Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health
Abstract
:1. Introduction
2. The Human Gut Microbiota
3. Effect of Animal-Based Milk on the Gut Microbiota
3.1. Effects of Cow Milk on the Gut Microbiota
Model Work | Subjects | Dosage and Time of Exposition | Effects of Gut Microbiota | Other Health Effects | Reference |
---|---|---|---|---|---|
Human model | 27 type 2 diabetic patients | 10 g CAM power or CM power twice daily for 4 weeks | Significant increase in Phascolarctobacterium and decrease in unclassified Micrococcaceae for CM-treated patients. Significant increase in relative abundance of Clostridium_sensu_stricto_1 in CAM-treated patients | Significant decrease in fasting blood glucose in patients intervened with CAM. Decrease in total cholesterol and HDL-c in both CAM and CM treated patients. Decrease in TNFα and MCP-1, especially in CM-treated patients. Decrease in resistin and lipocalin-2 levels in CAM-treated patients | [84] |
Human model | 90 babies | Breast milk, GOM or CM-based formula for 4 months | α-diversity were less diverse in breast milk-fed children than in formula-fed babies. Erysipelotrichaceae were less abundant in breast milk-fed infant microbiotas, whereas Bacteroidaceae were more abundant | Not provided | [39] |
Human model | 96 overweight or obese people | 500 kcal daily restriction diet either high (1500 mg Ca/day) or low (≤600 mg Ca/day) in dairy products for 24 weeks | Veillonella genus was significantly decreased in low dairy group | Not provided | [10] |
Human model | 64 male subjects | 500 mL of low glycinin soymilk, conventional soymilk, or CM daily for 3 months | Decrease in Proteobacteria phylum in all groups. People who consumed CM increased counts of Roseburia and decreased the counts of Prevotella. Lactobacilli increased in subjects who consumed CM, while they decreased in individuals whose consumed conventional or low-glycinin milk | Not provided | [77] |
Rats model | 48 Sprague–Dawley rats (12 per group) | Restricted caloric diet (5 g/100 g) body weight. Control group received a standard diet, whereas the 3 other groups received 40% of diet by kay, CM or CAM for 28 days | Rats feed with cow or yak milk decreased their GM diversity, whereas rats feed in camel milk increases diversity. Patterns of microbial changes on day 28 was very similar across all three milk groups, featured with less Ruminococcus, Prevotella, Barnesiella intestiniformis, and more Blautia, Bacteroides, Parabacteroides and Clostridium. From the GM point of view, yak and CAM are healthier to consume than CM | Interferon-γ levels were significantly higher in rats feed with CAM. Rats fed with CM increased levels of IgA, IgG and IgM | [2] |
Mice model | 70 C57BL/6J mice | 10 mL/kg body weight daily for 4 consecutive weeks, intragastrically. Seven groups were made: distilled water; whole goat milk; milk fat; casein; milk whey; whey protein | Mice fed with whole goat milk and casein fraction showed higher gut microbiota richness that distilled water-treated mice. Diversity was lower in the whole goat milk and fat milk groups. Whole goat milk increased the relative abundance of lactobacilli | It was found that treatment with certain milk fractions reduced significantly the relative abundance of genes involved in endocrine, cancerous and infectious diseases | [86] |
Rats model | 50 Sprague–Dawley rats (10 per group) | Ad libitum access to water, casein in water, CM, soy beverage or almond beverage | Increase in Actinobacteria phyla (Coriobacteriaceae and Bifidobacteriaceae) and decrease in Bacteroidales (Porytomonadaceae and Bacteroidales S24-7 group) and Firmicutes (Peptostreptococcaceae) phyla in milk-treated animals with respect to water or vegetal beverages-added animals. Lachnospiracease was higher counts in milk-added animals than in vegetal beverages-added animals | Increase in body weight of soy-added animals than in milk or casein-added animals, and these were higher than in almond or water-added animals | [74] |
Mice model | 32 C57BL/6J mice | 10 mL/kg body weight daily for 4 consecutive weeks for 21 days, and the same with 2.5% dextran sodium sulfate, control group and a group without CAM and with 2.5% dextran sodium sulfate | Increasing in GM diversity, and SCFAs production, increase in beneficial bacteria such as Lachnospiraceae and Muribaculaceae, and decrease in harmful bacteria as Bacteroides, and Escherichia-Shigella | Reduction in IL-1B, IL-6 and TNFα in mice administered with CAM. Inhibition of apoptosis of intestinal cells and promotion of the expression of claudin-1, occluding and zonula occludens proteins | [85] |
Mice model | 24 C57BL/6J mice | CAM at 3 g/kg body weight for 8 weeks | CAM increases cecal microbial α-diversity compared to alcohol-treated mice. Increasing of Muribaculaceae, Lachnospiraceae, Blautia and Mucispirillum | CAM prevented alcohol-induced colonic disfunction and lipid accumulation, regulated oxidative stress and inflammatory cytokine production | [87] |
Mice model | 6 BALB/c mice | Fresh GOM at 5 mL/day/mice for 4 weeks | Improved GM richness. Increase in Firmicutes/Bacteroidetes ratio. Increase if norank_f_Bacteroidales_S24-7 group | Not provided | [17] |
Rats model | 60 Sprague–Dawley rats | Rats with dysbiosis induced by amoxicillin (50 mg/kg) were feed with whole CM or GOM for 14 days | Goat milk increased Bifidobacterium, lactobacilli and decreased Clostridium perfringens. CM increased lactobacilli and decreased C. perfringens | SCFAs increasing in rats fed with both goat and CM is a different way, but in higher proportions in the cased of goat milk-fed rats | [75] |
Mice model | 64 C57BL/6J mice | 45 mL raw CAM daily for 28 days | Dromedary CAM propagated the beneficial bacteria (Allobacterium and Akkermansia) and reduced harmful bacteria such as Proteobacteria, Erysipelotrichaceae, and Desulfovibrionaceae | Weight gain in milk consuming mice | [79] |
Mice model | 24 Balb-c mice | 120 g lyophilized milk contained of A1A2 or A2A2 CM or control diet daily for 4 weeks | Deferribacteriaceae and Desulfovibrionaceae as the most discriminant families for the A2A2 group, while Ruminococcaceae were associated with the A1A2 group | Increase in SCFAs, especially for isobutyrate | [76] |
Mice model | 12 C57BL/6J mice | 10 mL of CAM or distilled water/kg body weight intragastrical once a day for 4 weeks | α-diversity increased in animals after fed CAM. Mice fed with CAM showed higher abundance in Allobaculum, Akkermansia and Bifidobacterium genera | Not provided | [88] |
Mice model | 24 C57BL/6J mice | 10 mL of different raw or heat-treated CAM/kg body weight intraperitoneal once a day for 4 weeks | α-diversity in mice GM decreased proportionally to the heat treatment applied to milk. Beneficial genus as Bifidobacterum were lower in mice fed CAM with more severe heat treatments | Increase in SCFAs | [85] |
In vitro | Fecal samples from 10 healthy infant donors were used for fermentations | Human breast milk, infant formula milk, CM, CAM, GOM and mare milk | Compared to initial values, the richness of microbiota of all kinds of milks except infant formula increased their richness. Proteobacteria counts decreased in all milks. Akkermansia decreased in all milks except mare milk. Mare milk also increased counts of Bifidobacteriaceae, Lachnospiraceae, and Lactobacillae more than other milks. | CAM and infant formula produced highest gas pressure than mare milk, human milk, and CM | [3] |
3.2. Effects of Goat Milk and Mare Milk on the Gut Microbiota
3.3. Camel Milk
4. Vegetable Beverages and Effects on the Human Gut Microbiota
Model Work | Subjects | Dosage and Time of Exposition | Effects of Gut Microbiota | Other Health Effects | Reference |
---|---|---|---|---|---|
Rat model | 50 Sprague–Dawley rats (10 per group) | Ad libitum access to water, casein in water, bovine milk, soy beverage or almond beverage | Proteobacteria were higher in soy beverage-added animals. Increase in Acidobacteria in almond group. Lactobacillaceae were higher in soy and almond-treated groups than in the water or milk-added groups. Proteobacteria family member Enterobacteriaceae was higher in soy-supplemented group than in almond or milk-added groups | Bone density results from our study suggests milk and soy supplementations are equally beneficial for (bone) health | [74] |
Piglet model | 18 pigs (9 per group) | 1.047 MJ/kg/day of dairy-based formula or plant-based formula for 11 days | No differences were found for β-diversity between dairy- or plant-based fed piglets. Lactobacillus delbrueki, Lactobacillus crispatus, Fusobacterium and Salmonella enterica were higher in the GM of piglets fed with plant-based formula | Both pro- and anti-inflammatory cytokines, minerals, vitamins and hormones measured in plasma of piglets showed no significant differences between dairy- and plant-based fed piglets | [11] |
Rat model | 35 Sprague–Dawley rats | Ad libitum access to control diet, soymilk diet, high fiber diet or high cholesterol diet for 6 weeks | Soymilk increased the Firmicutes-to-Bacteroidetes ratio due to an increase in lactobacilli counts. Increased genus Coprococcus and Blautia and decreased Barneisella spp. | Soy diet improved serum HDL-c, and expression of ZO-1 and Occludin genes and inflammation-related proteins | [103] |
Rat model | 60 Wistar rats | 3 mL soy product/kg of body weight/day for 30 days | Increase in total anaerobes, Bifidobacterium, Clostridium, Enteroccocus and lactobacilli | Not provided | [108] |
Rat model | 40 Wistar rats | 2 mL soymilk/animal for 4 weeks | Not significant changes were observed | Not provided | [112] |
Human model | 64 male subjects | 500 mL of low glycinin soymilk, conventional soymilk, or bovine milk daily for 3 months | Firmicutes-to-Bacteroidetes ratio decreased in low-glycinin soymilk, conventional soymilk treated subjects. Decrease in Proteobacteria phylum in all groups. Lactobacilli decreased in individuals whose consumed conventional or low-glycinin milk | Not provided | [77] |
Human model | 12 infants | Soy formula (exclusive feeding) for 1 month | This feeding decreased the intestinal bifidobacterial population | Not provided | [105] |
Human model | 6 male subjects and 4 female subjects | 100 g/day of nonfermented soymilk for 2 weeks | Increased of lactobacilli and Bifidobacterium, and decreased counts in Clostridium after soymilk intake | Not provided | [106] |
Human model | 4 male subjects and 4 female subjects | 100 g/day of soymilk for 28 days | Increase in Bifidobacterium and decrease in Enterobacteriaceae on GM | Not provided | [107] |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kehinde, B.A.; Panghal, A.; Garg, M.K.; Sharma, P.; Chhikara, N. Vegetable milk as probiotic and prebiotic foods. Adv. Food Nutr. Res. 2020, 94, 115–160. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; He, Q.; Ding, J.; Wang, H.; Hou, Q.; Zheng, Y.; Li, C.; Ma, Y.; Zhang, H.; Kwok, L.Y. Cow, yak, and camel milk diets differentially modulated the systemic immunity and fecal microbiota of rats. Sci. Bull. 2017, 62, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, B.; Guan, J.; Shi, J.; Evivie, S.E.; Zhao, L.; Huo, G.; Wang, S. Distinct effects of milks from various animal types on infant fecal microbiota through in vitro fermentations. Front. Microbiol. 2020, 11, 580931. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rico, S.; Mondragón, A.d.C.; López-Santamarina, A.; Cardelle-Cobas, A.; Regal, P.; Lamas, A.; Ibarra, I.S.; Cepeda, A.; Miranda, J.M. A2 Milk: New perspectives for food technology and human health. Foods 2022, 11, 2387. [Google Scholar] [CrossRef]
- Tian, B.; Yao, J.-H.; Lin, X.; Lv, W.-Q.; Jiang, L.-D.; Wang, Z.-Q.; Shen, J.; Xiao, H.-M.; Xu, H.; Xu, L.-L.; et al. Metagenomic study of the gut microbiota associated with cow milk consumption in chinese peri-/postmenopausal women. Front. Microbiol. 2022, 13, 957885. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Chen, Q.; Liu, Y.; Qiao, Z.; Sang, S.; Zhang, J.; Zhan, S.; Wu, Z.; Liu, L. Research advances of advanced glycation end products in milk and dairy products: Formation, determination, control strategy and immunometabolism via gut microbiota. Food Chem. 2023, 417, 135861. [Google Scholar] [CrossRef]
- Aslam, H.; Marx, W.; Rocks, T.; Loughman, A.; Chandrasekaran, V.; Ruusunen, A.; Dawson, S.L.; West, M.; Mullarkey, E.; Pasco, J.A.; et al. The effects of dairy and dairy derivatives on the gut microbiota: A systematic literature review. Gut Microbes 2020, 12, 1799533. [Google Scholar] [CrossRef]
- Balk, E.M.; Adam, G.P.; Langberg, V.N.; Earley, A.; Clark, P.; Ebeling, P.R.; Mithal, A.; Rizzoli, R.; Zerbini, C.A.F.; Pierroz, D.D.; et al. Global dietary calcium intake among adults: A systematic review. Osteroporos. Int. 2017, 28, 3315–3324. [Google Scholar] [CrossRef]
- Pop, M.S.; Cheregi, D.C.; Onose, G.; Munteanu, C.; Popescu, C.; Rotariu, M.; Turnea, M.-A.; Dogaru, G.; Ionescu, E.V.; Oprea, D.; et al. Exploring the potential benefits of natural calcium-rich mineral waters for health and wellness: A systematic review. Nutrients 2023, 15, 3126. [Google Scholar] [CrossRef]
- Bendtsen, L.Q.; Blædel, T.; Holm, J.B.; Lorenzen, J.K.; Mark, A.B.; Kiilerich, P.; Kristiansen, K.; Astrup, A.; Larsen, L.H. High intake of dairy during energy restriction does not affect energy balance or the intestinal microflora compared with low dairy intake in overweight individuals in a randomized controlled trial. Appl. Physiol. Nutr. Metab. 2018, 43, 1–10. [Google Scholar] [CrossRef]
- Gurung, M.; Rosa, F.; Yelvington, B.; Terry, N.; Read, Q.D.; Piccolo, B.D.; Moody, B.; Tripp, P.; Pittman, H.E.; Fay, B.L.; et al. evaluation of a plant-based infant formula containing almonds and buckwheat on gut microbiota composition, intestine morphology, metabolic and immune markers in a neonatal piglet model. Nutrients 2023, 15, 383. [Google Scholar] [CrossRef] [PubMed]
- Cichonska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Ziarno, M.; Cichonska, P. Lactic acid bacteria-fermentable cereal- and pseudocereal-based beverages. Microorganisms 2021, 9, 2532. [Google Scholar] [CrossRef] [PubMed]
- Guilleamrd, E.; Poirel, M.; Schäfer, F.; Quinquis, L.; Rossoni, C.; Keicher, C.; Wagner, F.; Szajewska, H.; Barbut, F.; Derrien, M.; et al. A randomised, controlled trial: Effect of a multistrain fermented milk on the gut microbiota recovery after helicobacter pylori therapy. Nutrients 2021, 13, 3171. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ma, H.; Liu, Y.; Zhao, Y.; Li, L. Effects of goat milk enriched with oligosaccharides on microbiota structures, and correlation between microbiota and short-chain fatty acids in the large intestine of the mouse. J. Dairy Sci. 2021, 104, 2773–2786. [Google Scholar] [CrossRef]
- Yoon, S.; Park, S.; Jung, S.E.; Lee, C.; Kim, W.-K.; Choi, I.-D.; Ko, G. Fermented milk containing Lacticaseibacillus rhamnosus SNU50430 modulates immune responses and gut microbiota in antibiotic-treated mice. J. Microbiol. Biotechnol. 2024, 34, 1299–1306. [Google Scholar] [CrossRef]
- Cheng, S.; Li, B.; Ding, Y.; Hou, B.; Hung, W.; He, J.; Jiang, Y.; Zhang, Y.; Man, C. The probiotic fermented milk of Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 alleviates constipation by improving gastrointestinal motility and gut microbiota. J. Dairy Sci. 2024, 107, 1857–1876. [Google Scholar] [CrossRef]
- Tarique, M.; Ali, A.H.; Kizhakkayil, J.; Gan, R.-Y.; Liu, S.-Q.; Kamal-Eldin, A.; Ayyash, M. Investigating the biological activities and prebiotic potential of exopolysaccharides produced by Lactobacillus delbrueckii and Lacticaseibacillus rhamnosus: Implications for gut microbiota modulation and rheological properties in fermented milk. Food Hydrocoll. Health 2024, 4, 100162. [Google Scholar] [CrossRef]
- Kaga, C.; Nagino, T.; Gomi, A.; Takagi, A.; Miyazaki, K.; Yoshida, Y.; Shida, K. Effects of fermented soymilk with Lacticaseibacillus paracasei YIT 9029 on gut microbiota and defecation habits: A randomized, double-blind, placebo-controlled study. Benef. Microbes 2024, 15, 127–143. [Google Scholar] [CrossRef]
- Vieira, A.D.S.; de Souza, C.B.; Padilha, M.; Zoetendal, E.G.; Smidt, H.; Saad, S.M.I.; Venema, K. Impact of a fermented soy beverage supplemented with acerola by-product on the gut microbiota from lean and obese subjects using an in vitro model of the human colon. Appl. Microbiol. Biotechnol. 2021, 105, 3771–3785. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, S.; Chen, M.; Cui, Y.; Shi, C.; Pu, X.; Gao, W.; Li, Q.; Han, J.; Zhang, A. Effects of buckwheat milk co-fermented with two probiotics and two commercial yoghurt strains on gut microbiota and production of short-chain fatty acids. Food Biosci. 2024, 53, 102537. [Google Scholar] [CrossRef]
- Gallo, V.; Arienzo, A.; Tomassetti, F.; Antonini, G. Milk bioactive compounds and gut microbiota modulation: The role of whey proteins and milk oligosaccharides. Foods 2024, 13, 907. [Google Scholar] [CrossRef] [PubMed]
- Cacciola, N.A.; Venneri, T.; Salzano, A.; D’Onofrio, N.; Martano, M.; Saggese, A.; Vinale, F.; Neglia, G.; Campanile, C.; Baccigalupi, L.; et al. Campanile, G. Chemopreventive effect of a milk whey by-product derived from Buffalo (Bubalus bubalis) in protecting from colorectal carcinogenesis. Cell Commun. Signal. 2023, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Gao, J.; Du, M.; Mao, X. Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. J. Funct. Foods 2018, 47, 56–65. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, X.; Hadiatullah, H.; Li, C.; Wang, X.; Wang, S. Effects of human, caprine, and bovine milk fat globules on microbiota adhesion and gut microecology. J. Agric. Food Chem. 2021, 69, 9778–9787. [Google Scholar] [CrossRef]
- Yuan, Q.; Gong, H.; Du, M.; Li, T.; Mao, X. Milk fat globule membrane supplementation to obese rats during pregnancy and lactation promotes neurodevelopment in offspring by modulating gut microbiota. Front. Nutr. 2022, 9, 945052. [Google Scholar] [CrossRef]
- Bai, G.; Tsuruta, T.; Nishino, N. Dietary soy, meat, and fish proteins modulate the effects of prebiotic raffinose on composition and fermentation of gut microbiota in rats. Int. J. Food Sci. Nutr. 2018, 69, 480–487. [Google Scholar] [CrossRef]
- Nuomin; Baek, R.; Tsuruta, T.; Nishino, N. Modulatory effects of A1 milk, A2 milk, soy, and egg proteins on gut microbiota and fermentation. Microorganisms 2023, 11, 1194. [Google Scholar] [CrossRef]
- Tamura, K.; Sasaki, H.; Shiga, K.; Miyakawa, H.; Shibata, S. The timing effects of soy protein intake on mice gut microbiota. Nutrients 2020, 12, 87. [Google Scholar] [CrossRef]
- Kazura, W.; Michalczyk, K.; Stygar, D. The Relationship between the source of dietary animal fats and proteins and the gut microbiota condition and obesity in humans. Nutrients 2023, 15, 3082. [Google Scholar] [CrossRef]
- Rinniella, E.; Tohumcu, E.; Raoul, P.; Fiorani, M.; Cintoni, M.; Mele, M.C.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The role of diet shaping human gut microbiota. Best Pr. Res. Clin. Gastroenterol. 2023, 62–63, 101828. [Google Scholar] [CrossRef]
- Perler, B.K.; Friedman, E.S.; Wu, G.D. The role of the gut microbiota in the relationship between diet and human health. Annu. Rev. Physiol. 2023, 85, 449–468. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Santamarina, A.; Mondragon, A.d.C.; Cardelle-Cobas, A.; Santos, E.M.; Porto-Arias, J.J.; Cepeda, A.; Miranda, J.M. Effects of unconventional work and shift work on the human gut microbiota and the potential of probiotics to restore dysbiosis. Nutrients 2023, 15, 3070. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Khan, M.Z.; Wang, J.; Chen, T.; Alugongo, G.M.; Li, S.; Cao, Z. Bovine milk microbiota: Key players, origins, and potential contributions to early-life gut development. J. Adv. Res. 2024, 59, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yadav, V.K.; Gacem, A.; Al-Dossari, M.; Yadav, K.K.; El-Gawaad, N.S.A.; Ben Khedher, N.; Choudhary, N.; Kumar, P.; Cavalu, S. Deleterious effect of air pollution on human microbial community and bacterial Flora: A short review. Int. J. Environ. Res. Health 2022, 19, 15494. [Google Scholar] [CrossRef] [PubMed]
- Rekha, K.; Venkidasamy, B.; Samynathan, R.; Nagella, P.; Rebezov, M.; Khayrullin, M.; Ponomarev, E.; Bouyaha, A.; Sarkar, T.; Shariati, M.A.; et al. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit. Rev. Food Sci. Nutr. 2024, 64, 2461–2489. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, N.; Duncan, S.H.; Young, P.; Belenger, A.; McWilliam Leitch, C.; Scott, K.P.; Flint, H.J.; Lousi, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014, 8, 1323–1335. [Google Scholar] [CrossRef]
- Ali, A.H.; Li, S.; Liu, S.-Q.; Gan, R.-Y.; Li, H.-B.; Kamal-Eldin, A.; Ayyash, M. Invited review: Camel milk and gut health—Understanding digestibility and the effect on gut microbiota. J. Dairy Sci. 2024, 107, 2573–2585. [Google Scholar] [CrossRef]
- Tannock, G.W.; Lawley, B.; Munro, K.; Pathmanathan, S.G.; Zhou, S.J.; Makrides, M.; Gibson, R.A.; Sullivan, T.; Prosser, C.G.; Lowry, D.; et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl. Environ. Microbiol. 2013, 79, 3040–3048. [Google Scholar] [CrossRef]
- Gong, H.; Li, T.; Liang, D.; Gao, J.; Liu, X.; Mao, X. Milk fat globule membrane supplementation protects against β-lactoglobulin-induced food allergy in mice via upregulation of regulatory t cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner. Food Sci. Hum. Wellness 2024, 13, 124–136. [Google Scholar] [CrossRef]
- Vega-Bautista, A.; de la Garza, M.; Carrero, J.C.; Campos-Rodríguez, R.; Godínez-Victoria, M.; Drago-Serrano, M.E. The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int. J. Mol. Sci. 2019, 20, 4707. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Arregui, M.; Coltell, O.; Portolés, O.; Guillem-Sáiz, P.; Carrasco, P.; Sorlí, J.V.; Ortega-Azorín, C.; González, J.I.; Ordovás, J.M. Association of the LCT-13910C>T polymorphism with obesity and its modulation by dairy products in a mediterranean population. Obesity 2011, 19, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- McDermott, F.; Kennedy, E.; Tobin, J.T.; Egan, M.; O′Callaghan, T.F.; Brennan, L.; Hogan, S.A. Protein and oligosaccharide composition of colostrum and transition milk from pasture-based dairy cows supplemented prepartum with inorganic selenium, organic selenium or rumen-protected choline. Int. Dairy J. 2024, 155, 105944. [Google Scholar] [CrossRef]
- Pan, Y.; Shiell, B.; Wan, J.; Coventry, M.; Michalski, W.; Lee, A.; Roginski, H. The Molecular Characterization and Antimicrobial Properties of Amidated Bovine β-Lactoglobulin. Int. Dairy J. 2007, 17, 1450–1459. [Google Scholar] [CrossRef]
- Chatterton, D.E.; Smithers, G.; Roupas, P.; Brodkorb, A. Bioactivity of β-Lactoglobulin and α-Lactalbumin—Technological Implications for Processing. Int. Dairy J. 2006, 16, 1229–1240. [Google Scholar] [CrossRef]
- Pellegrini, A.; Thomas, U.; Bramaz, N.; Hunziker, P.; von Fellenberg, R. Isolation and Identification of Three Bactericidal Domains in the Bovine alpha-Lactalbumin Molecule. Biochim. Et. Biophys. Acta (BBA) Gen. Subj. 1999, 1426, 439–448. [Google Scholar] [CrossRef]
- Karav, S.; German, J.B.; Rouquié, C.; Le Parc, A.; Barile, D. Studying Lactoferrin N-Glycosylation. Int. J. Mol. Sci. 2017, 18, 870. [Google Scholar] [CrossRef]
- Karav, S. Selective Deglycosylation of Lactoferrin to Understand Glycans’ Contribution to Antimicrobial Activity of Lactoferrin. Cell. Mol. Biol. 2018, 64, 52–57. [Google Scholar] [CrossRef]
- Petschow, B.W.; Talbott, R.D.; Batema, R.P. Ability of Lactoferrin to Promote the Growth of Bifidobacterium Spp. in vitro Is Independent of Receptor Binding Capacity and Iron Saturation Level. J. Med. Microbiol. 1999, 48, 541–549. [Google Scholar] [CrossRef]
- Larsen, I.S.; Jensen, B.A.H.; Bonazzi, E.; Choi, B.S.Y.; Kristensen, N.N.; Schmidt, E.G.W.; Süenderhauf, A.; Morin, L.; Olsen, P.B.; Hansen, L.B.S.; et al. Fungal lysozyme leverages the gut microbiota to curb dss-induced colitis. Gut Microbes 2021, 13, 1988836. [Google Scholar] [CrossRef]
- Primo, E.D.; Otero, L.H.; Ruiz, F.; Klinke, S.; Giordano, W. The Disruptive Effect of Lysozyme on the Bacterial Cell Wall Explored by an in-silico Structural Outlook. BioChem. Mol. Biol. Educ. 2018, 46, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Argov, N.; Lemay, D.G.; German, J.B. Milk Fat Globule Structure and Function: Nanoscience Comes to Milk Production. Trends Food Sci. Technol. 2008, 19, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Fong, B.Y.; Norris, C.S.; MacGibbon, A.K.H. Protein and Lipid Composition of Bovine Milk-Fat-Globule Membrane. Int. Dairy J. 2007, 17, 275–288. [Google Scholar] [CrossRef]
- Hageman, J.H.J.; Danielsen, M.; Nieuwenhuizen, A.G.; Feitsma, A.L.; Dalsgaard, T.K. Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. Int. Dairy J. 2019, 92, 37–49. [Google Scholar] [CrossRef]
- Bhinder, G.; Allaire, J.M.; Garcia, C.; Lau, J.T.; Chan, J.M.; Ryz, N.R.; Bosman, E.S.; Graef, F.A.; Crowley, S.M.; Celiberto, L.S.; et al. Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Sci. Rep. 2017, 7, 45274. [Google Scholar] [CrossRef]
- Timby, N.; Domellöf, M.; Lönnerdal, B.; Hernell, O. Supplementation of Infant Formula with Bovine Milk Fat Globule Membranes. Adv. Nutr. 2017, 8, 351–355. [Google Scholar] [CrossRef]
- Karav, S.; Le Parc, A.; de Moura Bell, J.M.L.N.; Frese, S.A.; Kirmiz, N.; Block, D.E.; Barile, D.; Mills, D.A. Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated Bifidobacteria. Appl. Environ. Microbiol. 2016, 82, 3622–3630. [Google Scholar] [CrossRef]
- He, J.; Sun, R.; Hao, X.; Battulga, A.; Juramt, N.; Yi, L.; Ming, L.; Rimutu, J. The gut microbiota and its metabolites in mice are affected by high heat treatment of bactrian camel milk. J. Dairy Sci. 2020, 103, 11178–11189. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Raw and heat-treated milk: From public health risks to nutritional quality. Beverages 2017, 3, 54. [Google Scholar] [CrossRef]
- Felfoul, I.; Beaucher, E.; Cauty, C.; Attia, H.; Gaucheron, F.; Ayadi, M. Deposit generation during camel and cow milk heating: Microstructure and chemical composition. Food Bioprocess Technol. 2016, 9, 1268–1275. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Tao, F. Dynamic interplay between microbiota shifts and differential metabolites during dairy processing and storage. Molecules 2024, 29, 2745. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, A.; Calle, A. Assessment of microbial communities in a dairy farm from a food safety perspective. Int. J. Food Microbiol. 2024, 423, 110827. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, structure, and digestive dynamics of milk from different species—A review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef] [PubMed]
- Kula, J.; Tegegne, D. Chemical composition and medicinal values of camel milk. Int. J. Res. Stud. Biosci. 2016, 4, 13–25. [Google Scholar] [CrossRef]
- Vicente, F.; Santiago, C.; Jiménez-Calderón, J.D.; Martínez-Fernández, A. Capacity of milk composition to identify the feeding system used to dairy cows. J. Dairy Res. 2017, 84, 254–263. [Google Scholar] [CrossRef]
- FAO Dairy Market Review. Available online: http://www.fao.org/3/ca8341en/CA8341EN.pdf (accessed on 15 June 2024).
- Soares, F.A.; Salinas, B.; Reis, S.; Nunes, C. Milking the milk: Exploiting the full potential of milk constituents for nature-derived delivery systems. Trends Food Sci. Technol. 2023, 141, 104209. [Google Scholar] [CrossRef]
- Karav, S.; Bell, J.M.L.N.D.M.; Parc, A.L.; Liu, Y.; Mills, D.A.; Block, D.E.; Barile, D. Characterizing the release of bioactive N-glycans from dairy products by a novel endo-β-N-acetylglucosaminidase. Biotechnol. Prog. 2015, 31, 1331–1339. [Google Scholar] [CrossRef]
- Boehm, G.; Stahl, B. Oligosaccharides from Milk. J. Nutr. 2007, 137, 847S–849S. [Google Scholar] [CrossRef]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine colostrum and its potential for human health and nutrition. Front. Nutr. 2021, 8, 651721. [Google Scholar] [CrossRef]
- Bunyatratchata, A.; Parc, A.L.; De Moura Bell, J.M.L.N.; Cohen, J.L.; Duman, H.; Arslan, A.; Kaplan, M.; Barile, D.; Karav, S. Release of bifidogenic N-glycans from native bovine colostrum proteins by an endo-β-N-acetylglucosaminidase. Enzym. Microb. Technol. 2023, 162, 110138. [Google Scholar] [CrossRef]
- Duman, H.; Kaplan, M.; Arslan, A.; Sahutoglu, A.S.; Kayili, H.M.; Frese, S.A.; Karav, S. Potential applications of endo-β-N-acetylglucosaminidases from Bifidobacterium longum subspecies infantis in designing value-added, next-generation infant formulas. Front. Nutr. 2021, 8, 646275. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and nondairy beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Cakebread, J.; Wallace, O.A.M.; Henderson, H.; Jauregui, R.; Young, W.; Hodgkinson, A. The impacts of bovine milk, soy beverage, or almond beverage on the growing rat microbiome. PeerJ 2022, 10, e13415. [Google Scholar] [CrossRef] [PubMed]
- Butts, C.A.; Paturi, G.; Hedderley, D.I.; Martell, S.; Dinnan, H.; Stoklosinski, H.; Carpenter, E.A. Goat and cow milk differ in altering microbiota composition and fermentation products in rats with gut dysbiosis induced by amoxicillin. Food Funct. 2021, 12, 3104–3119. [Google Scholar] [CrossRef] [PubMed]
- Guantario, B.; Giribaldi, M.; Devirgiliis, C.; Finamore, A.; Colombino, E.; Capucchio, M.T.; Evangelista, R.; Motta, V.; Zinno, P.; Cirrincione, S.; et al. A comprehensive evaluation of the impact of bovine milk containing different beta-casein profiles on gut health of aging mice. Nutrients 2020, 12, 2147. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Raudales, D.; Hoeflinger, J.L.; Bringe, N.A.; Cox, S.B.; Dowd, S.E.; Miller, M.J.; de Mejia, E.G. Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men. Gut Microbes 2012, 3, 490–500. [Google Scholar] [CrossRef]
- Song, W.S.; Jo, S.H.; Lee, J.S.; Kwon, J.E.; Park, J.H.; Kim, Y.R.; Baek, J.H.; Kim, M.G.; Kim, Y.G. Multiomics analysis reveals the biological effects of live Roseburia intestinalis as a high-butyrate-producing bacterium in human intestinal epithelial cells. Biotechnol. J. 2023, 18, e2300180. [Google Scholar] [CrossRef]
- Sheikh, A.; Almathen, F.; Alfattah, M. The impact of dromedary camel milk on mice gut microbiota. Appl. Biol. Chem. 2022, 65, 30. [Google Scholar] [CrossRef]
- Zhu, Q.; Jin, Z.; Wu, R.; Gao, R.; Guo, B.; Gao, Z.; Yang, Y.; Qin, H. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS ONE 2014, 9, e90849. [Google Scholar] [CrossRef]
- Brody, E.P. Biological activities of bovine glycomacropeptide. Br. J. Nutr. 2000, 84, 39–46. [Google Scholar] [CrossRef]
- Duman, H.; Karav, S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front. Immunol. 2023, 14, 1214514. [Google Scholar] [CrossRef] [PubMed]
- Manso, M.A.; López-Fandiño, R. Angiotensin I converting enzyme–inhibitory activity of bovine, ovine, and caprine κ-Casein macropeptides and their tryptic hydrolysates. J. Food Prot. 2003, 66, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wu, F.; Zhang, M.; Fang, B.; Zhao, L.; Dong, L.; Zhou, X.; Ge, S. Hypoglycemic effect of camel milk powder in type 2 diabetic patients: A randomized, double-blind, placebo-controlled trial. Food Sci. Nutr. 2021, 9, 4461–4472. [Google Scholar] [CrossRef] [PubMed]
- Pratelli, G.; Tamburini, B.; Badami, G.D.; Lo Pizzo, M.; De Blasio, A.; Carlisi, D.; Di Liberto, D. Cow’s milk: A benefit for human health? Omics tools and precision nutrition for lactose intolerance management. Nutrients 2024, 16, 320. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, F. Comparison of whole goat milk and its major fractions regarding the modulation of gut microbiota. J. Sci. Food Agric. 2022, 102, 3618–3627. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.; Qiao, X.Y.; Yi, L.; Siren, D.; He, J.; Hai, L.; Guo, F.; Xiao, Y.; Ji, R. Camel milk modulates ethanol-induced changes in the gut microbiome and transcriptome in a mouse model of acute alcoholic liver disease. J. Dairy Sci. 2020, 103, 3937–3949. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Wang, B.; Zhang, F.; Shao, Y. Influence of Bactrian camel milk on the gut microbiota. J. Dairy Sci. 2018, 101, 5758–5769. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Salman, S.H.M.; Redha, A.A.; Zannou, O.; Chabi, I.B.; Oussou, K.F.; Bhowmik, S.; Nirmal, N.P.; Maqssod, S. Physicochemical and nutritional properties of different nonbovine milk and dairy products: A review. Int. Dairy J. 2024, 148, 105790. [Google Scholar] [CrossRef]
- Gallier, S.; Van den Abbeele, P.; Prosser, C. Comparison of the bifidogenic effects of goat and cow milk-based infant formulas to human breast milk in an in vitro gut model for 3-month-old infants. Front. Nutr. 2020, 7, 608495. [Google Scholar] [CrossRef]
- Al-Kaisy, Q.H.; Al-Saadi, J.S.; AL-Rikabi, A.K.J.; Altemimi, A.B.; Hesarinejad, M.A.; Abedelmaksoud, T.G. Exploring the health benefits and functional properties of goat milk proteins. Food Sci. Nutr. 2023, 11, 5641–5656. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, R.; Liu, R.; Li, L. Goat Milk Fermented by lactic acid bacteria modulates small intestinal microbiota and immune responses. J. Funct. Foods 2020, 65, 103744. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Ge, W.; Song, Y.; He, R.; Wang, Z.; Zhao, L. Camel milk peptides alleviate hyperglycemia by regulating gut microbiota and metabolites in type 2 diabetic mice. Food Res. Int. 2023, 173, 113278. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Guo, K.; Chen, Q.; Wang, Y. Jirimutu Camel milk modulates the gut microbiota and has anti-inflammatory effects in a mouse model of colitis. J. Dairy Sci. 2022, 105, 3782–3793. [Google Scholar] [CrossRef]
- Kadri, Z.; Spitaels, F.; Cnockaert, M.; Amar, M.; Joossens, M.; Vandamme, P. The bacterial diversity of raw moroccon camel milk. Int. J. Food Microbiol. 2021, 341, 109050. [Google Scholar] [CrossRef]
- Baldwin, J.; Collins, B.; Wolf, P.G.; Martinez, K.; Shen, W.; Chuang, C.C.; Zhong, W.; Cooney, P.; Cockrell, C.; Chang, E.; et al. table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J. Nutr. Biochem. 2016, 27, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant based milk substitutes and fermented dairy type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Cichońska, P.; Ziebicka, A.; Ziarmo, M. Properties of rice-based beverages fermented with lactic acid bacteria and Propionibacterium. Molecules 2022, 27, 2558. [Google Scholar] [CrossRef]
- Walczak, Z.; Florowska, A.; Krygier, K. Plant-based milk beverages-characteristics and availability in Poland. Food Ind. 2017, 71, 14–18. [Google Scholar]
- Fructuoso, I.; Romano, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Arya-Castillo, L.; Zandonadi, R.P. An overview of the nutritional aspects of plant-based beverages used as substitutes for cow’s milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Ziarno, M.; Zareba, D.; Maciejak, M.; Veber, A.L. The impact of dairy starter cultures on selected qualitative properties of functional fermented beverage prepared from germinated white kidney beans. J. Food Nutr. Res. 2019, 58, 167–176. [Google Scholar]
- Escobar-Sáez, D.; Montero-Jiménez, L.; García-Herrera, P.; Sánchez-Mata, M.C. Plant-based drinks for vegetarian or vegan toddlers: Nutritional evaluation of commercial products, and review of health benefits and potential concerns. Food Res. Int. 2022, 160, 111646. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Han, H.W.; Yim, S.Y. Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats. Food Funct. 2015, 6, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, O.; Milajerdi, A.; Siadat, S.D.; Keshavarz, S.A.; Sima, A.R.; Vahedi, H.; Adibi, P.; Esmaillzadeh, A. Effects of soy milk consumption on gut microbiota, inflammatory markers, and disease severity in patients with ulcerative colitis: A study protocol for a randomized clinical trial. Trials 2020, 21, 565. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, G.; Peroni, D.; Bessi, E.; Morelli, L. Molecular characterization of intestinal microbiota in infants fed with soymilk. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Inoguchi, S.; Ohashi, Y.; Narai-Kanayama, A.; Aso, K.; Nakagaki, T.; Fujisawa, T. Effects of nonfermented and fermented soybean milk intake on fecal microbiota and fecal metabolites in humans. Int. J. Food Sci. Nutr. 2012, 63, 402–410. [Google Scholar] [CrossRef]
- Fujisawa, T.; Ohashi, Y.; Shin, R.; Narai-Kanayama, A.; Nakagaki, T. the effect of soymilk intake on the fecal microbiota, particularly bifidobacterium species, and intestinal environment of healthy adults: A pilot study. Biosci. Microbiota Food Health 2017, 36, 33–37. [Google Scholar] [CrossRef]
- Bedani, R.; Pauly Silveira, N.D.; Roselino, M.N.; de Valdez, G.F.; Rossi, E.A. Effect of fermented soy product on the fecal of rats fed on a beef-based animal diet. J. Sci. Food Agric. 2010, 90, 233–238. [Google Scholar] [CrossRef]
- Qin, Y.; Tong, X.; Mei, W.J.; Cheng, Y.; Zou, Y.; Han, K.; Yu, J.; Jie, Z.; Zhang, T.; Zhu, S.; et al. Consistent signatures in the human gut microbiome of old- and young-onset colorectal cancer. Nat. Commun. 2024, 15, 3396. [Google Scholar] [CrossRef]
- Lamas, A.; Fernandez-No, I.C.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. Prevalence, molecular characterization and antimicrobial resistance of Salmonella serovars isolated from northwestern Spanish broiler flocks (2011–2015). Poult. Sci. 2016, 95, 2097–2105. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Lamas, A.; Mondragon, A.C.; Cardelle-Cobas, A.; Regal, P.; Rodriguez-Avila, J.A.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Probiotics effects against virus infections: New weapons for an old war. Foods. 2021, 10, 130. [Google Scholar] [CrossRef]
- Wang, Z.; Bao, Y.; Zhang, Y.; Zhang, J.; Yao, G.; Wang, S.; Zhang, H. Effect of soymilk fermented with lactobacillus plantarum p-8 on lipid metabolism and fecal microbiota in experimental hyperlipidemic rats. Food Biophys. 2013, 8, 43–49. [Google Scholar] [CrossRef]
Milk Component | Effects on Gut Microbiota | References |
---|---|---|
Lactose | Increase lactobacilli and Bifidobacterium growth | [7,24] |
Milk oligosaccharides | Favors growth of beneficial bacteria as lactobacilli and Bifidobacterium; Inhibiting bacterial adhesion of pathogens to enterocytes | [22,25,57] |
α-lactalbumin | Promoting growth of beneficial bacteria and exerts antimicrobial activity against some pathogens | [22] |
Lactoferrin | Prebiotic effect and inhibition of pathogens | [22,41,48,49] |
Lysozyme | Increase resistance to intestinal colonization by some pathogens | [44] |
Milk fat globule membrane | Promote the formation of binding groups on the surface of probiotics; In vitro bactericidal effects against some pathogens | [25,46,54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondragon Portocarrero, A.d.C.; Lopez-Santamarina, A.; Lopez, P.R.; Ortega, I.S.I.; Duman, H.; Karav, S.; Miranda, J.M. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients 2024, 16, 3108. https://doi.org/10.3390/nu16183108
Mondragon Portocarrero AdC, Lopez-Santamarina A, Lopez PR, Ortega ISI, Duman H, Karav S, Miranda JM. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients. 2024; 16(18):3108. https://doi.org/10.3390/nu16183108
Chicago/Turabian StyleMondragon Portocarrero, Alicia del Carmen, Aroa Lopez-Santamarina, Patricia Regal Lopez, Israel Samuel Ibarra Ortega, Hatice Duman, Sercan Karav, and Jose Manuel Miranda. 2024. "Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health" Nutrients 16, no. 18: 3108. https://doi.org/10.3390/nu16183108
APA StyleMondragon Portocarrero, A. d. C., Lopez-Santamarina, A., Lopez, P. R., Ortega, I. S. I., Duman, H., Karav, S., & Miranda, J. M. (2024). Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients, 16(18), 3108. https://doi.org/10.3390/nu16183108