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Abstract: Background: Sarcopenic obesity, which is associated with a poorer prognosis than that of
sarcopenia alone, may be positively affected by soy isoflavones, known inhibitors of muscle atrophy.
Herein, we hypothesize that these compounds may prevent sarcopenic obesity by upregulating the
gut metabolites with anti-inflammatory effects. Methods: To explore the effects of soy isoflavones on
sarcopenic obesity and its mechanisms, we employed both in vivo and in vitro experiments. Mice
were fed a high-fat, high-sucrose diet with or without soy isoflavone supplementation. Additionally,
the mouse C2C12 myotube cells were treated with palmitic acid and daidzein in vitro. Results: The
isoflavone considerably reduced muscle atrophy and the expression of the muscle atrophy genes
in the treated group compared to the control group (Fbxo32, p = 0.0012; Trim63, p < 0.0001; Foxo1,
p < 0.0001; Tnfa, p = 0.1343). Elevated levels of daidzein were found in the muscles and feces of the
experimental group compared to the control group (feces, p = 0.0122; muscle, p = 0.0020). The real-
time PCR results demonstrated that the daidzein decreased the expression of the palmitate-induced
inflammation and muscle atrophy genes in the C2C12 myotube cells (Tnfa, p = 0.0201; Il6, p = 0.0008;
Fbxo32, p < 0.0001; Hdac4, p = 0.0002; Trim63, p = 0.0114; Foxo1, p < 0.0001). Additionally, it reduced the
palmitate-induced protein expression related to the muscle atrophy in the C2C12 myotube cells (Foxo1,
p = 0.0078; MuRF1, p = 0.0119). Conclusions: The daidzein suppressed inflammatory cytokine- and
muscle atrophy-related gene expression in the C2C12 myotubes, thereby inhibiting muscle atrophy.

Keywords: mice; high-fat diet; high-sucrose diet; sarcopenia; sarcopenic obesity; C2C12 myotubes;
muscle atrophy; soy isoflavones; daidzein

1. Introduction

Sarcopenia, characterized by an age-associated syndrome marked by the deterioration
of muscle mass, muscle strength, and/or physical function [1], is closely associated with
increased instability, falls, and frailty in elderly individuals. It is one of the leading causes
of long-term care dependency [2]. Age-related muscle weakness, a hallmark of sarcopenia,
is becoming increasingly prevalent globally [3,4]. This syndrome is associated with several
adverse health outcomes, including increased all-cause mortality, cardiovascular disease,
and mobility limitations [5,6]. Sarcopenic obesity, which involves both reduced muscle
mass and increased visceral fat [7], presents a worse prognosis than that of sarcopenia
alone [8–10]. The incidence of sarcopenic obesity has surged worldwide, driven largely
by sedentary lifestyles and diets rich in fats and sugars, typical of processed foods [11].
Due to the lack of standardized diagnostic criteria, estimates of its prevalence vary widely.
For instance, a Korean prospective cohort study of healthy volunteers aged 20 to 80 years
reported incidence rates of sarcopenic obesity ranging from 0.8% to 22.3% in the women
and 1.3% to 15.4% in the men [12]. Similarly, the data from the Dutch Lifelines cohort study,
which included individuals aged 18 to 90 years, showed a global incidence of 1.4% in the
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women and 0.9% in the men, with the rates climbing to 16.7% among those aged 80 to
89 years [13]. Furthermore, a meta-analysis of 50 studies encompassing 86,285 participants
reported a global incidence of sarcopenic obesity of 11% among adults aged 60 years and
older [14]. The prevalence of both sarcopenia and sarcopenic obesity among the elderly
highlights their link to increased all-cause mortality [15].

In today’s hyper-aged society, a thorough investigation into the causes of sarcopenia
is essential for the successful development of preventive and therapeutic strategies.

Various approaches, including exercise, drug and nutritional supplementation, and
hormone therapy, have been explored to mitigate muscle atrophy associated with sarcope-
nia [16]. Among these, nutritional therapy via supplementation with polyunsaturated
fatty acids, high-quality protein, vitamins, and essential amino acids has been shown to
prevent muscle weakness in elderly people by stimulating protein synthesis [17–19]. Soy
foods are traditional Asian foods that alleviate muscle weakness by stimulating muscle
protein synthesis and increasing antioxidant capacity [20]. Isoflavone, an abundant soybean
flavonoid, has been studied in the context of preventing obesity, elevated blood sugar levels,
osteoporosis, breast cancer, and its antioxidant properties in recent years [2]. However,
the effectiveness of the soy isoflavones in preventing muscle atrophy in sarcopenia and
sarcopenic obesity remains unclear.

Most soy isoflavones are glycosides, the sugars from which are removed by intestinal
bacteria prior to absorption and become aglycons. Isoflavone aglycones, including daidzein
and genistein, are further [21] metabolized by intracellular and gut bacterial enzymes to
produce more active compounds [22,23].

Previous studies have shown that a high-fat, high-sucrose diet, akin to Western dietary
patterns, induces chronic inflammation in visceral fat and results in metabolic disorders,
including obesity, glucose intolerance, dyslipidemia, and sarcopenic obesity characterized
by skeletal muscle atrophy [21,22]. Additionally, there are several reports on the associa-
tion between the isoflavones and the prevention of muscle atrophy [24,25]. For instance,
isoflavones exacerbated muscle atrophy in post-oophorectomy mice fed on a high-fat diet
for 12 weeks [26]. Isoflavone treatment also markedly inhibited TNF-α-induced MuRF1
promoter activity and myotube atrophy in C2C12 myotubes [27]. Furthermore, daidzein
has been reported to mitigate cisplatin-induced muscle atrophy [28] and increase skeletal
muscle mass in young female mice [29].

Given that soy isoflavones have been shown to inhibit muscle atrophy, we hypothe-
sized that these compounds may also prevent sarcopenia and obesity. Hence, the aim of
this study was to investigate the effects of soy isoflavones on sarcopenic obesity and to
examine the underlying mechanisms.

2. Materials and Methods
2.1. Murine Models

All procedures were approved by the Committee for Animal Research at the Kyoto
Prefectural University of Medicine (Approval No. M2021-49). The study utilized male
C57BL/6 J (WT) mice, aged seven weeks. Each cage housed six mice. The isoflavone
group (Iso group) received water supplemented with 0.1% isoflavone ad libitum. Details
regarding the procurement, housing, and feeding of the mice are provided in Data S1.
The mice were euthanized at 20 weeks of age using a combination anesthetic comprising
5.0 mg/kg butorphanol, 4.0 mg/kg midazolam, and 0.3 mg/kg medetomidine, on account
of ketamine being declared a narcotic in Japan in 2007.

2.2. Glucose and Insulin Tolerance Tests

Murine models, aged 20 weeks, underwent intraperitoneal glucose tolerance evalua-
tions (iPGTT) (administered at 2 g/kg of body mass) after a fasting period of 16 h and were
subjected to insulin tolerance assessments (ITT) (dispensed at 0.5 U/kg of body weight)
following a 5 h fast. Details are provided in Data S1.
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2.3. Assessment of Grip Strength

The grip strength was quantified using a specialized grip strength meter for murine
models. Details are provided in Data S1.

2.4. Biochemistry

Cardiac puncture was performed under anesthesia in order to collect peripheral
blood, and serum was separated by centrifugation. Alanine aminotransferase (ALT), total
cholesterol, and triglyceride levels were subsequently measured. Details are provided in
Data S1.

2.5. Histopathological Examination of Soleus and Plantaris Muscle Tissue

For the assessment of the soleus and plantaris muscles, the tissue samples were
obtained from euthanized murine models for a histopathological assessment. Details are
provided in Data S1.

2.6. Analysis of Gene Expression in the Soleus Muscle

RT-PCR was conducted to analyze gene expression in the soleus muscle. Details are
described in Data S1.

2.7. Measurement of Daidzein, Genistein, and Equol Concentrations in Serum, Feces, and
Soleus Muscle

Daidzein, genistein, and equol concentrations in murine serum, rectal feces, and soleus
muscle samples were examined. Details are provided in Data S1.

2.8. Culture of Mouse Skeletal Muscle Cells

C2C12 cells (mouse myoblast cell line; KAC Co., Ltd., Kyoto, Japan) were cultured
starting from day 0, with conditions detailed in Data S1. On day 7, cells were treated
with either DMEM (Ctrl), 100 µM palmitic acid (PA), or 100 µM palmitic acid with 25 µM
daidzein (PA + DZ) for 24 h after changing the differentiation medium. Myotubes were
evaluated on day 8 under all experimental conditions.

2.9. Analysis of Gene Expression in C2C12 Myotube Cells

Gene expression in C2C12 myotube cells was evaluated on day 8 using RT-PCR. Details
are described in Data S1.

2.10. Protein Extraction and Western Blot Analysis

Proteins were extracted from C2C12 cells and analyzed via Western blot. Details are
provided in Data S1.

2.11. Statistical Analysis

Details of the statistical analysis are described in Data S1.

3. Results
3.1. The Administration of Isoflavone Reduced Body Weight and Ameliorated Glucose Intolerance
Induced by the High-Fat High-Sucrose Diet (HFHSD)

Significantly lower body weights were recorded in the mice fed an HFHSD along with
isoflavones (Iso group) than those of mice fed an HFHSD alone (control group) (Figure 1B).
Additionally, the area under the curve (AUC) for the blood glucose of the Iso group during
the iPGTT and ITT was significantly lower than that of the Ctrl group (iPGTT, p < 0.0001;
ITT, p < 0.0001) (Figure 1D–G).
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Figure 1. The C57BL6/J mice fed a high-fat high-sucrose diet (HFHSD) and administered water
containing 0.1% isoflavone (Iso group) showed significant improvements in glucose tolerance, obesity,
metabolic disorders, and muscle loss compared to the C57BL6/J mice without the isoflavone (Ctrl
group). (A) Mice were fed HFHSD ± water containing 0.1% isoflavone for 12 weeks, starting at
8 weeks of age. (B) Changes in body weight (n = 6 in each case). (C) Oral intake of 0.1% isoflavone
water. (D,E) The results of the intraperitoneal glucose tolerance test (2 g/kg body weight) for
20-week-old mice and the area-under-the-curve (AUC) analysis (n = 6 in each case). (F,G) The
results of the insulin tolerance test (0.75 U/kg body weight) for the 20-week-old mice and the AUC
analysis (n = 6 in each case). (H) Relative grip strength (n = 6 in each case). (I–K) Serum levels of
alanine aminotransferase (ALT), total cholesterol (T-Chol), and triglycerides (TG) (n = 6 in each case).
(L–N) The relative weight of the epididymal fat, soleus muscle, and plantaris muscle (n = 6 in each
case). The data are expressed as mean ± standard deviation (SD). The data were analyzed using an
unpaired t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.2. Administration of Isoflavone Reduced HFHSD-Induced Elevation of Liver Enzymes and Serum
Lipid Levels

The Iso group exhibited significantly lower levels of serum alanine aminotransferase
(ALT), triglycerides (TG), and total cholesterol than those exhibited by the control group
(ALT, p = 0.0221; TG, p = 0.0941; total cholesterol, p < 0.0001) (Figure 1I–K).
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3.3. Administration of Isoflavone Alleviated Sarcopenic Obesity

The Iso group showed a greater relative grip strength than that shown by the Ctrl
group (p = 0.0460). Additionally, the cross-sectional areas of the soleus and plantaris
muscles were larger in the Iso group than those in the Ctrl group (soleus muscle, p = 0.0060;
plantaris muscle, p = 0.0320) (Figures 1H and 2A,B). Furthermore, while the relative weight
of epididymal fat in the Iso group was significantly reduced compared to that in the control
group (p = 0.0020), the relative weights of the soleus and plantaris muscles in the Iso group
were significantly higher than those in the Ctrl group (soleus muscle, p = 0.0410; plantaris
muscles, p = 0.0260) (Figure 1L–N).
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Figure 2. Effects of Isoflavone on muscle morphology and gene expression. (A,B) The cross-sectional
areas of the soleus and plantaris muscles in the 20-week-old mice (n = 6 in each case). (C–F) The
relative mRNA expressions of (C) Fbxo32, (D) Trim63, (E) Foxo1, and (F) Tnfa mRNA expression in
the soleus muscle normalized to the expression of Gapdh (n = 6 in each case). The data are expressed
as mean ± standard deviation (SD). The data were analyzed using an unpaired t-test. * p < 0.05,
** p < 0.01, **** p < 0.0001, ns not significant.

3.4. Administration of Isoflavone Decreased Expression of Muscle Atrophy and Inflammation-Related
Genes in Skeletal Muscles

The relative expression of Fbxo32, Trim63, and Foxo1 normalized to Gapdh in the soleus
muscle was significantly lower in the Iso group than that in the control group. The relative
expression of Tnfa in the soleus muscle tended to be lower in the Iso group than that in
the control group (Fbxo32, p = 0.0012; Trim63, p < 0.0001; Foxo1, p < 0.0001; Tnfa, p = 0.1343)
(Figure 2C–F).

3.5. Administration of Isoflavone Increased Serum, Fecal, and Muscle Daidzein Levels

The fecal and muscle daidzein levels were significantly higher in the Iso group than
those in the control group (feces, p = 0.0122; muscle, p = 0.0020) (Figure 3B,C). Furthermore,
the serum daidzein levels tended to increase in the Iso group compared to those in the
control group (p = 0.8276) (Figure 3A). Genistein levels in serum, feces, and muscle were not
significantly different between the Ctrl and Iso groups (serum, p = 0.0624; feces, p = 0.1159;
muscle, p = 0.4198) (Figure 3D–F). Similarly, equol levels in serum, feces, and muscles did
not differ significantly between the Ctrl and Iso groups (serum, p = 0.3324; feces, p = 0.8108;
muscle, p = 0.2888) (Figure 3G–I).



Nutrients 2024, 16, 3084 6 of 12

Nutrients 2024, 16, x FOR PEER REVIEW 6 of 13 
 

 

3.5. Administration of Isoflavone Increased Serum, Fecal, and Muscle Daidzein Levels 
The fecal and muscle daidzein levels were significantly higher in the Iso group than 

those in the control group (feces, p = 0.0122; muscle, p = 0.0020) (Figure 3B,C). Furthermore, 
the serum daidzein levels tended to increase in the Iso group compared to those in the con-
trol group (p = 0.8276) (Figure 3A). Genistein levels in serum, feces, and muscle were not 
significantly different between the Ctrl and Iso groups (serum, p = 0.0624; feces, p = 0.1159; 
muscle, p = 0.4198) (Figure 3D–F). Similarly, equol levels in serum, feces, and muscles did 
not differ significantly between the Ctrl and Iso groups (serum, p = 0.3324; feces, p = 0.8108; 
muscle, p = 0.2888) (Figure 3G–I). 

 
Figure 3. The administration of the isoflavone increased the concentration of the daidzein in the serum, 
feces, and muscles. The concentrations of the daidzein in (A) serum, (B) feces, and (C) soleus muscle 
(n = 6 in each group). The concentrations of the genistein in (D) serum, (E) feces, and (F) soleus muscle 
(n = 6 in each group). The concentrations of the equol in (G) serum, (H) feces, and (I) soleus muscle (n 
= 6 in each group). The data are expressed as mean ± standard deviation (SD). The data were analyzed 
using an unpaired t-test. * p < 0.05, ** p < 0.01, ns not significant. 

Figure 3. The administration of the isoflavone increased the concentration of the daidzein in the
serum, feces, and muscles. The concentrations of the daidzein in (A) serum, (B) feces, and (C) soleus
muscle (n = 6 in each group). The concentrations of the genistein in (D) serum, (E) feces, and (F) soleus
muscle (n = 6 in each group). The concentrations of the equol in (G) serum, (H) feces, and (I) soleus
muscle (n = 6 in each group). The data are expressed as mean ± standard deviation (SD). The data
were analyzed using an unpaired t-test. * p < 0.05, ** p < 0.01, ns not significant.

3.6. Daidzein Decreased Palmitic Acid-Induced Expression of Inflammation-Related and Muscle
Atrophy Genes in C2C12 Myotube Cells

The expression of muscle atrophy- and inflammation-related genes in C2C12 cells,
including Tnfa, Il-6, Fbxo32, Hdac4, Trim63, and Foxo1, was analyzed. The expression of
these genes in the C2C12 cells supplemented with 100 µM PA was significantly higher
than that of those in the C2C12 cells supplemented with DMEM (Ctrl) (Tnfa, p = 0.0253;
Il-6, p = 0.0011; Fbxo32, p = 0.0009; Hdac4, p < 0.0001; Trim63, p = 0.0007; Foxo1, p < 0.0001).
Conversely, the expression of these genes in the C2C12 cells supplemented with 100 µM PA
and 25 µM daidzein (PA + DZ) was significantly lower than that of those in the PA group
(Tnfa, p = 0.0201; Il-6, p = 0.0008; Fbxo32, p < 0.0001; Hdac4, p = 0.0002; Trim63, p = 0.0114;
Foxo1, p < 0.0001) (Figure 4A–F).

3.7. Daidzein Reduced Palmitic Acid-Induced Expression of Muscle Atrophy Proteins in C2C12
Myotube Cells

The expression levels of the muscle atrophy proteins in the C2C12 myotube cells, includ-
ing Foxo1 and MuRF1, were investigated. The expression levels of these proteins in the C2C12
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cells supplemented with 100 µM PA were significantly higher than those of the proteins in
the C2C12 cells supplemented with DMEM (Ctrl) (Foxo1, p = 0.0089; MuRF1, p = 0.0088). Con-
versely, the expression levels of the muscle atrophy proteins in the C2C12 cells supplemented
with 100 µM PA and 25 µM daidzein (PA + DZ) were significantly lower than those of the
proteins in the PA group (Foxo1, p = 0.0078; MuRF1, p = 0.0119) (Figure 5A–C).
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Figure 4. Impact of daidzein on gene expression in C2C12 myotube cells. The relative mRNA
expression of (A) Tnfa, (B) Il-6, (C) Fbxo32, (D) Hdac4, (E) Trim63, and (F) Foxo1 all normalized to the
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**** p < 0.0001, ns not significant.
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4. Discussion

We demonstrated that soy isoflavones effectively prevented muscle atrophy induced
by an HFHSD. Additionally, daidzein, a soy isoflavone, exhibited an inhibitory effect on
muscle atrophy by suppressing the expression of the inflammatory cytokines and muscle
atrophy genes in the myotubular cells. To the best of our knowledge, this study is the
first to directly measure flavonoid levels, including daidzein, in skeletal muscle and to
demonstrate their anti-muscle atrophy effects.

Previously, we reported that an HFHSD mimicking Westernized dietary patterns
induces chronic visceral fat inflammation that results in metabolic disorders such as obe-
sity, glucose intolerance, and dyslipidemia. Soy isoflavones have been shown to exert
anti-inflammatory effects via innate lymphocytes in visceral fat, improving these metabolic
conditions [23]. In sub-analyses, the mice fed with a high-fat, high-sucrose diet developed
sarcopenic obesity accompanied by skeletal muscle inflammation, muscle atrophy, and
visceral fat obesity. In this study, the isoflavone administration halted the HFHSD-induced
weight gain and glucose intolerance, reduced the HFHSD-induced elevation of liver en-
zymes and serum lipid levels, and alleviated various metabolic disorders. These findings
are consistent with previous reports that soy proteins and isoflavones effectively lower liver
and blood lipids, improve glucose tolerance and insulin sensitivity, and reduce hepatic
lipidosis [30].

An HFHSD has been shown to increase inflammation, as evidenced by elevated Tnfα
expression in muscle [31], leading to muscle atrophy [32]. In contrast, soy isoflavones
are known for their potent anti-inflammatory activities [33] and ability to inhibit muscle
atrophy [34].

In this study, the isoflavone administration enhanced relative grip strength and in-
creased the weights of the soleus and plantaris muscles in mice. It also decreased the
expression of the muscle atrophy- and inflammation-related genes in skeletal muscle.
These results suggest that soy isoflavones ameliorate obesity, metabolic function, and
muscle atrophy induced by an HFHSD. Among soy isoflavones, daidzein has garnered
considerable interest in recent years due to its broad therapeutic effects on oxidative stress,
inflammation, obesity, neuroprotection, diabetes, anxiety, cardiovascular disease, cancer,
and ovariectomy [35]. We observed that the isoflavone administration significantly in-
creased the fecal and muscular daidzein levels, with a less dramatic effect on the serum
daidzein levels. Collectively, these findings support the hypothesis that the daidzein may
contribute to the inhibitory effects exerted by soy isoflavones.

Most soybean isoflavones are glycosides, which are not readily absorbed by the
body. Efficient absorption mandates the removal of sugar from the glycoside to produce
aglyconylated isoflavones [36]. This process is facilitated by cellular β-glucosidases derived
from gut flora [37]. Isoflavone aglycones, including daidzein and genistein, are absorbed via
the intestinal tract and are further metabolized by cellular and gut flora-derived enzymes
to produce more biologically active compounds such as equol [38].

Among the flavonoids, we focused on daidzein on account of its significant elevation
in muscle and fecal concentrations. Apart from its role in ameliorating cisplatin-induced
muscle atrophy, the compound has been reported to decrease the expression of the ubiquitin-
specific protease 19 via estrogen receptor beta and increase skeletal muscle mass in young
female mice [28].

We therefore performed cellular experiments using mouse C2C12 myotubes to eluci-
date the underlying mechanisms of daidzein-mediated inhibition of muscle atrophy. PA,
a major circulating long-chain saturated fatty acid, is often used as an in vitro high-fat
inducer, prompting daidzein to reverse a palmitate-induced expression of inflammatory
cytokines (Tnfa and Il-6) and muscle atrophy genes (Fbxo32, Hdac4, Trim63, and Foxo1) in
the mouse C2C12 myotubular cells. This reversal was further confirmed for Foxo1 and
MuRF1 protein expression by Western blotting.

Daidzein has been shown to protect against palmitate-induced oxidative stress and
apoptosis via PGC1α [39]. It also mitigates cisplatin-induced muscle atrophy by modulat-
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ing the Glut4/AMPK/FoxO signaling pathway [28] and inhibits muscular lipid deposition
while reducing the lipotoxicity in muscle by regulating the estrogen-related receptor alpha
(ERRα) pathway [40]. Additionally, the soy isoflavones significantly suppress muscle
atrophy by inhibiting the TNF-α-induced MuRF1 transcriptional activity in the C2C12
myotube cells [41]. We observed that daidzein inhibited muscle atrophy by suppressing
the inflammatory cytokines and muscle atrophy genes upregulated by PA, both in vitro
and in vivo. This effect may be mediated via multiple pathways, including the ubiqui-
tin proteasome-dependent proteolytic pathway, PGC1α, Glut4/AMPK/FoxO, and the
ERRα pathway.

In the present study, isoflavone was converted into its aglycon form, daidzein, in the
intestine, resulting in increased daidzein concentrations in skeletal muscle. This likely con-
tributes to the prevention of glucose intolerance and skeletal muscle atrophy by suppressing
the expression of the inflammatory cytokine and muscle atrophy genes.

For some people, sarcopenia and sarcopenic obesity can be reversed or their progres-
sion can be slowed or halted through an appropriate diet and exercise therapy [42]. Human
studies have shown that soy isoflavones reduce TNF-α levels and induce anti-inflammatory
effects, potentially offering pronounced benefits for patients with sarcopenia [43]. The
mice in this study ingested 167 ng/g/day of isoflavones at 20 weeks of age, equivalent
to 5 µg/day. This is comparable to an intake of 10 mg/day for a person weighing 60 kg.
Isoflavones are found in soy products, including natto, tofu, and miso soup, that are
often consumed in Japan. Given the isoflavone content of these foods [44–46], a 60 kg
person should consume 1/4 pack of natto, 1/10 pack of tofu, and 1 1/2 cups of miso
soup. The consumption of these soy products is expected to suppress sarcopenia and
sarcopenic obesity.

This study is pioneering in directly measuring the flavonoid concentrations in skeletal
muscle and demonstrating their anti-muscle atrophy effects. However, it has several limita-
tions. While the in vivo administration of isoflavones was performed, specific experiments
involving daidzein administration were not. Additionally, although the variations in the
composition of the gut microbiota, which are crucial for the metabolism and action of
isoflavones, are known to exist, detailed evaluations of the gut microbiota among individ-
ual mice were not carried out. Furthermore, this study did not provide sufficient details to
relate the test concentrations of soy isoflavones used to levels that demonstrate usefulness in
humans. Additional research is needed to determine whether the isoflavone concentrations
used in in vitro studies can be physiologically achieved under in vivo conditions.

5. Conclusions

Daidzein, an isoflavone, effectively inhibited muscle atrophy by suppressing the ex-
pression of inflammatory cytokine- and muscle atrophy-related proteins. This study sheds
new light on the muscle atrophy suppression capabilities of soy isoflavones, particularly
daidzein, highlighting their potential in preventing and managing sarcopenia and sar-
copenic obesity. Therefore, our findings are considered to be of significant importance
for the prevention of sarcopenia and sarcopenic obesity through the dietary intake of soy
foods.
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