h. The absorbance was measured by a microplate reader
at 760 nm against a blank without extract, with data expressed as mg/g of gallic acid
equivalent to milligrams per gram (mg GAE/g) of dry extract.

2.4.2. Separation of Vitexin and Iso-Vitexin from MBCE

Vitexin and iso-vitexin contained in the liquid extract were isolated using preparative
liquid chromatography (Prep-LC) according to the modified method of Jaree et al. [12].
They were separated on a C18 column (4.6 mm × 250 mm, Kromasil, Nouryon, Sweden)
using an ethanol/water ratio of 15:85% v/v as a mobile phase at 40 ◦C with a flow rate
of 1 mL/min and a 330 nm UV detector wavelength. One milliliter of the liquid extract
was loaded into the column using the HPLC pump, and the mobile phase was fed to the
column to elute all of the compounds. The outlet products were fractionated corresponding
to the times of vitexin and iso-vitexin signals observed from the UV detector. The collected
vitexin and iso-vitexin fractions were then subjected to an HPLC analysis to determine
their concentrations.

2.4.3. HPLC Analysis

The Thermo Dionex Ultimate 3000 high-performance liquid chromatography system
(Thermo Fisher Scientific Inc., Waltham, MA, USA) was used, along with a C-18 column
(Avantor, 250 × 4.6 mm). The temperature was set at 40 ◦C with a flow rate of 1 mL/min
in 15%v/v aqueous ethanol. The injection volume was 10 µL and was detected using
a UV detector at 330 nm. The sample was filtered using a 0.22 µm nylon filter before
being injected.

2.5. Synergistic Reaction Mixture Preparation

The synergistic activity assay was carried out following the method of Gourineni
et al. [22]. Twenty-five milligrams of each bioactive compound and purified compound
of MBC extract was dissolved in 100 mL of autoclaved water, and was filtered using
Whatman No.1 paper. Combination solutions were prepared using two bioactive agents
(vitexin/iso-vitexin) at ratios of 0:1, 1:0, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1.5:1, 2:1; 2.5:1, and 3:1 v/v.
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2.6. Determination of Antioxidant Activity
2.6.1. The Determination of Antioxidant Activity Using the DPPH Method

The DPPH (1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino) propane
hydrochloride) assay was measured according to the protocol described by Brand-Williams
et al. [23]. One hundred microliters of the sample was mixed with 100 µL of 0.4 mM
methanolic solution containing DPPH radicals, and the mixture was incubated in the dark
at room temperature for 30 min. Absorbance measurements were conducted at 517 nm.
The DPPH radical scavenging activity was calculated using Equation (1).

DPPH radical scavenging activity (%) = [(Ac−At/Ac)]× 100% (1)

At: Absorbance of the test well and Ac: Absorbance of the untreated well (control).

2.6.2. The Determination of Antioxidant Activity Using the ABTS•+ Method

The ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay was con-
ducted following Re et al.’s method [24] with some modifications. Seven mM ABTS stock
solution was mixed with 2.45 mM potassium persulfate (final concentration), and the
mixture was allowed to stand in the dark at room temperature for 12 to 16 h before use. The
ABTS•+ solution was diluted with deionized water and 95% ethanol (1:1) to an absorbance
of 0.70 ± 0.02 at 734 nm. Fifty microliters of the sample was mixed with 150 µL of diluted
ABTS•+ solution and the absorbance was measured after 15 min at 734 nm. The ABTS
radical scavenging activity was calculated using Equation (2).

ABTS radical scavenging activity (%) = [(Ac−At/Ac)]× 100% (2)

At: Absorbance of the test well and Ac: Absorbance of the untreated well (control).

2.6.3. The Determination of Antioxidant Activity Using the FRAP Method

The FRAP (ferric reducing antioxidant power) assay was modified from Benzie and
Strain [25]. Six milliliters of working FRAP reagent (0.1 M acetate buffer:0.02 M FeCl3:0.01 M
TPTZ = 10:1:1) was prepared daily and mixed with 20 µL of the extract sample. The
absorbance at 593 nm was measured after 30 min of incubation at 37 ◦C and reported as
mg Trolox C equivalent per gram of dry weight.

2.7. Determination of Antihyperglycemic Activity
2.7.1. Alpha-Amylase Inhibition Assay

The alpha-amylase inhibitory potential was investigated by reacting different concen-
trations of the extracts with the alpha-amylase enzyme and starch solution [26]. A mixture
of 50µL phosphate buffer (100 mM, pH 6.8) and 20 µL of the samples containing 10 µL
of alpha-amylase (2 U/mL) was incubated at 37 ◦C for 20 min in a 96-well plate. Then,
10 µL of 1% starch solution was added and further incubated for 30 min. Thereafter, 100 µL
of dinitrosalicylic acid (DNS) was added, and the mixture was boiled at 95 ◦C for 15 min.
Acarbose (2–10 µg/mL) was used as the positive control (Equation (3)).

2.7.2. Alpha-Glucosidase Inhibition Assay

The alpha-glucosidase inhibitory activity of the sample was conducted following the
standard method with slight modifications [27]. First, 50 µL of phosphate buffer (100 mM,
pH 6.8), 10 µL of alpha-glucosidase (1 U/mL), and 20 µL of samples and positive control
(acarbose) were incubated at 37 ◦C for 15 min in a 96-well plate. Then, 20 µL of 5 mM
substrate (4-nitrophenyl β-D-glucopyranoside) was added and left to incubate for 20 min.
The reaction mixture was stopped after incubation by adding 50 µL of 0.1 M sodium
carbonate. The release of p-nitrophenol into the reaction mixture relating to the activity of
the enzyme was read at a wavelength of 405 nm (Equation (3)).

% Inhibition = [(1 − (At/Ac))]× 100% (3)
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At: Absorbance of the test well and Ac: Absorbance of the untreated well (control).

2.7.3. Determination of Synergistic Activity

The synergistic activity assay was performed according to a modified method of
Rumjuankiat et al. [28]. The fractional inhibitory activity (FIA) index (ΣFIAs) was cal-
culated as follows: ΣFIA = FIA-X + FIA-Y, where FIA-X is the enzyme inhibition in the
combination/enzyme inhibition activity of vitexin alone and FIA-Y is the enzyme inhibition
in the combination/enzyme inhibition activity of iso-vitexin alone. The FIA was interpreted
as synergy when it was more than 2.

2.7.4. HepG2 Cell Cultures for Glucose Uptake

HepG2 cells (courtesy of Asst. Prof. Sudathip Sae-tan, sourced from ATCC) were used
to determine the effects of compounds on glucose uptake. HepG2 cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (1 g/L glucose) and supplemented with
10% fetal bovine serum, 1% non-essential amino acid, and 1% Penicillin–Streptomycin. The
cells were incubated at 37 ◦C in a humidified atmosphere with 5% CO2. The medium was
changed every 2 days and subcultured once the cells reached 70–90% confluence.

2.7.5. Cytotoxicity Assay

Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetra-
zolium bromide (MTT) assay following Choi et al.’s method [29] with some modifications.
HepG2 cells were seeded in a 96-well plate at 3 × 104 cells/well and cultured for 24 h. The
cell culture medium was removed from each well, and the samples were added to the de-
sired concentration of 100 µL/well and incubated for 24 h before all samples were removed.
Subsequently, 100 µL of MTT (0.25 mg/mL) was added to each well and incubated at 37 ◦C
for 45 min. The MTT-containing medium was gently removed and replaced with 100 µL of
dimethyl sulfoxide (DMSO) to dissolve the formazan crystals. The absorbance was mea-
sured at 570 nm with a microplate reader, and the results were presented as percentages of
the control values (Equation (4)).

% Cell viability = [(At/Ac)]× 100% (4)

At: Absorbance of the test well and Ac: Absorbance of the untreated well (control).

2.7.6. Glucose Uptake in IR-HepG2 Cells

The glucose uptake in HepG2 cells was assessed by the 2-deoxy-2-[(7-nitro-2,1,3-
benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) assay, as described by Zou et al. [30].
HepG2 cells were cultured in a 96-well plate at 3 × 104 cells/well for 24 h. The medium
was changed and replaced with 100 µL of serum-free medium containing 1 µM insulin
for 24 h to induce insulin resistance. After that, all the cell culture medium was removed
from each well, replaced with samples, and it was incubated for another 24 h. All samples
were removed and replaced with 100 nM insulin in a serum-free medium and incubated for
30 min. Then, 100 µL of 2-NBDG (40 µM in serum-free medium) was added and incubated
for another 30 min. The cells were cleaned with chilled phosphate-buffered saline for
3 cycles before a fluorescence analysis at wavelengths of 485 and 528 nm (Equation (5)).

% Glucose uptake = [(At/Ac)]× 100% (5)

At: Absorbance of the test well and Ac: Absorbance of the untreated well (control).

2.8. Fecal Sample Collection

This study was approved by the Ethics Committee of Kasetsart University (license
number COA64/068) and registered with the Thai Clinical Trials Registry (TCTR20220204007).
Fresh fecal samples were collected from three healthy overweight male Thai donors. The
overweight donors met the following criteria: individuals aged 25–60 years with a Body
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Mass Index (BMI) ranging from 23 to 30 kg/m2 who had not taken antibiotics, those who
had not used probiotic and prebiotic products in daily life for at least for three months, and
those who had no gastrointestinal disorders. Written informed consent was obtained from
all the donors before sample collection. The fresh fecal samples were transported under
anaerobic conditions and used within 1 h. Five grams of the fecal sample was mixed with
4 vol of sterile phosphate-buffered saline (PBS). A fecal solution was transferred into the
batch fermentation, which was used as the human gut model.

2.9. Simulation of Human Gut Model

Batch culture fermentations (100 mL each) were set up using fecal slurries from
the three Thai donors. A basal medium of 70 mL was prepared following the method of
Onumpai et al. [31]. The medium was sterilized at 120 ◦C for 20 min before being aseptically
added into sterile fermenters, which were maintained at a pH of 6.65 to 6.95 and 37 ◦C
under an anaerobic atmosphere by continuously feeding N2 gas. The fecal slurry was
incubated in the fermenters for 1% (w/v) of the total working volume. The optimal ratio of
vitexin and iso-vitexin at 0.1% (w/v) in the fermentation media was used in each test, and
the fecal solution with basal medium was used as the control. All contents from the human
gut model at 24 h of fermentation were collected as samples and kept at −80 ◦C.

2.10. DNA Extraction, 16s rRNA Gene Sequencing, and Analysis

The microbial DNA extraction method followed Pusuntisumpun et al.’s method [32].
The quality and quantity of microbial DNA were measured using a NanoDrop™2000/2000c
spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA). Samples were vortexed
and the contents were spun down before their nucleic measurement. A blank was set at
2 µL of elution buffer and all the bacterial DNA were kept at −20 ◦C.

The metagenomic analysis was carried out with a minor modification of the manu-
facturer’s methods according to Pusuntisumpun et al. [32]. Bacterial DNA amplification
from the V3-V4 region of 16s rDNA was conducted via a polymerase chain reaction (PCR)
using forward primer 5′-CCT ACG GGN GGC WGC-3′ and reverse primer 5′-GA CTA
CHV GGG TAT CTA ATC C-3′. The sequences of the 16s rRNA gene were trimmed to the
low-quality bases and adapters to create clean sequences. Usearch version 11.0.667 (avail-
able at https://drive5.com/usearch/ accessed on 15 February 2024) was used to analyze
the filtered sequences from all samples, identify operational taxonomic units (OTUs), and
determine microbial compositions.

2.11. Statistical Analysis

Antioxidant and antihyperglycemic activities were performed using IBM SPSS Statis-
tics for Windows Version 23. Significance was analyzed by one-way ANOVA, with data
expressed as mean ± SEM, n > 3. Metagenomics analyses were performed using XLSTAT
version 2019.2.2. The change in gut microbiota at 24 h was compared using the parametric
Student’s t-test for multiple sample comparisons. Statistical significance was defined as
p-values < 0.05.

3. Results
3.1. Quantitative and Qualitative Characters of Phenolic Compounds in Mung Bean Seed Coat
Extract (MBCE)

The MBCE weight was 0.4410 g, with yields of 11.03% after ethanol extraction. The
MBC contained a high total phenolic content ranging from 39.21 ± 0.17 to 44.04 ± 0.08 mg
gallic acid equivalent/g dry weight. Vitexin and iso-vitexin peaks from MBCE are shown in
the Prep-LC chromatogram (Figure 1A). The retention time of vitexin and iso-vitexin peaks
in the MBCE recorded at 330 nm were 10.52 and 14.87 min, respectively. To confirm vitexin
and iso-vitexin fractions by an HPLC analysis, the retention times of vitexin and iso-vitexin
from the collected fractions were 8.71 and 9.85 min (Figure 1B,C). The concentrations of
vitexin and iso-vitexin were 144 and 529 µg/mL, respectively.

https://drive5.com/usearch/
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3.2. Antioxidant Activity

The results in Table 1 show the IC50 values of phenolic compounds at different
vitexin/iso-vitexin ratios for DPPH• radical and ABTS•+ radical scavenging activities and
the FRAP assay. A lower IC50 value indicates higher antioxidant capacity. The ratios 0:1
and 1:0 (vitexin/iso-vitexin) showed significantly lower IC50 values of DPPH• radical
and ABTS•+ radical scavenging activities compared to the other ratios. The 1:1 ratio gave
the highest IC50 value of inhibiting DPPH• radical and ABTS•+ radical. The ferric ion
reducing antioxidant potential (FRAP) of crude MBCE and eleven different ratios of vitexin
and iso-vitexin from MBCE were also estimated for their ability to reduce TPTZ-Fe (III) to
TPTZ-Fe (II). A significantly higher total antioxidant capacity was observed in the ratios
of vitexin/iso-vitexin 0:1, 1:0, and 1:1 (41.04 ± 0.04, 37.81 ± 0.04, and 39.06 ± 0.03 mg
Trolox/g MBC, respectively).
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Table 1. Antioxidant activities of eleven different ratios of vitexin and iso-vitexin.

Sample Ratio
IC50 (µg/mL) FRAP

(mg Trolox/g MBCE)DPPH ABTS

Vitexin/iso-vitexin 0:1 4.91 ± 0.71 g 1.27 ± 0.20 f 41.04 ± 0.04 a

1:0 10.22 ± 1.84 f 9.55 ± 1.51 e 37.81 ± 0.04 a

1:1 73.22 ± 7.31 a 71.76 ± 10.13 a 39.06 ± 0.03 a

1:1.5 63.64 ± 12.34 b 54.67 ± 1.80 b 18.36 ± 0.04 b

1:2 42.44 ± 4.45 d 41.80 ± 1.56 c 15.32 ± 0.05 bc

1:2.5 36.12 ± 0.18 de 48.16 ± 1.96 bc 12.52 ± 0.05 cd

1:3 30.19 ± 0.42 c 31.24 ± 0.52 d 10.38 ± 0.05 de

1.5:1 78.31 ± 2.70 a 53.06 ± 1.02 b 9.33 ± 0.01 e

2:1 74.14 ± 0.01 a 42.10 ± 2.98 c 14.64 ± 0.02 c

2.5:1 52.48 ± 6.44 c 29.31 ± 12.64 d 12.29 ± 0.01 cd

3:1 52.16 ± 7.30 c 31.83 ± 0.88 d 9.96 ± 0.04 e

Trolox - 30.00 ± 0.05 e 44.00 ± 0.03 c -

All data are expressed as ± standard deviation. Within columns, means followed by different superscripts are
significantly different at p < 0.05.

3.3. Enzyme Inhibitory Activity and Synergistic Activity of Vitexin and Iso-Vitexin

The inhibitory effects of different ratios of vitexin and iso-vitexin from MBCE, as
well as the commercial standard of vitexin/iso-vitexin, against alpha-amylase and alpha-
glucosidase were explored. The alpha-amylase inhibition assay showed that the ratio of 1:0
(vitexin/iso-vitexin) of MBCE and the commercial standard gave the highest inhibition at
71.31% and 70.84% of enzyme activity, respectively, at 31.93 µg/mL (73.85 mM). Compared
with acarbose (60 µg/mL; 93.02 mM), the percentage inhibitory activity was not significantly
different except the combination treatment 1:2.5 (Table 2). However, various synergistic
activities occurred at the combination of vitexin and iso-vitexin. The results show that
the combination treatments of vitexin and iso-vitexin from MBCE at 1:2, 1.5:1, 2:1, and 3:1
exerted the highest FIA (Functional Inhibitory Activity) index of more than 2.4 times, while
the ones at 1:1.5 and 2:1 did so for more than two times. Interestingly, no synergy occurred
in the combination of commercial standards.

Considering alpha-glucosidase, all combination treatments of MBCE and the commer-
cial standard exhibited similar inhibition activities, except the treatment of 1:2 and 3:1 of
MBCE, which had significantly higher activities as shown in Table 3. However, the ratios of
1:0 and 1:1.5 (vitexin/iso-vitexin) of MBCE and the commercial standard showed potential
high activities to inhibit alpha-glucosidase compared to acarbose. By contrast, the 1:1 and
2:1 ratios of MBCE and the commercial standard showed the lowest potential of inhibiting
alpha-glucosidase. The combination of vitexin and iso-vitexin had no synergy except the
combination treatments of 1:2 and 3:1 from the commercial standard. When the inhibition
activities of both enzymes were taken into account, the combination of vitexin/iso-vitexin
at the 1:0, 0:1, and 1:1.5 ratios were considered for further studies.

Table 2. The alpha-amylase inhibition activity of vitexin and iso-vitexin.

Sample Ratio
(Vitexin/Iso-Vitexin) %Alpha-Amylase Inhibition FIA Index

MBCE 0:1 63.07 ± 0.40 g 1.00
1:0 71.31 ± 0.22 a 1.00
1:1 63.94 ± 0.88 g 1.26

1:1.5 68.45 ± 1.30 fed 2.13
1:2 62.67 ± 0.37 gh 2.43

1:2.5 60.79 ± 0.59 h 1.61
1:3 69.10 ± 0.17 bcd 2.01

1.5:1 68.56 ± 1.84 fed 2.44
2:1 67.83 ± 0.84 fed 2.41

2.5:1 66.49 ± 0.39 f 2.15
3:1 68.50 ± 0.89 fed 2.44
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Table 2. Cont.

Sample Ratio
(Vitexin/Iso-Vitexin) %Alpha-Amylase Inhibition FIA Index

Commercial standard 0:1 62.53 ± 0.80 gh 1.00
1:0 70.84 ± 0.32 a 1.00
1:1 63.81 ± 1.32 g 1.92

1:1.5 68.30 ± 1.17 fed 2.06
1:2 63.06 ± 1.94 g 1.88

1:2.5 68.30 ± 1.58 fed 2.06
1:3 69.30 ± 0.40 bcd 2.09

1.5:1 68.70 ± 1.76 fed 2.07
2:1 68.23 ± 1.47 fed 2.05

2.5:1 66.75 ± 0.62 f 1.93
3:1 69.23 ± 0.66 bcd 2.08

Acarbose - 70.78 ± 0.83 ab -

All data are expressed as ± standard deviation. Within columns, means followed by different superscripts are
significantly different at p < 0.05.

Table 3. The alpha-glucosidase inhibition activity of vitexin and iso-vitexin.

Sample Ratio
(Vitexin/Iso-Vitexin)

%Alpha-Glucosidase
Inhibition FIA Index

MBCE 0:1 52.30 ± 1.88 fg 1.00
1:0 60.83 ± 0.84 bc 1.00
1:1 35.45 ± 1.70 i 1.91

1:1.5 59.83 ± 1.14 bc 2.05
1:2 54.48 ± 1.14 def 1.97

1:2.5 45.29 ± 1.06 h 1.82
1:3 56.46 ± 1.43 ef 2.06

1.5:1 44.42 ± 1.49 h 1.33
2:1 32.17 ± 0.76 i 0.96

2.5:1 56.45 ± 1.68 ef 2.09
3:1 57.99 ± 1.98 cd 1.73

Commercial standard 0:1 53.16 ± 1.75 fg 1.00
1:0 61.49 ± 0.84 bc 1.00
1:1 36.32 ± 0.87 i 1.09

1:1.5 63.89 ± 1.32 bc 1.92
1:2 51.20 ± 1.33 g 2.13

1:2.5 45.08 ± 1.27 h 1.36
1:3 56.89 ± 0.89 ef 1.71

1.5:1 45.51 ± 1.99 h 1.37
2:1 36.55 ± 1.54 i 1.10

2.5:1 56.89 ± 1.05 efg 2.25
3:1 56.02 ± 1.33 efg 1.69

Acarbose - 71.55 ± 1.09 a -
All data are expressed as ± standard deviation. Within columns, means followed by different superscripts are
significantly different at p < 0.05.

3.4. Cytotoxicity of HepG2 Cells

The cytotoxicity results of vitexin and iso-vitexin ratios towards HepG2 cells after 24 h
of treatment indicated that at ratios of 0:1, 1:0, and 1:1.5, % cell viability was above 80% at
concentrations below 7.2 µg/mL (Figure 2).
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3.5. Glucose Uptake in HepG2 Cell

Figure 3 demonstrates that in an insulin-resistant model, the 1:1.5 ratio of vitexin to
iso-vitexin from MBCE markedly enhanced the glucose uptake into HepG2 cells compared
to individual compounds. This effect showed a similar efficacy to metformin, with no
statistically significant difference observed (p > 0.05).
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3.6. Impact of Vitexin/Iso-Vitexin in Gut Microbiota

Vitexin and iso-vitexin from MBCE at a ratio of 1:1.5 were studied in a simulated
human gut model. Figure 4 shows the phylum and family-level composition of gut
microbiota between the three donors at 24 h. Phylum Firmicutes and Proteobacteria showed
the highest abundance in the control group across all donors. After treatment with 1:1.5 of
vitexin/iso-vitexin, there were no differences at the phylum level compared to the control
group. At the family level, Enterobacteriaceae abundance decreased in donors 1 and 2, while it
remained similar to the control group in donor 3. In addition, changes were observed at the
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family level by a heat map analysis (Figure 5). The control group showed an increase in the
abundance of Enterobacteriaceae and Enterococcaceae. After treatment with 1:1.5 of vitexin/iso-
vitexin, an increase in Ruminococcaceae, as well as Lachnospiraceae, and a suppression of
Enterobacteriaceae and Enterococcaceae were observed. A total of 117 genera were identified
(Supplementary Table S3) and showed a similar pattern across each treatment, but the
percentage change after 24 h of fermentation in the gut model differed. Twenty-one genus
increases were obtained by vitexin/iso-vitexin supplementation (Table 4). Only five genera
of Parabacteroides, Ruminococcus, Roseburia, Enterocloster, and Peptacetobacter, which belonged
to the phylum Firmicutes, exhibited high abundant changes of more than 5%, while the
ones of Proteus and Butyricicoccus, belonging to Proteobacteria and Firmicutes, decreased.
This implied that the application of vitexin/iso-vitexin enhanced the number of higher
abundances, resulting in more microbial diversity.
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Table 4. Percentage change at genus levels.

Genus
Control Treatment

Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3

Adlercreutzia −0.0332 −0.0061 −0.0052 0.0401 0.0036 0.0094
Terrisporobacter −0.0302 −0.0056 −0.0690 0.04240 0.0010 0.0673

Promicromonospora −0.5617 −0.2125 −1.5741 1.2150 0.3586 1.9098
Pseudonocardia −0.7932 −1.5335 −1.4444 2.1024 3.2836 1.6846

Anaerostipes −1.9218 −0.1260 −0.2782 3.0414 0.2375 0.2779
Akkermansia −0.0042 −0.0097 −0.0197 0.0070 0.0272 0.0328

Alistipes −0.0286 −0.0466 −0.8382 0.0316 0.0646 0.8999
Parabacteroides −16.3417 −15.4376 −26.1212 13.5192 12.4244 23.1782
Ruminococcus 2 −1.4958 −14.1600 −18.5971 2.2853 10.2125 16.5730

Roseburia −7.3000 −0.1716 −1.4926 5.0034 0.2746 1.4147
Megasphaera −0.5343 −1.5168 −3.0740 1.0407 1.7551 3.6659

Weissella −0.0064 −0.0020 −0.0249 0.0190 0.0056 0.0407
Neglecta −6.7556 0.0000 −0.06885 5.9144 0.0000 0.0965

Romboutsia −1.0271 −3.0153 −1.3982 1.5801 2.2438 1.1298
Enterocloster −3.8984 −1.5035 −3.2172 5.3252 2.6369 3.1128

Peptacetobacter 0.0000 −6.5689 −0.7458 0.0000 12.1658 1.2034
Collinsella −11.2280 −2.7956 −0.0431 6.8622 1.3445 0.0448

Paraclostridium −0.0916 −0.2868 −0.8999 0.2199 0.7557 1.1106
Duncaniella −1.7761 −0.0102 −1.2393 1.4411 0.0195 1.0158

Streptococcus −0.8264 −0.1352 −0.0379 1.0430 0.1934 0.0423
Gillisia −1.9951 −1.2536 −0.0099 2.1649 0.6211 1.0158

Lawsonibacter 6.6491 0.0000 2.1445 −6.5535 0.0000 −2.1697
Proteus 2.4677 17.6293 33.3981 −2.4674 −17.4997 −33.3996

Butyricicoccus 2.2504 1.2140 21.3012 −1.8365 −0.9277 −20.3182
Bifidobacterium 0.0260 0.0025 0.0000 −0.0225 −0.0015 −0.0005
Fusobacterium 0.4532 2.0020 2.0617 0.2838 −1.9637 −1.9650
Flavonifractor 0.0016 0.5628 0.0000 −0.0011 −0.5103 0.0000

4. Discussion

Obesity-induced insulin resistance and disrupted glucose metabolism contribute to the
dysregulation of cellular carbohydrate and lipid metabolism, leading to the development of
diabetes [33]. Vitexin and iso-vitexin have recently received increased attention due to their
wide-ranging pharmacological effects including antioxidant, anti-diabetic, anticancer, anti-
inflammatory, antihyperalgesic, and neuroprotective properties [18], but most studies have
only investigated single constituents. Several studies have indicated that disease prevention
is more likely to be achieved through the utilization of a combination of compounds, rather
than relying solely on single active constituents [17]. The ratios of the combined compounds
significantly affected the magnitude of the synergy [16]. A possible mechanism involved in
these pharmacological effects could be the modulation of gut microbiota in a synergistic
way. However, the characterization of the gut microbiota in overweight individuals remains
insufficiently established, and some results are inconsistent [34,35]. The concept of synergy
is of great significance when designing functional foods and nutraceuticals for promoting
human well-being and preventing diseases.

Mung bean seed coat (MBC), a by-product of the vermicelli industry, is rich in vitexin
and iso-vitexin as its two major phenolic compounds [14]. Our results confirmed this,
suggesting that MBC may serve as a promising source for obtaining purified vitexin with a
high yield. The amount of purified phenolic compounds depends on the extraction and
purification method [36]. This study employed ethanolic extraction coupled with a Prep-LC
system for the purification step.

Free radicals generated within the body are partially implicated in the etiology of
T2DM, as oxidative stress disrupts insulin-mediated intracellular signaling pathways, ulti-
mately leading to insulin resistance in overweight individuals [37]. An adequate intake
of antioxidants plays a crucial role in safeguarding against the disease [38]. Phenolic com-
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pounds are important antioxidants that exhibit activity by several mechanisms such as
donating hydrogen atoms to free radicals, scavenging other reactive species, or binding
transition metal ions (especially iron and copper) [39]. Our results demonstrated that
vitexin and iso-vitexin exhibited antioxidant activity. Their radical scavenging activity
was attributed to the phenolic hydroxyl group in the 4′ position on the B-ring [40]. How-
ever, combinations of vitexin and iso-vitexin did not provide synergistically enhanced
antioxidant activity regarding their self-inhibition [41].

Postprandial hyperglycemia can be delayed by reducing glucose absorption through
the inhibition of carbohydrate-hydrolyzing enzymes in the gastrointestinal tract [42,43].
Alpha-amylase catalyzes the cleavage of alpha-(1-4) glycosidic binding to dextrin, maltose,
or maltotriose, while alpha-glucosidase catalyzes the hydrolysis of 1–4 linked alpha-glucose
and generates glucose molecules [44]. Many studies have searched for more effective and
safe inhibitors of alpha-glucosidase and alpha-amylase from natural sources to develop
nutraceuticals that can prevent and manage diabetes [45]. One study demonstrated that
vitexin displayed strong inhibition against alpha-glucosidase [46], which aligned with
our findings. In synergistic activity, it was found that an increase or decrease in the ratio
between vitexin and iso-vitexin affects the FIA value, which represents the synergistic or
antagonistic activity of enzyme inhibitions. Cao et al. [47] showed that the glycosylation of
flavone can modify the distribution and density of the electron cloud among the rings and
introduce steric hindrance, which weakens the binding of flavone to the enzyme, leading
to a reduction in its inhibitory activity. The glycosylation of flavonoids reduces their
inhibitory effect on α-amylase and α-glucosidase, with the extent of reduction depending
on the position of the glycosylation and the class of sugar moiety [48].

Insulin resistance in obesity is characterized by reduced insulin-triggered glucose trans-
port and processing in both fat cells and skeletal muscle, along with ineffective regulation of
glucose production in the liver [49]. Polyphenols also impact peripheral glucose absorbed in
insulin and non-insulin-sensitive tissues [50]. Insulin typically facilitates anabolic metabolic
processes in the liver by promoting glucose uptake and lipid synthesis. Overweight indi-
viduals with insulin resistance are incapable of adequately suppressing hepatic glucose
production, thereby resulting in hyperglycemia [51]. Prabhakar and Doble [52] showed
that phenolic acids excite glucose uptake with a similar absorption method to metformin,
while phenolic compounds increase the catalytic activity of glucose phosphorylation and
also influence the function of glucose and insulin receptors by increasing the expression of
GLUT2, a glucose transporter, in pancreatic β (insulin-producing) cells [53–55]. Moreover,
Pavasutti et al. [11] demonstrated that mung bean seed coat water extract (MSWE) showed
the potential to restore insulin resistance in insulin-resistant HepG2 cells, as demonstrated
by the enhanced uptake of glucose into the cells. The MSWE consisted of vitexin and
iso-vitexin. These results demonstrated that mixtures of vitexin and iso-vitexin in our study
of MBCE showed greater potential for glucose uptake into HepG2 cells.

The maximum dissolved concentration of ethanol in the ratios showed the absence
of significant cytotoxicity, while the percentage of cell viability was significantly inhib-
ited in samples at higher concentrations of ethanol compared with the control group [56].
Furthermore, ethanol impacts the uptake of glucose by increasing peripheral insulin resis-
tance [57,58] and reducing GLUT4 expression, thus lowering insulin sensitivity and glucose
tolerance [59].

The human microbiome comprises a diverse ecosystem of commensal, symbiotic, and
potentially pathogenic microorganisms that cohabit with our body environment [60]. The
primary gut microbiota predominantly falls within four major phylum (phyla): Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria [61,62]. Relman and Falkow [63], Jandhyala
et al. [64], Hasan and Yang [65], and Somnuk et al. [66] reported that age, diet, antibiotics,
probiotics, and prebiotics significantly impacted microbiome diversity. All donors in
this study had a similar Body Mass Index (BMI) and health status, as per the inclusion
criteria, but variations were observed. The fecal gut microbiota exhibited distinct patterns
among the three volunteers, possibly attributed to host genetics, lifestyle choices, and
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dietary habits. Under typical physiological conditions, the gut microbiota is predominantly
composed of Firmicutes (64%), followed by Bacteroidetes (23%), Proteobacteria (8%), and
Actinobacteria (3%). By contrast, the predominant phylum encountered in obesity and
T2DM was Proteobacteria [67,68], which aligned with our findings.

Previous studies found that Enterobacteriaceae are typically present in low abundances
in healthy humans, constituting just 0.1–1% of the relative abundance on average [69],
while Enterococcaceae typically comprise less than 1% of adult microflora [70]. Karlsson
et al. [71] reported significantly higher concentrations of Enterobacteriaceae in obese or over-
weight humans compared to those who were not overweight, while Rodriguez et al. [72]
also noted a similar trend in Enterococcaceae. A significant increase in Enterococcaceae and
Enterobacteriaceae was observed in a patient with T2DM [73,74], indicating a correlation
between BMI, T2DM, and a high abundance of Enterobacteriaceae and Enterococcaceae. Biddle
et al. [75] and Andrade et al. [76] reported that the Firmicutes phylum, the Lachnospiraceae
and Ruminococcaceae hydrolyze starch and other sugars are used to produce butyrate and
short-chain fatty acids (SFCAs), which also benefit hosts in preventing diabetes. Previous
studies showed that cranberry extract, which is rich in polyphenols, reduced the abun-
dance of Enterobacteriaceae in a human gut model [77], while apigenin effectively inhibited
Enterococcaceae [78]. Enterobacteriaceae and Enterococcaceae play a key role in the onset and
development of diabetes [79]. Additionally, Larsen et al. [80] reported that increased levels
of the Parabacteroides genus are linked to enhanced insulin sensitivity, probably contribut-
ing to the regulation of blood sugar levels by improving the body’s insulin response. These
previous studies support our findings, including the beneficial effect of butyric acid in
promoting high-abundance genera such as Parabacteroides, Ruminococcus, Roseburia, En-
terocloster, and Peptacetobacter. Aguirre et al. [81] studied gut microbiota from lean and
obese individuals, and proposed that a high abundance of Roseburia genera may have a
potential role in obesity reduction potential correlating to diabetic symptoms. These results
demonstrated that the ratio of vitexin and iso-vitexin at 1:1.5 in MBCE showed the potential
to improve levels of beneficial bacteria, while inhibiting pathogenic bacteria.

5. Conclusions

This is the first study to demonstrate the synergistic effects of individual vitexin and
iso-vitexin constituents separated from MBC ethanol-based extract on antihyperglycemic
activities in an insulin-resistant system and gut composition in overweight individuals.
Our results demonstrated that the combination of purified vitexin and iso-vitexin exhibited
superior antihyperglycemic potential compared to their individual counterparts. This
beneficial effect of phenolic compounds may be exerted through their interaction with
the gut composition. This comprehension will facilitate the formulation of tactics to
mitigate T2DM in overweight individuals and advocate for the utility of MBC by-products
as valuable functional ingredients within the industrial food sector, specifically for the
production of functional foods and nutraceuticals. Nevertheless, further investigation
is warranted to elucidate the metabolic pathways of bacteria to understand the precise
microbial glucose metabolic metabolism.
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