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Abstract: Our study aimed to validate existing equations and develop the new NRGCO equation to
estimate resting energy expenditure (REE) in the Colombian population with moderate-to-high
physical activity levels. Upon satisfying the inclusion criteria, a total of 86 (43F, 43M) healthy
adults (mean [SD]: 27.5 [7.7] years; 67.0 [13.8] kg) were evaluated for anthropometric variables
and REE by indirect calorimetry using wearable gas analyzers (COSMED K4 and K5). Significant
positive correlations with REE were found for body mass (r = 0.65), body mass-to-waist (r = 0.58),
arm flexed and tensed girth (r = 0.66), corrected thigh girth (r = 0.56), corrected calf girth (r = 0.61),
and sum of breadths (∑3D, r = 0.59). As a novelty, this is the first time a significant correlation
between REE and the sum of corrected girths (∑3CG, r = 0.63) is reported. Although existing
equations such as Harris–Benedict (r = 0.63), Mifflin–St. Jeor (r = 0.67), and WHO (r = 0.64)
showed moderate-to-high correlations with REE, the Bland-Altman analysis revealed significant
bias (p < 0.05), indicating that these equations may not be valid for the Colombian population.
Thus, participants were randomly distributed into either the equation development group (EDG,
n = 71) or the validation group (VG, n = 15). A new model was created using body mass, sum
of skinfolds (∑8S), corrected thigh, corrected calf, and age as predictors (r = 0.755, R2 = 0.570,
RMSE = 268.41 kcal). The new NRGCO equation to estimate REE (kcal) is: 386.256 + (24.309 ×
BM) − (2.402 × ∑8S) − (21.346 × Corrected Thigh) + (38.629 × Corrected Calf) − (7.417 × Age).
Additionally, a simpler model was identified through Bayesian analysis, including only body mass
and ∑8S (r = 0.724, R2 = 0.525, RMSE = 282.16 kcal). Although external validation is needed, our
validation resulted in a moderate correlation and concordance (bias = 91.5 kcal) between measured
and estimated REE values using the new NRGCO equation.
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1. Introduction

Total daily energy expenditure (TDEE) refers to the energy consumed by the body over
a 24-h period. TDEE comprises the basal metabolic rate (BMR, or resting energy expenditure
[REE], depending on how it is measured), the thermic effect of food (TEF), and the energy
expenditure from physical activity, including both exercise and non-exercise activities [1,2].
BMR/REE is the energy an individual needs for vital physiological functions while at
rest and represents 60–70% of TDEE [3]. TEF, on the other hand, is the metabolic energy
required for digestion, absorption, and transport of food, accounting for 6–10% of TDEE [4].
Finally, the energy expenditure of physical activity refers to any musculoskeletal movement
resulting in energy expenditure [5] and represents between 15–30% of TDEE [6]. Besides
the energy costs of sustaining the human body and regular activities, the energy costs of
stress-induced allostatic states (e.g., injury, disease, etc.), currently known as “allostasis and
stress-induced energy expenditure” (ASEE), cannot be omitted [7].

Given its significant contribution to TDEE, various equations have been developed
to estimate BMR/REE in different populations using predictor variables (e.g., physiolog-
ical, anthropometric, etc.) [8–13]. Although popular equations such as Harris–Benedict,
Schofield, Müller, Mifflin–St. Jeor, Cunningham, and others have advantages in terms of
practicality and low cost [14,15], using formulas in populations other than those used in
their development may overestimate or underestimate BMR/REE, as has been reported in
obese women [16], older adults, and cancer patients [17]. Therefore, in the athletic popula-
tion, the selection of a BMR/REE equation should be considered suitable only if it aligns
with the demographics, physical characteristics, and sport of the athlete. Unfortunately, the
lack of accuracy in estimating REE and energy intake could affect nutritional prescription
and adherence to physical exercise programs, thereby hindering the achievement of goals
and resulting in a lack of confidence in the process. It is important to highlight that the
inadequate selection of a BMR/REE equation could increase the likelihood of suffering
from Relative Energy Deficiency Syndrome, which raises the risk of musculoskeletal in-
juries, irritability, depression, decreased coordination, concentration, muscle strength, and
cardiovascular endurance, among other effects [18].

To date, no equation has been developed to estimate REE in any Colombian population.
Thus, the aim of this study is to develop alternatives for estimating REE in Colombian men
and women with moderate-to-high physical activity levels. Using indirect calorimetry as a
reference method, we aim to conduct the external validation of the equations commonly
used in clinical practice: Harris–Benedict, Mifflin–St Jeor, and the “Food and Agriculture
Organization of the United Nations/World Health Organization/United Nations” (WHO)
equations. In addition, a novel equation, called NRGCO, will also be developed. We
hypothesize that the new NRGCO equation will allow for the estimation of REE based on
simple anthropometric variables associated with musculoskeletal mass, sex, and/or basic
measurements (body mass and stature).

2. Materials and Methods
2.1. Study Design

The study was cross-sectional and designed based on international recommendations
for multicentric research. It is reported according to the Strengthening the Reporting of Ob-
servational Studies in Epidemiology–Nutritional Epidemiology (STROBE–nut) guidelines,
an extension of the STROBE statement [19,20].

2.2. Setting

This investigation was undertaken as part of the NRG Project of DBSS International
SAS (NRG_DBSS, https://ichgcp.net/clinical-trials-registry/NCT05832710 (accessed on
31 May 2024)), with the support of Universidad CES, ARTHROS IPS, and Fundación Uni-
versitaria del Área Andina. Anthropometric and indirect calorimetry data were collected
during the end of the second semester of 2023 and the first semester of 2024, as one of

https://ichgcp.net/clinical-trials-registry/NCT05832710
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the thesis activities stipulated by the Master of Science in Sports Nutrition program at
Universidad CES.

2.3. Participants

Men and women residing in Medellín and Bogotá or within the metropolitan area
with moderate-to-high physical activity levels were recruited. The inclusion criteria were:
(i) adults; (ii) individuals classified as having moderate or high physical activity levels
according to the previously described IPAQ questionnaire; (iii) individuals who voluntarily
signed the informed consent; (iv) individuals residing in the cities of Medellín or Bogotá and
nearby municipalities in the metropolitan areas. Individuals over 60 years old, pregnant
women, individuals diagnosed with cardiometabolic or respiratory diseases, or individuals
with any type of musculoskeletal injury were excluded.

2.4. Variables

Primary outcomes of this study include basic measures, skinfolds (mm), girths (cm),
and breadths (mm), according to the restricted profile established by the International
Society for the Advancement of Kinanthropometry (ISAK). In addition, REE (kcal), assessed
by indirect calorimetry, was used as a reference. Other anthropometric indices were
calculated, and REE estimates were made using previously developed equations.

2.5. Data Sources/Measurement

The measurements of eligible participants were conducted at the facilities of the
participating universities (Universidad CES and Fundación Universitaria del Área Andina)
and research centers (ARTHROS IPS and DBSS) located in Medellín and Bogotá. To
minimize technical errors during the measurements, assessments were performed between
8:00 and 17:00 (GMT-5) under controlled environmental conditions (<24 ◦C and <60%
humidity). Additionally, standardized procedures by the DBSS Research Division were
followed to develop and validate equations in different populations [21,22].

2.5.1. Anthropometry-Based Analysis of Body Composition

Anthropometric measurements were carried out following the International Standards
for Anthropometric Assessment established by ISAK [23]. Body mass was recorded using a
digital scale with accuracy to the nearest 100 g (Seca 874, Hamburg, Germany). Stature was
measured with a portable stadiometer with 1 mm graduations (Seca 213, Hamburg, Ger-
many). The skinfold thickness of the triceps, subscapular, biceps, iliac crest, supraspinale,
abdominal, thigh, and calf was measured with a calibrated skinfold caliper with constant
closing compression of 10 g/mm2 (Harpenden, Baty Int., UK; Slim Guide, Creative Health,
Ann Arbor, MI, USA). The girth measurements were carried out using a non-extensible
metal Lufkin w606PM tape of 0.7 mm thickness (Apex Tool Group, Sparks, MD, USA).
Breadth measurements were performed with small sliding calipers (Campbell 10, Rosscraft
Srl, Buenos Aires, Argentina; Cescorf Equipamentos para Esportes, Porto Alegre, Brazil).
Measurement error relative to technical standards by ISAK L2-certified anthropometrists
was within acceptable limits (<5% for skinfolds, 1% for other measurements).

The sum of six and eight skinfolds (∑6S and ∑8S, respectively) were computed as
absolute variables (expressed in millimeters), associated with whole-body adiposity as
they correlate with whole-body fat mass [24]. The muscle girths for the arm, thigh, and
calf were adjusted for skinfold thickness using the formula: girth − (π × skinfold) as
a musculoskeletal index [25]. The sum of arm, thigh, and calf corrected girths (∑3CG)
was computed, as well as the sum of humerus, bi-styloid, and femur breadths (∑3D).
Other anthropometric indices evaluated as potential regressors include body mass-to-waist
(BM/W) and waist-to-stature (W/Stature).
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2.5.2. Resting Energy Expenditure

To measure REE, we used the portable gas analyzer unit COSMED K4 (COSMED Srl,
Rome, Italy) and the 4th generation wearable metabolic system COSMED K5 (COSMED Srl,
Rome, Italy). Both devices have been validated previously and exhibit moderate-to-strong
reliability [26–29]. For the assessment of REE, the recommendations established by the
American Dietetic Association were followed to improve robustness and reproducibil-
ity [30].

Additionally, aware of the technical differences between basal metabolic rate and
REE, we evaluated the validity of equations widely utilized in clinical practice: Harris–
Benedict [31], Mifflin–St. Jeor [12], and the “Food and Agriculture Organization of the
United Nations/World Health Organization/United Nations” (WHO) equation [32].

2.5.3. Physical Activity Level

The participants were classified into three groups according to their level of physical
activity (sedentary, physically active, and amateur athletes), using the validated short-form
IPAQ questionnaire to identify the level of physical activity [33,34]. For this phase of the
NRG Project, we only analyzed data from individuals with moderate-to-high levels of
physical activity. The internal consistency of the instrument population was calculated
using Cronbach’s alpha (in our population, α = 0.619 and 0.823 for moderate and vigorous
activity, respectively).

2.6. Study Size

Based on previous recommendations [35], the a priori calculation of the sample size
resulted in 90 participants for an R2 = 0.50 and a potentially accurate estimation outcome
with three independent variables as regressors. In this study, a total of ninety physi-
cally active male and female Colombians (27.4 [7.7] years; 67.2 [13.6] kg; 167.2 [8.5] cm;
23.8 [3.6] kg/m2) were considered potentially eligible.

2.7. Statistical Methods

Descriptive statistics were reported as mean and standard deviation (SD), unless
stated otherwise. To validate existing equations externally, we conducted correlation
and agreement analyses between actual and estimated REE. This involved calculating the
correlation coefficient (CC, as Pearson’s r), the coefficient of determination (R2), the adjusted
coefficient of determination (aR2), and the root mean squared error (RMSE). Bland-Altman
plots were utilized for concordance analysis.

Following the latest guidelines for enhancing data analysis practices and analytical
methods from the DBSS Research Division [22,36], we employed the Yuen-Dixon test [37]
utilizing 20% trimmed means (µt) and 20% winsorized standard deviations (σw) as a robust
statistical approach for comparing samples of different sizes (i.e., EDG [n = 71] versus VG
[n = 15]). This robust statistical method offers better control of Type I error when variances
are unequal [38]. To develop the new equation, all possible combinations of independent
variables in EDG were tested using the Ordinary Least Squares (OLS) approach with
stepwise forward-backward variable selection. Zellner-Siow prior distributions on the
regression coefficients were employed to compare all Bayes factors against the null model,
and all potential models were ranked by their probability from highest to lowest. The
Bayesian Adaptive Sampling (BAS) R package was used for this ranking process. The
model’s explanatory power was assessed using the aR2. The SEE was calculated for all
models to gauge regression precision, while the RMSE was used to measure the closeness
of the estimated values to the actual values measured by DXA, as detailed elsewhere [21].
Additionally, all potential regression models were ranked based on the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), Mallows’ Cp, and Hocking’s Sp.
Following verification of all assumptions of multiple regression analysis (normality of
residuals confirmed by the Omnibus k-squared and Jarque-Bera tests), the model with the
best performance was chosen for further analysis. The predictability of the selected model
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was evaluated in the VG by computing the CC, R2, aR2, and RMSE. The agreement analysis
for the new equation, NRGCO, was conducted using Bland-Altman plots, with concordance
intervals reported at 95% (limits of agreement, LoA). Statistical analyses were performed
using the most recent version of the R statistical computing environment [39].

3. Results
3.1. Participants

After the call and assessment of 90 men and women who voluntarily participated in
this study, four individuals were excluded due to inconsistent values. Therefore, a total of
86 apparently healthy adults met the inclusion criteria and were successfully evaluated for
each of the primary variables in this study. Most participants belonged to the mestizo-white
community, except for one participant who was Afro-descendant. The COSMED K5 device
was used to evaluate 51 participants, while the COSMED K4 analyzer was used for the
remaining 35 participants. Table 1 shows the characteristics of the participants.

A correlation analysis was performed to explore the relationship between the study
variables and REE in all participants (Figure 1). Body mass (r = 0.65, 95% CI [0.51, 0.76]),
BM/W (r = 0.58, 95% CI [0.42, 0.70]), arm flexed and tensed girth (r = 0.66, 95% CI [0.52,
0.77]), corrected thigh girth (r = 0.56, 95% CI [0.40, 0.69]), and corrected calf girth (r = 0.61,
95% CI [0.46, 0.73]) had a significant positive correlation with REE (p < 0.01). It is important
to note that ∑3CG and ∑3D showed significant positive correlations with REE (r = 0.63,
95% CI [0.49, 0.75] and r = 0.59, 95% CI [0.43, 0.71], respectively). Full statistical results are
reported in Supplementary Table S1.
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Figure 1. Draftsman correlation plot. Positive correlations are shown in blue, while negative
correlations are depicted in red. The intensity of the colors and the size of the circles are proportional
to the correlation coefficients. ∑CG: sum of corrected girths (arm + thigh + calf); ∑D: sum of
breadths (humerus + bi-styloid + femur); ∑6S: sum of six skinfolds; ∑8S: sum of eight skinfolds;
BM/W: body mass-to-waist ratio; CG: corrected girth; REE: resting energy expenditure; W/Stature:
waist-to-stature ratio.
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Table 1. Characteristics of the study population.

Variable All (n = 86)
x (SD) [95% CI]

EDG (n = 71)
x (SD) [95% CI]

VG (n = 15)
x (SD) [95% CI] ξ p Value

Sex Women 43 (50.00%) 35 (49.29%) 8 (53.33%)
Men 43 (50.00%) 36 (50.70%) 7 (46.66%)

Region Medellín 44 (51.16%) 38 (53.52%) 6 (40.0%)
Bogotá 42 (48.83%) 33 (46.47%) 9 (60.0%)

PAL Moderate 14 (16.27%) 12 (16.90%) 2 (13.33%)
High 72 (83.72%) 59 (83.09%) 13 (86.66%)

Age (years) 27.5 (7.72)
[25.8, 29.1]

27.4 (7.53)
[25.6, 29.1]

28.1 (8.84)
[23.2, 33.0] 0.137 0.738

Body mass (kg) 67.0 (13.8)
[64.0, 69.9]

67.5 (13.9)
[64.2, 70.9]

64.3 (13.1)
[57.0, 71.5] 0.140 0.535

Stature (cm) 167.0 (8.65)
[165, 169]

168.0 (8.52)
[166, 170]

165.0 (9.13)
[160, 170] 0.261 0.309

BMI (kg/m2)
23.8 (3.65)
[23.0, 24.5]

23.8 (3.68)
[22.9, 24.7]

23.5 (3.61)
[21.5, 25.5] 0.127 0.985

Waist (cm) 76.1 (9.36)
[74.1, 78.1]

76.0 (9.54)
[73.8, 78.3]

76.2 (8.75)
[71.4, 81.0] 0.133 0.976

BM/W (m/m) 87.3 (9.49)
[85.3, 89.3]

88.1 (9.41)
[85.8, 90.3]

83.6 (9.31)
[78.5, 88.8] 0.429 0.091

W/Stature (cm/cm) 0.45 (0.04)
[0.44, 0.46]

0.45 (0.04)
[0.44, 0.46]

0.46 (0.04)
[0.43, 0.48] 0.164 0.455

∑6S (mm) 84.5 (30.9)
[77.9, 91.1]

84.3 (30.5)
[77.1, 91.5]

85.2 (34.0)
[66.4, 104] 0.149 0.758

∑8S (mm) 108.0 (39.4)
[99.4, 116]

108.0 (38.6)
[98.9, 117]

107.0 (44.2)
[82.4, 131] 0.122 0.600

Arm CG (cm) 26.6 (5.10)
[25.5, 27.7]

26.8 (5.25)
[25.5, 28.0]

25.5 (4.28)
[23.2, 28.0] 0.143 0.679

Thigh CG (cm) 48.2 (6.67)
[46.8, 49.6]

48.5 (6.86)
[46.9, 50.1]

46.7 (5.62)
[43.6, 49.8] 0.199 0.365

Leg CG (cm) 32.5 (3.32)
[31.8, 33.3]

32.8 (3.39)
[32.0, 33.6]

31.4 (2.75)
[29.9, 32.9] 0.282 0.281

∑3CG (mm) 107.0 (14.4)
[104, 110]

108.0 (14.8)
[105, 112]

104.0 (12.1)
[97, 110] 0.185 0.463

∑3D (mm) 20.7 (1.51)
[20.3, 21.0]

20.7 (1.45)
[20.4, 21.1]

20.3 (1.78)
[19.3, 21.3] 0.205 0.356

REE (kcal) 1796 (415)
[1707, 1885]

1797 (412)
[1700, 1895]

1791 (443)
[1545, 2036] 0.112 0.821

Data are presented as mean (standard deviation) unless otherwise indicated. ξ: explanatory measure of effect size;
∑6S: sum of six skinfolds; ∑8S: sum of eight skinfolds; BM/W: body mass-to-waist ratio; CG: corrected girth;
CI: confidence interval; EDG: equation development group; MoE∆: margin of error for the CI on the difference
between the two trimmed means; PAL: physical activity level; VG: validation group; W/Stature: waist-to-stature
ratio. Statistical significance (p < 0.05 of the two-tailed p value) for the Yuen-Dixon test would indicate a difference
between EDG and VG.

3.2. External Validation of the REE Equations in the Colombian Population

All participants in this study were included in the external validation analysis of
common equations to estimate REE. Moderate-to-high positive correlations were found for
the Harris–Benedict (r = 0.631 [95% CI: 0.484, 0.744]), Mifflin–St. Jeor (r = 0.672 [95% CI:
0.537, 0.774]), and WHO (r = 0.641 [95% CI: 0.497, 0.751]) equations. It is worth noting that
men showed higher correlation coefficient values than women (significant when comparing
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the 95% confidence intervals), as well as slightly non-significant superior correlation values
for data collected in Medellín and those with high levels of physical activity (Figure 2).
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Figure 2. Correlation plots between measured REE (indirect calorimetry) and estimated REE with
different equations. The figure also displays the correlation coefficients (Pearson’s r) by sex, city, and
physical activity level (PAL).

Despite the above, none of the equations showed good agreement with the experi-
mental measurements of REE. Bias for the estimated values of REE with Harris–Benedict
(503.1 kcal [95% CI: 415, 591]; 95% LoA: −303, 1310), Mifflin–St. Jeor (296.3 kcal [95% CI:
230, 363]; 95% LoA: −310, 903), and WHO (224.0 kcal [95% CI: 156, 292]; 95% LoA: −401,
849) equations were all statistically significant (p < 0.05) for the Bland-Altman test (Figure 3).
Overall, this suggests that common equations to estimate REE might not be valid in the
Colombian population.
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3.3. Development of the NRGCO Equation

To create a new equation based on anthropometry for estimating REE in the Colombian
population, participants (n = 86) were randomly allocated to either the equation develop-
ment group (EDG, n = 71 [80%]) or the validation group (VG, n = 15 [20%]). There were no
significant differences between the two groups (Table 1).

The candidate predictor variables considered for developing the new model using
the OLS method included: age, sex, body mass, BM/W, flexed and tensed arm girth,
corrected thigh girth, corrected leg girth, ∑3CG, ∑3D, and ∑8S. Following the assessment
of all potential models using various combinations of predictor variables to estimate REE
in kilocalories (a total of 1023 models expressed as Ŷ = β0 + β1X1 + β2X2 + β3X3 . . . +
β10X10), the model demonstrating the best performance incorporated body mass, ∑8S,
corrected thigh, corrected calf, and age as explainable variables. Although we assessed all
potential combinations for estimating REE in datasets segmented by sex, the chosen model
surpassed all other options following the model specification process (r = 0.755, R2 = 0.570
[0.37, 0.65], aR2 = 0.537, RMSE = 268.41 kcal). Table 2 shows the performance metrics of
the selected model to estimate REE, while Supplementary Table S2 contains all possible
models, including all regressors.
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Table 2. Regression results of the selected model using indirect calorimetry as the criterion.

Predictor b [95% CI] beta [95% CI] r

(Intercept) 386.26 [−567.02, 1339.54]
Age −7.42 [−17.04, 2.21] −0.14 [−0.31, 0.04] 0.12
BM 24.31 [11.74, 36.88] ** 0.82 [0.40, 1.25] 0.68 **
Corrected Calf 38.63 [−1.11, 78.37] 0.32 [−0.01, 0.64] 0.67 **
Corrected Thigh −21.35 [−44.71, 2.01] −0.36 [−0.74, 0.03] 0.60 **
∑8S −2.40 [−4.54, −0.26] * −0.22 [−0.43, −0.02] −0.12

A significant b-weight indicates the beta-weight correlation is also significant. b: represents unstandardized
regression weights; beta: indicates the standardized regression weights; BM: body mass; ∑8S: sum of eight
skinfolds. Statistical significance (* p < 0.05, ** p < 0.01).

An evaluation of the model’s assumptions was carried out using normality tests (Skew-
ness and Kurtosis), linearity (Link Function), and homoscedasticity (Heteroscedasticity).
All tests yielded p-values > 0.05, indicating that no significant deviations from the model’s
assumptions were found. The normality of residual errors was verified using the Omnibus
K-squared test (p = 0.254) and the Jarque–Bera test (p = 0.287), which assess skewness and
kurtosis, respectively. Therefore, it is considered that the model’s assumptions are met, and
the results of the analysis are valid.

The new NRGCO equation (SEE = 280.52 kcal) to estimate REE in Colombian men and
women with moderate-to-high physical activity levels is shown as follows: GER (kcal) =
386.256 + (24.309 × BM [kg]) − (2.402 × ∑8S [mm]) − (21.346 × Corrected Thigh [cm]) +
(38.629 × Corrected Calf [cm]) − (7.417 × Age [years]).

Our additional Bayesian method for selecting the optimal regression model employed
Zellner–Siow prior distributions for the regression coefficients to evaluate all Bayes factors
against the null model, with potential predictors ranked by their probability from highest
to lowest (Figure 4). This analysis allowed us to identify an alternative model with lower
performance but simpler to estimate REE, including only body mass and ∑8S (r = 0.724,
R2 = 0.525, aR2 = 0.511, RMSE = 282.16 kcal). This simpler equation is reported as the fast
NRGCO equation (SEE = 288.32 kcal) as follows: GER (kcal) = 641.482 + (21.433 * BM [kg])
− (2.702 × ∑8S [mm]).
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Figure 4. Bayesian selection of predictors. (A) Marginal posterior inclusion probabilities for each
covariate are displayed, with probabilities exceeding 0.5 highlighted in red. (B) Zellner–Siow prior
distributions for the regression coefficients are presented. Each row represents a variable or the
intercept (indicated on the y-axis), while the x-axis represents the various models. Models are
arranged from highest to lowest posterior probability, with the ranking shown on the top x-axis
(each column corresponds to a different model). Variables not included in a model are depicted in
black, while included variables are colored according to their log posterior probability, with orange
indicating the model with the highest probability.
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3.4. Validation of the NRGCO Equation

The validation process of the NRGCO equation was performed with the VG sample
(n = 15). It resulted in a non-significant moderate correlation (r = 0.482 [95% CI: −0.04,
0.797]). There was also moderate concordance (bias = 91.5 kcal; 95% LoA: −690, 873)
between measured REE through indirect calorimetry and the estimated values using the
NRGCO equation (Figure 5).
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4. Discussion

This study aimed to validate existing and commonly used equations to estimate
BMR/REE in Colombia (Harris–Benedict, Mifflin–St. Jeor, and WHO). Our results are
consistent with other studies in various populations [40–42], demonstrating that estimation
equations can be inaccurate due to differences in population characteristics. In our study,
the low p-values of the Bland-Altman test during external validation of the Harris–Benedict,
Mifflin–St. Jeor, and WHO equations indicate strong evidence of significant bias suggesting
that the methods are not interchangeable. This underscores that the existing equations are
not adequate for accurately estimating REE in the physically active Colombian population.
As a novelty, this is the first time that the sum of three corrected girths (∑3CG = arm +
thigh + calf) and the sum of three breadths (∑3D: humerus + bi-styloid + femur) have been
reported and evaluated for developing a model that estimates REE. Importantly, we found
that ∑3CG showed a significant positive correlation with REE (r = 0.63, 95% CI [0.49, 0.75])
as well as the ∑3D (r = 0.59, 95% CI [0.43, 0.71]).

Considering the above, and given that no equation has been created for Colombians,
we developed a new model to estimate REE with good performance metrics (NRGCO)
using body mass, ∑8S, corrected thigh, corrected calf, and age as regressors (r = 0.755,
R2 = 0.570 [0.37, 0.65], aR2 = 0.537, RMSE = 268.41 kcal). It should be noted that even
though the coefficient of determination (R2) was 0.57 and might be considered a moderate
fit, 43% of the variability is not accounted for by the model. However, several equations
to estimate REE with R2 < 0.5 have been successfully developed in different populations,
as reported in the recent systematic review by Ocagli et al. (2021) [43]. For example, in
Mexican adults with excess adiposity, Orozco-Ruiz and co-workers (2017) developed a new
equation to estimate REE with similar regression metrics to those reported in our study
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(r = 0.72, R2 = 0.51) [44]. In addition, several models developed by Mifflin–St. Jeor [12]
have lower values than the R2 of our new NRGCO equation. It is noteworthy to mention
that non-linear approaches (e.g., machine learning algorithms) to estimate REE in acute
kidney injury patients have been developed with performance metrics inferior to our model
(r = 0.69, R2 = 0.48).

Our internal validation was performed in a small sample of participants (n = 15). The
Bland-Altman statistics showed weak evidence for a statistically significant bias between
the two methods (p value = 0.4), suggesting moderate agreement. It must be noted that
bias for the estimated values of REE with the Harris–Benedict (503.1 kcal), Mifflin–St. Jeor
(296.3 kcal), and WHO (224.0 kcal) equations were all statistically significant (p < 0.05) for
the Bland-Altman test and considerably higher compared to the bias of the new NRGCO
equation (91.5 kcal). Also, the ICC during the internal validation was 0.45, indicating that
measured and estimated REE have moderate agreement.

In the early 1990s, Spurr and colleagues reported a considerable intrasubject variation
of basal metabolic rate (8.3%) in Colombian women [45]. Similarly, important variation has
been reported across age groups in Colombian overweight females when aiming to estimate
REE with regression equations [46]. This potential variability and hormonal fluctuations
deserve further research. On the other hand, a large portion of the sample in our study
exhibited a high level of physical activity (~83%), which would require adjustments in the
model in future works, as we found subjects with very high resting energy expenditure
(>2000 kcal). Although not measured, this would indicate socioeconomic differences in the
participants, given previous reports have shown a relationship between physical activity
level and the Colombian population [47]. Considering that TDEE is primarily composed
of BMR/REE, which can account for up to 70% [11], nutrition and health professionals
typically estimate REE first and then add values for TEF and physical activity expenditure
using factors. It should be noted that allostatic load and stress could increase REE by
approximately 9% to 67% in humans, depending on the intensity and duration of the
stressor (e.g., mental stress, injury, etc.) [7]. Nevertheless, practitioners are encouraged
to analyze that the ratio of REE to fat-free mass varies depending on body size and fat-
free mass composition. For instance, individuals with lower body mass have a higher
proportion of “residual mass” (metabolically less active tissue) and a lower proportion
of metabolically active tissues like muscle and bone within their fat-free mass [48]. This
highlights the importance of the new NRGCO equation as it considers body composition
when estimating REE.

Although there are various metabolic devices with rigorous validation and reliability
studies [49–51], including the devices used in this study (COSMED K4 and K5), some authors
suggest that portable devices may have lower reliability [52–54]. We acknowledge that ad-
justed models with better performance can be generated with a larger sample size, segmenting
the analysis by city, utilizing the same metabolic device during data collection, or applying
more advanced statistical techniques (machine learning algorithms). Nonetheless, all these
limitations and ideas are being considered within the framework of the NRG Project, and we
expect to report new or revised equations as more data is collected.

5. Conclusions

We demonstrated that equations commonly used in clinical practice to estimate REE
(Harris–Benedict, Mifflin–St. Jeor, and WHO) might not be valid for physically active
Colombian men and women. This study developed for the first time, a new equation to
estimate REE in a Colombian population with moderate-to-high physical activity levels
(r = 0.755, R2 = 0.570, RMSE = 268.41 kcal). This equation, called NRGCO, incorporates body
mass, ∑8S, corrected thigh and calf girths, and age: REE (kcal) = 386.256 + (24.309 × BM) −
(2.402 × ∑8S) − (21.346 × Corrected Thigh) + (38.629 × Corrected Calf) − (7.417 × Age).
This study is the first to report a significant positive correlation between ∑3CG and REE,
which underscores its applicability in field settings. Our Bayesian approach also allowed the
development of a fast NRGCO equation (r = 0.724, R2 = 0.525, RMSE = 282.16 kcal), which
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offers a simpler and faster version using only body mass and ∑8S: REE (kcal) = 641.482 +
(21.433 × BM) − (2.702 × ∑8S). Given the small group of participants (n = 15) used for the
internal validation, we invite the scientific community to perform the external validation of
these new models. Overall, considering the significant contribution of REE to TDEE, these
equations provide potentially more accurate REE estimates compared to existing methods
for this specific population. The results of this study might help practitioners achieve
greater accuracy in the assessment, design, and monitoring of nutritional and physical
exercise interventions for aesthetic, health, or physical performance purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu16183121/s1, Table S1: Means, standard deviations, and
correlations with confidence intervals; Table S2: Performance metrics of all regressors.
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