Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations
Abstract
:1. Introduction
2. Vitamin D Status and Diabetes (Human Studies)
2.1. Vitamin D Deficiency and T2DM
2.2. Vitamin D Deficiency and T1DM
2.3. Vitamin D Supplementation and Diabetes
2.3.1. Effects of Vitamin D Supplementation on T2DM Prevention
2.3.2. Effects of Vitamin D Supplementation on Patients with T2DM
2.3.3. Effects of Vitamin D Supplementation on Patients with T1DM
3. Role of Vitamin D in Immune Functions and Inflammatory Responses in Diabetes
3.1. Alteration of Immune Responses by Diabetes
3.2. Effects of Vitamin D on Immune Functions in Diabetes
3.3. Effects of Vitamin D on Inflammatory Responses in Diabetes
4. Effects of Vitamin D on Pancreatic β-Cell Function and Insulin Release in Diabetes
4.1. Mechanisms
4.2. In Vitro and In Vivo Studies
5. Role of Vitamin D in Insulin Signaling and Insulin Resistance
5.1. Mechanisms
5.2. In Vitro and In Vivo Studies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alshahrani, F.; Aljohani, N. Vitamin D: Deficiency, sufficiency and toxicity. Nutrients 2013, 5, 3605–3616. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C. Vitamin D and Its Target Genes. Nutrients 2022, 14, 1354. [Google Scholar] [CrossRef] [PubMed]
- Żmijewski, M.A. Nongenomic Activities of Vitamin D. Nutrients 2022, 14, 5104. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; García-Recio, E.; De Luna-Bertos, E.; Ruiz, C.; Illescas-Montes, R. Role of Vitamin D in the Metabolic Syndrome. Nutrients 2021, 13, 830. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Han, S.N. Chapter Seven—Vitamin D and obesity. In Advances in Food and Nutrition Research; Eskin, M.N.A., Ed.; Academic Press: Cambridge, MA, USA, 2024; Volume 109, pp. 221–247. [Google Scholar]
- Wu, J.; Atkins, A.; Downes, M.; Wei, Z. Vitamin D in Diabetes: Uncovering the Sunshine Hormone’s Role in Glucose Metabolism and Beyond. Nutrients 2023, 15, 1997. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Hwang, J.S. Genetic aspects of type 1 diabetes. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Scragg, R.; Sowers, M.; Bell, C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2813–2818. [Google Scholar] [CrossRef]
- Shankar, A.; Sabanayagam, C.; Kalidindi, S. Serum 25-hydroxyvitamin d levels and prediabetes among subjects free of diabetes. Diabetes Care 2011, 34, 1114–1119. [Google Scholar] [CrossRef]
- Nam, H.; Kim, H.Y.; Choi, J.S.; Kweon, S.S.; Lee, Y.H.; Nam, H.S.; Park, K.S.; Ryu, S.Y.; Choi, S.W.; Oh, S.H.; et al. Association between Serum 25-hydroxyvitamin D Levels and Type 2 Diabetes in Korean Adults. Chonnam Med. J. 2017, 53, 73–77. [Google Scholar] [CrossRef]
- Nakamura, K.; Hui, S.P.; Ukawa, S.; Okada, E.; Nakagawa, T.; Imae, A.; Okabe, H.; Chen, Z.; Miura, Y.; Chiba, H.; et al. Serum 25-hydroxyvitamin D3 Levels and Diabetes in a Japanese Population: The DOSANCO Health Study. J. Epidemiol. 2023, 33, 31–37. [Google Scholar] [CrossRef]
- McCarthy, K.; Laird, E.; O’Halloran, A.M.; Walsh, C.; Healy, M.; Fitzpatrick, A.L.; Walsh, J.B.; Hernández, B.; Fallon, P.; Molloy, A.M.; et al. Association between vitamin D deficiency and the risk of prevalent type 2 diabetes and incident prediabetes: A prospective cohort study using data from the Irish Longitudinal Study on Ageing (TILDA). eClinicalMedicine 2022, 53, 101654. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.; Hou, J.; Wei, D.; Liu, P.; Fan, K.; Zhang, L.; Nie, L.; Li, X.; Huo, W.; et al. Serum Vitamin D Affected Type 2 Diabetes though Altering Lipid Profile and Modified the Effects of Testosterone on Diabetes Status. Nutrients 2020, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Karau, P.B.; Kirna, B.; Amayo, E.; Joshi, M.; Ngare, S.; Muriira, G. The prevalence of vitamin D deficiency among patients with type 2 diabetes seen at a referral hospital in Kenya. Pan Afr. Med. J. 2019, 34, 38. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.H.; Hassan, B.A.R.; Othman, N.; Karuppannan, M.; Abdulaziz, N.B.; Mohammed, A.H.; Alsarani, M.A.; Eskembaji, M.H.; Aman, A.M.; Othman, G. Prevalence of Vitamin D Deficiency Between Type 2 Diabetes Mellitus Patients and Non-Diabetics in the Arab Gulf. Diabetes Metab. Syndr. Obes. 2022, 15, 647–657. [Google Scholar] [CrossRef]
- Karnchanasorn, R.; Ou, H.Y.; Chiu, K.C. Plasma 25-hydroxyvitamin D levels are favorably associated with β-cell function. Pancreas 2012, 41, 863–868. [Google Scholar] [CrossRef]
- Afzal, S.; Bojesen, S.E.; Nordestgaard, B.G. Low 25-hydroxyvitamin D and risk of type 2 diabetes: A prospective cohort study and metaanalysis. Clin. Chem. 2013, 59, 381–391. [Google Scholar] [CrossRef]
- Knekt, P.; Laaksonen, M.; Mattila, C.; Härkänen, T.; Marniemi, J.; Heliövaara, M.; Rissanen, H.; Montonen, J.; Reunanen, A. Serum vitamin D and subsequent occurrence of type 2 diabetes. Epidemiology 2008, 19, 666–671. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Luan, J.; Cooper, A.; Boucher, B.J.; Wareham, N.J. Baseline serum 25-hydroxy vitamin d is predictive of future glycemic status and insulin resistance: The Medical Research Council Ely Prospective Study 1990–2000. Diabetes 2008, 57, 2619–2625. [Google Scholar] [CrossRef]
- Robinson, J.G.; Manson, J.E.; Larson, J.; Liu, S.; Song, Y.; Howard, B.V.; Phillips, L.; Shikany, J.M.; Allison, M.; Curb, J.D.; et al. Lack of association between 25(OH)D levels and incident type 2 diabetes in older women. Diabetes Care 2011, 34, 628–634. [Google Scholar] [CrossRef]
- Pilz, S.; van den Hurk, K.; Nijpels, G.; Stehouwer, C.D.; Van’t Riet, E.; Kienreich, K.; Tomaschitz, A.; Dekker, J.M. Vitamin D status, incident diabetes and prospective changes in glucose metabolism in older subjects: The Hoorn study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 883–889. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Kunutsor, S.; Franco, O.H.; Chowdhury, R. Vitamin D, type 2 diabetes and other metabolic outcomes: A systematic review and meta-analysis of prospective studies. Proc. Nutr. Soc. 2013, 72, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Luan, J.; Sofianopoulou, E.; Sharp, S.J.; Day, F.R.; Imamura, F.; Gundersen, T.E.; Lotta, L.A.; Sluijs, I.; Stewart, I.D.; et al. The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003394. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Alsaied, A.; Al-Ali, M.; Al-Kubaisi, A.; Basha, B.; Abraham, A.; Guiter, G.; Mian, M. High prevalence of vitamin D deficiency in type 1 diabetes mellitus and healthy children. Acta Diabetol. 2009, 46, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, P.; Manfrini, S.; Crinò, A.; Picardi, A.; Leomanni, C.; Cherubini, V.; Valente, L.; Khazrai, M.; Visalli, N. Low levels of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 in patients with newly diagnosed type 1 diabetes. Horm. Metab. Res. 2005, 37, 680–683. [Google Scholar] [CrossRef]
- Littorin, B.; Blom, P.; Schölin, A.; Arnqvist, H.J.; Blohmé, G.; Bolinder, J.; Ekbom-Schnell, A.; Eriksson, J.W.; Gudbjörnsdottir, S.; Nyström, L.; et al. Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: Results from the nationwide Diabetes Incidence Study in Sweden (DISS). Diabetologia 2006, 49, 2847–2852. [Google Scholar] [CrossRef]
- Greer, R.M.; Portelli, S.L.; Hung, B.S.; Cleghorn, G.J.; McMahon, S.K.; Batch, J.A.; Conwell, L.S. Serum vitamin D levels are lower in Australian children and adolescents with type 1 diabetes than in children without diabetes. Pediatr. Diabetes 2013, 14, 31–41. [Google Scholar] [CrossRef]
- Federico, G.; Genoni, A.; Puggioni, A.; Saba, A.; Gallo, D.; Randazzo, E.; Salvatoni, A.; Toniolo, A. Vitamin D status, enterovirus infection, and type 1 diabetes in Italian children/adolescents. Pediatr. Diabetes 2018, 19, 923–929. [Google Scholar] [CrossRef]
- Infante, M.; Ricordi, C.; Sanchez, J.; Clare-Salzler, M.J.; Padilla, N.; Fuenmayor, V.; Chavez, C.; Alvarez, A.; Baidal, D.; Alejandro, R.; et al. Influence of Vitamin D on Islet Autoimmunity and Beta-Cell Function in Type 1 Diabetes. Nutrients 2019, 11, 2185. [Google Scholar] [CrossRef]
- Karvonen, M.; Viik-Kajander, M.; Moltchanova, E.; Libman, I.; LaPorte, R.; Tuomilehto, J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 2000, 23, 1516–1526. [Google Scholar] [CrossRef]
- Ostman, J.; Lönnberg, G.; Arnqvist, H.J.; Blohmé, G.; Bolinder, J.; Ekbom Schnell, A.; Eriksson, J.W.; Gudbjörnsdottir, S.; Sundkvist, G.; Nyström, L. Gender differences and temporal variation in the incidence of type 1 diabetes: Results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983–2002. J. Intern. Med. 2008, 263, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Karvonen, M.; Jäntti, V.; Muntoni, S.; Stabilini, M.; Stabilini, L.; Muntoni, S.; Tuomilehto, J. Comparison of the seasonal pattern in the clinical onset of IDDM in Finland and Sardinia. Diabetes Care 1998, 21, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Raab, J.; Giannopoulou, E.Z.; Schneider, S.; Warncke, K.; Krasmann, M.; Winkler, C.; Ziegler, A.G. Prevalence of vitamin D deficiency in pre-type 1 diabetes and its association with disease progression. Diabetologia 2014, 57, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Reinert-Hartwall, L.; Honkanen, J.; Härkönen, T.; Ilonen, J.; Simell, O.; Peet, A.; Tillmann, V.; Lamberg-Allardt, C.; Virtanen, S.M.; Knip, M.; et al. No association between vitamin D and β-cell autoimmunity in Finnish and Estonian children. Diabetes Metab. Res. Rev. 2014, 30, 749–760. [Google Scholar] [CrossRef]
- Mayer-Davis, E.J.; Dabelea, D.; Crandell, J.L.; Crume, T.; D’Agostino, R.B., Jr.; Dolan, L.; King, I.B.; Lawrence, J.M.; Norris, J.M.; Pihoker, C.; et al. Nutritional factors and preservation of C-peptide in youth with recently diagnosed type 1 diabetes: SEARCH Nutrition Ancillary Study. Diabetes Care 2013, 36, 1842–1850. [Google Scholar] [CrossRef]
- Norris, J.M.; Lee, H.S.; Frederiksen, B.; Erlund, I.; Uusitalo, U.; Yang, J.; Lernmark, Å.; Simell, O.; Toppari, J.; Rewers, M.; et al. Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. Diabetes 2018, 67, 146–154. [Google Scholar] [CrossRef]
- Angellotti, E.; Pittas, A.G. The Role of Vitamin D in the Prevention of Type 2 Diabetes: To D or Not to D? Endocrinology 2017, 158, 2013–2021. [Google Scholar] [CrossRef]
- Best, C.M.; Zelnick, L.R.; Thummel, K.E.; Hsu, S.; Limonte, C.; Thadhani, R.; Sesso, H.D.; Manson, J.E.; Buring, J.E.; Mora, S.; et al. Serum Vitamin D: Correlates of Baseline Concentration and Response to Supplementation in VITAL-DKD. J. Clin. Endocrinol. Metab. 2022, 107, 525–537. [Google Scholar] [CrossRef]
- Ammar, M.; Heni, S.; Tira, M.S.; Khalij, Y.; Hamdouni, H.; Amor, D.; Ksibi, S.; Omezzine, A.; Bouslama, A. Variability in response to vitamin D supplementation according to vitamin D metabolism related gene polymorphisms in healthy adults. Eur. J. Clin. Nutr. 2023, 77, 189–194. [Google Scholar] [CrossRef]
- Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; et al. Vitamin D Supplementation and Prevention of Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 520–530. [Google Scholar] [CrossRef]
- Jorde, R.; Sollid, S.T.; Svartberg, J.; Schirmer, H.; Joakimsen, R.M.; Njølstad, I.; Fuskevåg, O.M.; Figenschau, Y.; Hutchinson, M.Y. Vitamin D 20,000 IU per Week for Five Years Does Not Prevent Progression from Prediabetes to Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Suzuki, G.; Inazu, T.; Mizuno, S.; Kasagi, F.; Okada, Y.; Tanaka, Y. Rationale and design of Diabetes Prevention with active Vitamin D (DPVD): A randomised, double-blind, placebo-controlled study. BMJ Open 2016, 6, e011183. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Suzuki, G.; Mizuno, S.; Inazu, T.; Kasagi, F.; Kawahara, C.; Okada, Y.; Tanaka, Y. Effect of active vitamin D treatment on development of type 2 diabetes: DPVD randomised controlled trial in Japanese population. BMJ 2022, 377, e066222. [Google Scholar] [CrossRef] [PubMed]
- Mitri, J.; Dawson-Hughes, B.; Hu, F.B.; Pittas, A.G. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: The Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, P.; Weisnagel, S.J.; Caron, A.Z.; Julien, A.S.; Morisset, A.S.; Carreau, A.M.; Poirier, J.; Tchernof, A.; Robitaille, J.; Bergeron, J.; et al. Effects of 6-month vitamin D supplementation on insulin sensitivity and secretion: A randomised, placebo-controlled trial. Eur. J. Endocrinol. 2019, 181, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.S.; Pittas, A.G.; Palermo, N.J. A randomized, placebo-controlled trial of vitamin D supplementation to improve glycaemia in overweight and obese African Americans. Diabetes Obes. Metab. 2012, 14, 789–794. [Google Scholar] [CrossRef]
- Oosterwerff, M.M.; Eekhoff, E.M.; Van Schoor, N.M.; Boeke, A.J.; Nanayakkara, P.; Meijnen, R.; Knol, D.L.; Kramer, M.H.; Lips, P. Effect of moderate-dose vitamin D supplementation on insulin sensitivity in vitamin D-deficient non-Western immigrants in the Netherlands: A randomized placebo-controlled trial. Am. J. Clin. Nutr. 2014, 100, 152–160. [Google Scholar] [CrossRef]
- Farahmand, M.A.; Daneshzad, E.; Fung, T.T.; Zahidi, F.; Muhammadi, M.; Bellissimo, N.; Azadbakht, L. What is the impact of vitamin D supplementation on glycemic control in people with type-2 diabetes: A systematic review and meta-analysis of randomized controlled trails. BMC Endocr. Disord. 2023, 23, 15. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 375. [Google Scholar] [CrossRef]
- Lei, X.; Zhou, Q.; Wang, Y.; Fu, S.; Li, Z.; Chen, Q. Serum and supplemental vitamin D levels and insulin resistance in T2DM populations: A meta-analysis and systematic review. Sci. Rep. 2023, 13, 12343. [Google Scholar] [CrossRef]
- Stene, L.C.; Ulriksen, J.; Magnus, P.; Joner, G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring. Diabetologia 2000, 43, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Hyppönen, E.; Läärä, E.; Reunanen, A.; Järvelin, M.R.; Virtanen, S.M. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001, 358, 1500–1503. [Google Scholar] [CrossRef]
- Group, T.E.S.S. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. Diabetologia 1999, 42, 51–54. [Google Scholar] [CrossRef]
- Fronczak, C.M.; Barón, A.E.; Chase, H.P.; Ross, C.; Brady, H.L.; Hoffman, M.; Eisenbarth, G.S.; Rewers, M.; Norris, J.M. In utero dietary exposures and risk of islet autoimmunity in children. Diabetes Care 2003, 26, 3237–3242. [Google Scholar] [CrossRef] [PubMed]
- Pitocco, D.; Crinò, A.; Di Stasio, E.; Manfrini, S.; Guglielmi, C.; Spera, S.; Anguissola, G.B.; Visalli, N.; Suraci, C.; Matteoli, M.C.; et al. The effects of calcitriol and nicotinamide on residual pancreatic beta-cell function in patients with recent-onset Type 1 diabetes (IMDIAB XI). Diabet. Med. 2006, 23, 920–923. [Google Scholar] [CrossRef]
- Gabbay, M.A.; Sato, M.N.; Finazzo, C.; Duarte, A.J.; Dib, S.A. Effect of cholecalciferol as adjunctive therapy with insulin on protective immunologic profile and decline of residual β-cell function in new-onset type 1 diabetes mellitus. Arch. Pediatr. Adolesc. Med. 2012, 166, 601–607. [Google Scholar] [CrossRef]
- Treiber, G.; Prietl, B.; Fröhlich-Reiterer, E.; Lechner, E.; Ribitsch, A.; Fritsch, M.; Rami-Merhar, B.; Steigleder-Schweiger, C.; Graninger, W.; Borkenstein, M.; et al. Cholecalciferol supplementation improves suppressive capacity of regulatory T-cells in young patients with new-onset type 1 diabetes mellitus—A randomized clinical trial. Clin. Immunol. 2015, 161, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, C.; Pitocco, D.; Napoli, N.; Di Stasio, E.; Maggi, D.; Manfrini, S.; Suraci, C.; Cavallo, M.G.; Cappa, M.; Ghirlanda, G.; et al. No protective effect of calcitriol on beta-cell function in recent-onset type 1 diabetes: The IMDIAB XIII trial. Diabetes Care 2010, 33, 1962–1963. [Google Scholar] [CrossRef]
- Walter, M.; Kaupper, T.; Adler, K.; Foersch, J.; Bonifacio, E.; Ziegler, A.G. No effect of the 1alpha,25-dihydroxyvitamin D3 on beta-cell residual function and insulin requirement in adults with new-onset type 1 diabetes. Diabetes Care 2010, 33, 1443–1448. [Google Scholar] [CrossRef]
- Napoli, N.; Strollo, R.; Pitocco, D.; Bizzarri, C.; Maddaloni, E.; Maggi, D.; Manfrini, S.; Schwartz, A.; Pozzilli, P. Effect of calcitriol on bone turnover and osteocalcin in recent-onset type 1 diabetes. PLoS ONE 2013, 8, e56488. [Google Scholar] [CrossRef]
- Sharma, S.; Biswal, N.; Bethou, A.; Rajappa, M.; Kumar, S.; Vinayagam, V. Does Vitamin D Supplementation Improve Glycaemic Control In Children With Type 1 Diabetes Mellitus?—A Randomized Controlled Trial. J. Clin. Diagn. Res. 2017, 11, SC15–SC17. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, S.; Fatahi, N.; Zaeri, H.; Vakili, M.A. Effect of vitamin D3 supplement in glycemic control of pediatrics with type 1 diabetes mellitus and vitamin d deficiency. J. Clin. Diagn. Res. 2015, 9, SC05–SC07. [Google Scholar] [CrossRef] [PubMed]
- Nazarian, S.; St Peter, J.V.; Boston, R.C.; Jones, S.A.; Mariash, C.N. Vitamin D3 supplementation improves insulin sensitivity in subjects with impaired fasting glucose. Transl. Res. 2011, 158, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Seida, J.C.; Mitri, J.; Colmers, I.N.; Majumdar, S.R.; Davidson, M.B.; Edwards, A.L.; Hanley, D.A.; Pittas, A.G.; Tjosvold, L.; Johnson, J.A. Clinical review: Effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2014, 99, 3551–3560. [Google Scholar] [CrossRef]
- Tang, H.; Li, D.; Li, Y.; Zhang, X.; Song, Y.; Li, X. Effects of Vitamin D Supplementation on Glucose and Insulin Homeostasis and Incident Diabetes among Nondiabetic Adults: A Meta-Analysis of Randomized Controlled Trials. Int. J. Endocrinol. 2018, 2018, 7908764. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tian, X.Q.; Ge, J.P.; Xu, Y.C. Vitamin D intake and type 2 diabetes risk: A meta-analysis of prospective cohort studies. Afr. Health Sci. 2013, 13, 1130–1138. [Google Scholar] [CrossRef]
- Musazadeh, V.; Kavyani, Z.; Mirhosseini, N.; Dehghan, P.; Vajdi, M. Effect of vitamin D supplementation on type 2 diabetes biomarkers: An umbrella of interventional meta-analyses. Diabetol. Metab. Syndr. 2023, 15, 76. [Google Scholar] [CrossRef]
- Zipitis, C.S.; Akobeng, A.K. Vitamin D supplementation in early childhood and risk of type 1 diabetes: A systematic review and meta-analysis. Arch. Dis. Child. 2008, 93, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Knip, M.; Virtanen, S.M.; Akerblom, H.K. Infant feeding and the risk of type 1 diabetes. Am. J. Clin. Nutr. 2010, 91, 1506s–1513s. [Google Scholar] [CrossRef]
- Gregoriou, E.; Mamais, I.; Tzanetakou, I.; Lavranos, G.; Chrysostomou, S. The Effects of Vitamin D Supplementation in Newly Diagnosed Type 1 Diabetes Patients: Systematic Review of Randomized Controlled Trials. Rev. Diabet. Stud. 2017, 14, 260–268. [Google Scholar] [CrossRef]
- Sahin, O.A.; Goksen, D.; Ozpinar, A.; Serdar, M.; Onay, H. Association of vitamin D receptor polymorphisms and type 1 diabetes susceptibility in children: A meta-analysis. Endocr. Connect. 2017, 6, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, W.; Liu, J.; Wu, W.; Ouyang, H.; Zhang, Q.; Wang, Y.; Liu, L.; Yang, R.; Liu, X.; et al. Polymorphisms in the vitamin D receptor gene and type 1 diabetes mellitus risk: An update by meta-analysis. Mol. Cell Endocrinol. 2012, 355, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Zhai, N.; Bidares, R.; Makoui, M.H.; Aslani, S.; Mohammadi, P.; Razi, B.; Imani, D.; Yazdchi, M.; Mikaeili, H. Vitamin D receptor gene polymorphisms and the risk of the type 1 diabetes: A meta-regression and updated meta-analysis. BMC Endocr. Disord. 2020, 20, 121. [Google Scholar] [CrossRef]
- Guo, S.W.; Magnuson, V.L.; Schiller, J.J.; Wang, X.; Wu, Y.; Ghosh, S. Meta-analysis of vitamin D receptor polymorphisms and type 1 diabetes: A HuGE review of genetic association studies. Am. J. Epidemiol. 2006, 164, 711–724. [Google Scholar] [CrossRef]
- Carey, I.M.; Critchley, J.A.; DeWilde, S.; Harris, T.; Hosking, F.J.; Cook, D.G. Risk of Infection in Type 1 and Type 2 Diabetes Compared With the General Population: A Matched Cohort Study. Diabetes Care 2018, 41, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Ha, K.H.; Kim, D.J.; Choi, Y.H. Diabetes and the Risk of Infection: A National Cohort Study. Diabetes Metab. J. 2019, 43, 804–814. [Google Scholar] [CrossRef]
- Joshi, G.; Das, A.; Verma, G.; Guchhait, P. Viral infection and host immune response in diabetes. IUBMB Life 2024, 76, 242–266. [Google Scholar] [CrossRef] [PubMed]
- Berrou, J.; Fougeray, S.; Venot, M.; Chardiny, V.; Gautier, J.F.; Dulphy, N.; Toubert, A.; Peraldi, M.N. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes. PLoS ONE 2013, 8, e62418. [Google Scholar] [CrossRef] [PubMed]
- Mxinwa, V.; Dludla, P.V.; Nyambuya, T.M.; Mokgalaboni, K.; Mazibuko-Mbeje, S.E.; Nkambule, B.B. Natural killer cell levels in adults living with type 2 diabetes: A systematic review and meta-analysis of clinical studies. BMC Immunol. 2020, 21, 51. [Google Scholar] [CrossRef]
- Nobs, S.P.; Kolodziejczyk, A.A.; Adler, L.; Horesh, N.; Botscharnikow, C.; Herzog, E.; Mohapatra, G.; Hejndorf, S.; Hodgetts, R.J.; Spivak, I.; et al. Lung dendritic-cell metabolism underlies susceptibility to viral infection in diabetes. Nature 2023, 624, 645–652. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.; Lee, H.Y.; Park, H.Y.; Jhun, H.; Kim, S. Role of Dendritic Cell in Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 7554. [Google Scholar] [CrossRef] [PubMed]
- Soedono, S.; Cho, K.W. Adipose Tissue Dendritic Cells: Critical Regulators of Obesity-Induced Inflammation and Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 8666. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Jung, S.; Kim, Y.A.; Lee, G.Y.; Han, S.N. Dietary vitamin D3 supplementation enhances splenic NK cell activity in healthy and diabetic male mice. Nutr. Res. 2024, 127, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Viel, S.; Marçais, A.; Guimaraes, F.S.; Loftus, R.; Rabilloud, J.; Grau, M.; Degouve, S.; Djebali, S.; Sanlaville, A.; Charrier, E.; et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal 2016, 9, ra19. [Google Scholar] [CrossRef] [PubMed]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef]
- Carrington, E.M.; Tarlinton, D.M.; Gray, D.H.; Huntington, N.D.; Zhan, Y.; Lew, A.M. The life and death of immune cell types: The role of BCL-2 anti-apoptotic molecules. Immunol. Cell Biol. 2017, 95, 870–877. [Google Scholar] [CrossRef]
- Huang, C.; Bi, J. Expression Regulation and Function of T-Bet in NK Cells. Front. Immunol. 2021, 12, 761920. [Google Scholar] [CrossRef]
- Lai, X.; Liu, X.; Cai, X.; Zou, F. Vitamin D supplementation induces CatG-mediated CD4+ T cell inactivation and restores pancreatic β-cell function in mice with type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 2022, 322, E74–E84. [Google Scholar] [CrossRef]
- Giarratana, N.; Penna, G.; Amuchastegui, S.; Mariani, R.; Daniel, K.C.; Adorini, L. A vitamin D analog down-regulates proinflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and type 1 diabetes development. J. Immunol. 2004, 173, 2280–2287. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Cho, E.; Gliozheni, E.; Salem, Y.; Cheung, J.; Ichii, H. Pathology of Diabetes-Induced Immune Dysfunction. Int. J. Mol. Sci. 2024, 25, 7105. [Google Scholar] [CrossRef]
- Shab-Bidar, S.; Neyestani, T.R.; Djazayery, A.; Eshraghian, M.R.; Houshiarrad, A.; Kalayi, A.; Shariatzadeh, N.; Khalaji, N.; Gharavi, A. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab. Res. Rev. 2012, 28, 424–430. [Google Scholar] [CrossRef]
- Johny, E.; Jala, A.; Nath, B.; Alam, M.J.; Kuladhipati, I.; Das, R.; Borkar, R.M.; Adela, R. Vitamin D Supplementation Modulates Platelet-Mediated Inflammation in Subjects with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Front. Immunol. 2022, 13, 869591. [Google Scholar] [CrossRef] [PubMed]
- Tamadon, M.R.; Soleimani, A.; Keneshlou, F.; Mojarrad, M.Z.; Bahmani, F.; Naseri, A.; Kashani, H.H.; Hosseini, E.S.; Asemi, Z. Clinical Trial on the Effects of Vitamin D Supplementation on Metabolic Profiles in Diabetic Hemodialysis. Horm. Metab. Res. 2018, 50, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; He, Y.; Shen, Y.; Zhang, Q.; Chen, D.; Zuo, C.; Qin, J.; Wang, H.; Wang, J.; Yu, Y. Vitamin D inhibits COX-2 expression and inflammatory response by targeting thioesterase superfamily member 4. J. Biol. Chem. 2014, 289, 11681–11694. [Google Scholar] [CrossRef]
- Lu, L.; Lu, Q.; Chen, W.; Li, J.; Li, C.; Zheng, Z. Vitamin D3 Protects against Diabetic Retinopathy by Inhibiting High-Glucose-Induced Activation of the ROS/TXNIP/NLRP3 Inflammasome Pathway. J. Diabetes Res. 2018, 2018, 8193523. [Google Scholar] [CrossRef]
- El-Sawaf, E.S.; Saleh, S.; Abdallah, D.M.; Ahmed, K.A.; El-Abhar, H.S. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sci. 2021, 279, 119697. [Google Scholar] [CrossRef]
- Yu, J.; Sharma, P.; Girgis, C.M.; Gunton, J.E. Vitamin D and Beta Cells in Type 1 Diabetes: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 14434. [Google Scholar] [CrossRef]
- Hewison, M. Vitamin D and the immune system: New perspectives on an old theme. Rheum. Dis. Clin. N. Am. 2012, 38, 125–139. [Google Scholar] [CrossRef]
- Savastio, S.; Cinquatti, R.; Tagliaferri, F.; Rabbone, I.; Bona, G. Vitamin D effects and endocrine diseases. Minerva Pediatr. 2020, 72, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Leung, P.S.; Adamopoulos, I.E.; Gershwin, M.E. The implication of vitamin D and autoimmunity: A comprehensive review. Clin. Rev. Allergy Immunol. 2013, 45, 217–226. [Google Scholar] [CrossRef] [PubMed]
- van Etten, E.; Decallonne, B.; Mathieu, C. 1,25-dihydroxycholecalciferol: Endocrinology meets the immune system. Proc. Nutr. Soc. 2002, 61, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Danescu, L.G.; Levy, S.; Levy, J. Vitamin D and diabetes mellitus. Endocrine 2009, 35, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Luong, K.; Nguyen, L.T.; Nguyen, D.N. The role of vitamin D in protecting type 1 diabetes mellitus. Diabetes Metab. Res. Rev. 2005, 21, 338–346. [Google Scholar] [CrossRef]
- Mathieu, C.; Badenhoop, K. Vitamin D and type 1 diabetes mellitus: State of the art. Trends Endocrinol. Metab. 2005, 16, 261–266. [Google Scholar] [CrossRef]
- Takiishi, T.; Gysemans, C.; Bouillon, R.; Mathieu, C. Vitamin D and diabetes. Endocrinol. Metab. Clin. N. Am. 2010, 39, 419–446, table of contents. [Google Scholar] [CrossRef] [PubMed]
- Turley, S.; Poirot, L.; Hattori, M.; Benoist, C.; Mathis, D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med. 2003, 198, 1527–1537. [Google Scholar] [CrossRef]
- Krishnamurthy, B.; Dudek, N.L.; McKenzie, M.D.; Purcell, A.W.; Brooks, A.G.; Gellert, S.; Colman, P.G.; Harrison, L.C.; Lew, A.M.; Thomas, H.E.; et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Investig. 2006, 116, 3258–3265. [Google Scholar] [CrossRef]
- Veldman, C.M.; Cantorna, M.T.; DeLuca, H.F. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch. Biochem. Biophys. 2000, 374, 334–338. [Google Scholar] [CrossRef]
- Kreutz, M.; Andreesen, R.; Krause, S.W.; Szabo, A.; Ritz, E.; Reichel, H. 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 1993, 82, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M.; Freeman, L.; Hughes, S.V.; Evans, K.N.; Bland, R.; Eliopoulos, A.G.; Kilby, M.D.; Moss, P.A.; Chakraverty, R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol. 2003, 170, 5382–5390. [Google Scholar] [CrossRef] [PubMed]
- Baeke, F.; Korf, H.; Overbergh, L.; van Etten, E.; Verstuyf, A.; Gysemans, C.; Mathieu, C. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system. J. Steroid Biochem. Mol. Biol. 2010, 121, 221–227. [Google Scholar] [CrossRef]
- van Halteren, A.G.; Tysma, O.M.; van Etten, E.; Mathieu, C.; Roep, B.O. 1alpha,25-dihydroxyvitamin D3 or analogue treated dendritic cells modulate human autoreactive T cells via the selective induction of apoptosis. J. Autoimmun. 2004, 23, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Adorini, L. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann. N. Y. Acad. Sci. 2003, 987, 258–261. [Google Scholar] [CrossRef]
- Gregori, S.; Giarratana, N.; Smiroldo, S.; Uskokovic, M.; Adorini, L. A 1alpha,25-dihydroxyvitamin D3 analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes 2002, 51, 1367–1374. [Google Scholar] [CrossRef]
- Emamaullee, J.A.; Davis, J.; Merani, S.; Toso, C.; Elliott, J.F.; Thiesen, A.; Shapiro, A.M. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 2009, 58, 1302–1311. [Google Scholar] [CrossRef]
- Tian, J.; Lehmann, P.V.; Kaufman, D.L. Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens. J. Exp. Med. 1997, 186, 2039–2043. [Google Scholar] [CrossRef]
- Mahon, B.D.; Wittke, A.; Weaver, V.; Cantorna, M.T. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J. Cell Biochem. 2003, 89, 922–932. [Google Scholar] [CrossRef]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Lipsky, P.E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef]
- Inomata, S.; Kadowaki, S.; Yamatani, T.; Fukase, M.; Fujita, T. Effect of 1 alpha (OH)-vitamin D3 on insulin secretion in diabetes mellitus. Bone Min. 1986, 1, 187–192. [Google Scholar]
- Norman, A.W.; Frankel, J.B.; Heldt, A.M.; Grodsky, G.M. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 1980, 209, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Seino, Y.; Ishida, M.; Yamaoka, K.; Yabuuchi, H.; Ishida, H.; Seino, S.; Imura, H. Effect of vitamin D3 on the pancreatic secretion of insulin and somatostatin. Acta Endocrinol. 1984, 105, 528–533. [Google Scholar] [CrossRef]
- Maestro, B.; Dávila, N.; Carranza, M.C.; Calle, C. Identification of a Vitamin D response element in the human insulin receptor gene promoter. J. Steroid Biochem. Mol. Biol. 2003, 84, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Maestro, B.; Molero, S.; Bajo, S.; Dávila, N.; Calle, C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D3. Cell Biochem. Funct. 2002, 20, 227–232. [Google Scholar] [CrossRef]
- Wolden-Kirk, H.; Overbergh, L.; Gysemans, C.; Brusgaard, K.; Naamane, N.; Van Lommel, L.; Schuit, F.; Eizirik, D.L.; Christesen, H.; Mathieu, C. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J. Steroid Biochem. Mol. Biol. 2013, 136, 68–79. [Google Scholar] [CrossRef]
- Sergeev, I.N.; Rhoten, W.B. 1,25-Dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic beta-cell line. Endocrinology 1995, 136, 2852–2861. [Google Scholar] [CrossRef]
- Gilon, P.; Chae, H.Y.; Rutter, G.A.; Ravier, M.A. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014, 56, 340–361. [Google Scholar] [CrossRef]
- Doyle, M.E.; Egan, J.M. Pharmacological agents that directly modulate insulin secretion. Pharmacol. Rev. 2003, 55, 105–131. [Google Scholar] [CrossRef]
- Bourlon, P.M.; Billaudel, B.; Faure-Dussert, A. Influence of vitamin D3 deficiency and 1,25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas. J. Endocrinol. 1999, 160, 87–95. [Google Scholar] [CrossRef]
- Lee, S.; Clark, S.A.; Gill, R.K.; Christakos, S. 1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: Vitamin D receptors, gene expression, and insulin secretion. Endocrinology 1994, 134, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Riachy, R.; Vandewalle, B.; Kerr Conte, J.; Moerman, E.; Sacchetti, P.; Lukowiak, B.; Gmyr, V.; Bouckenooghe, T.; Dubois, M.; Pattou, F. 1,25-dihydroxyvitamin D3 protects RINm5F and human islet cells against cytokine-induced apoptosis: Implication of the antiapoptotic protein A20. Endocrinology 2002, 143, 4809–4819. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, D.; Ni, C.; Zhou, H.; Wu, S.; Xue, Z.; Zhou, Z. Vitamin D induces autophagy of pancreatic β-cells and enhances insulin secretion. Mol. Med. Rep. 2016, 14, 2644–2650. [Google Scholar] [CrossRef] [PubMed]
- Riachy, R.; Vandewalle, B.; Moerman, E.; Belaich, S.; Lukowiak, B.; Gmyr, V.; Muharram, G.; Kerr Conte, J.; Pattou, F. 1,25-Dihydroxyvitamin D3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the Fas receptor. Apoptosis 2006, 11, 151–159. [Google Scholar] [CrossRef]
- Pepaj, M.; Gjerlaugsen, N.; Julien, K.; Thorsby, P.M. Tmem27 is upregulated by vitamin D in INS-1 cells and its serum concentrations are low in patients with autoimmune diabetes. Scand. J. Clin. Lab. Investig. 2014, 74, 358–365. [Google Scholar] [CrossRef]
- Akpinar, P.; Kuwajima, S.; Krützfeldt, J.; Stoffel, M. Tmem27: A cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab. 2005, 2, 385–397. [Google Scholar] [CrossRef]
- Wei, Z.; Yoshihara, E.; He, N.; Hah, N.; Fan, W.; Pinto, A.F.M.; Huddy, T.; Wang, Y.; Ross, B.; Estepa, G.; et al. Vitamin D Switches BAF Complexes to Protect β Cells. Cell 2018, 173, 1135–1149.e1115. [Google Scholar] [CrossRef]
- Sandler, S.; Buschard, K.; Bendtzen, K. Effects of 1,25-dihydroxyvitamin D3 and the analogues MC903 and KH1060 on interleukin-1 beta-induced inhibition of rat pancreatic islet beta-cell function in vitro. Immunol. Lett. 1994, 41, 73–77. [Google Scholar] [CrossRef]
- Zeitz, U.; Weber, K.; Soegiarto, D.W.; Wolf, E.; Balling, R.; Erben, R.G. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003, 17, 509–511. [Google Scholar] [CrossRef]
- Morró, M.; Vilà, L.; Franckhauser, S.; Mallol, C.; Elias, G.; Ferré, T.; Molas, M.; Casana, E.; Rodó, J.; Pujol, A.; et al. Vitamin D Receptor Overexpression in β-Cells Ameliorates Diabetes in Mice. Diabetes 2020, 69, 927–939. [Google Scholar] [CrossRef]
- Maestro, B.; Campión, J.; Dávila, N.; Calle, C. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr. J. 2000, 47, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.G.; Hou, F.F.; Guo, Z.J.; Liang, M.; Wang, G.B.; Zhang, X. 1,25-Dihydroxyvitamin D improved the free fatty-acid-induced insulin resistance in cultured C2C12 cells. Diabetes Metab. Res. Rev. 2008, 24, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Achari, A.E.; Jain, S.K. Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch. Biochem. Biophys. 2017, 615, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, C.; Laureys, J.; Sobis, H.; Vandeputte, M.; Waer, M.; Bouillon, R. 1,25-Dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes 1992, 41, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, C.; Waer, M.; Laureys, J.; Rutgeerts, O.; Bouillon, R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia 1994, 37, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Nishizawa, Y.; Song, K.; Tanishita, H.; Okuno, S.; Miki, T.; Morii, H. Partial protection of 1 alpha-hydroxyvitamin D3 against the development of diabetes induced by multiple low-dose streptozotocin injection in CD-1 mice. Metabolism 1992, 41, 631–635. [Google Scholar] [CrossRef]
- Sadek, K.M.; Shaheen, H. Biochemical efficacy of vitamin D in ameliorating endocrine and metabolic disorders in diabetic rats. Pharm. Biol. 2014, 52, 591–596. [Google Scholar] [CrossRef]
- Gysemans, C.A.; Cardozo, A.K.; Callewaert, H.; Giulietti, A.; Hulshagen, L.; Bouillon, R.; Eizirik, D.L.; Mathieu, C. 1,25-Dihydroxyvitamin D3 modulates expression of chemokines and cytokines in pancreatic islets: Implications for prevention of diabetes in nonobese diabetic mice. Endocrinology 2005, 146, 1956–1964. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, R.; Damirchi, A.; Babaei, P. Vitamin D increases PPARγ expression and promotes beneficial effects of physical activity in metabolic syndrome. Nutrition 2017, 36, 54–59. [Google Scholar] [CrossRef]
- George, N.; Kumar, T.P.; Antony, S.; Jayanarayanan, S.; Paulose, C.S. Effect of vitamin D3 in reducing metabolic and oxidative stress in the liver of streptozotocin-induced diabetic rats. Br. J. Nutr. 2012, 108, 1410–1418. [Google Scholar] [CrossRef]
- Kiekhaefer, C.M.; Weber, B.; Huggins, M.; Gorichanaz, C.; Nehring, J.A.; DeLuca, H.F. 2α-Methyl-19-nor-(20S)-1,25-dihydroxyvitamin D3 protects the insulin 2 knockout non-obese diabetic mouse from developing type 1 diabetes without hypercalcaemia. Clin. Exp. Immunol. 2011, 166, 325–332. [Google Scholar] [CrossRef]
- Dong, B.; Zhou, Y.; Wang, W.; Scott, J.; Kim, K.; Sun, Z.; Guo, Q.; Lu, Y.; Gonzales, N.M.; Wu, H.; et al. Vitamin D Receptor Activation in Liver Macrophages Ameliorates Hepatic Inflammation, Steatosis, and Insulin Resistance in Mice. Hepatology 2020, 71, 1559–1574. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, S.; Norman, A.W. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J. Clin. Investig. 1984, 73, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Cade, C.; Norman, A.W. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinology 1986, 119, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Agrawal, D.K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 7, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, W. The Roles of Vitamin D and Its Analogs in Inflammatory Diseases. Curr. Top. Med. Chem. 2016, 16, 1242–1261. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, K.; Wessner, B.; Laggner, U.; Ploder, M.; Tamandl, D.; Friedl, J.; Zügel, U.; Steinmeyer, A.; Pollak, A.; Roth, E.; et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur. J. Immunol. 2006, 36, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Lira, F.S.; Rosa, J.C.; Cunha, C.A.; Ribeiro, E.B.; do Nascimento, C.O.; Oyama, L.M.; Mota, J.F. Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation. Lipids Health Dis. 2011, 10, 37. [Google Scholar] [CrossRef]
- Marcotorchino, J.; Gouranton, E.; Romier, B.; Tourniaire, F.; Astier, J.; Malezet, C.; Amiot, M.J.; Landrier, J.F. Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol. Nutr. Food Res. 2012, 56, 1771–1782. [Google Scholar] [CrossRef]
- Marziou, A.; Philouze, C.; Couturier, C.; Astier, J.; Obert, P.; Landrier, J.F.; Riva, C. Vitamin D Supplementation Improves Adipose Tissue Inflammation and Reduces Hepatic Steatosis in Obese C57BL/6J Mice. Nutrients 2020, 12, 342. [Google Scholar] [CrossRef]
- Riek, A.E.; Oh, J.; Sprague, J.E.; Timpson, A.; de las Fuentes, L.; Bernal-Mizrachi, L.; Schechtman, K.B.; Bernal-Mizrachi, C. Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients. J. Biol. Chem. 2012, 287, 38482–38494. [Google Scholar] [CrossRef] [PubMed]
- Olefsky, J.M.; Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72, 219–246. [Google Scholar] [CrossRef] [PubMed]
- Lacasa, D.; Taleb, S.; Keophiphath, M.; Miranville, A.; Clement, K. Macrophage-secreted factors impair human adipogenesis: Involvement of proinflammatory state in preadipocytes. Endocrinology 2007, 148, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Han, S.N. The Role of Vitamin D in Adipose Tissue Biology: Adipocyte Differentiation, Energy Metabolism, and Inflammation. J. Lipid Atheroscler. 2021, 10, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Nimitphong, H.; Holick, M.F.; Fried, S.K.; Lee, M.J. 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 promote the differentiation of human subcutaneous preadipocytes. PLoS ONE 2012, 7, e52171. [Google Scholar] [CrossRef]
- Narvaez, C.J.; Simmons, K.M.; Brunton, J.; Salinero, A.; Chittur, S.V.; Welsh, J.E. Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J. Cell Physiol. 2013, 228, 2024–2036. [Google Scholar] [CrossRef]
- Mahajan, A.; Stahl, C.H. Dihydroxy-cholecalciferol stimulates adipocytic differentiation of porcine mesenchymal stem cells. J. Nutr. Biochem. 2009, 20, 512–520. [Google Scholar] [CrossRef]
- Ni, Z.; Smogorzewski, M.; Massry, S.G. Effects of parathyroid hormone on cytosolic calcium of rat adipocytes. Endocrinology 1994, 135, 1837–1844. [Google Scholar] [CrossRef]
- Thomas, D.M.; Rogers, S.D.; Sleeman, M.W.; Pasquini, G.M.; Bringhurst, F.R.; Ng, K.W.; Zajac, J.D.; Best, J.D. Modulation of glucose transport by parathyroid hormone and insulin in UMR 106-01, a clonal rat osteogenic sarcoma cell line. J. Mol. Endocrinol. 1995, 14, 263–275. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Chavez, A.O.; Gastaldelli, A.; Perego, L.; Tripathy, D.; Saad, M.J.; Velloso, L.; Folli, F. The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention. Curr. Vasc. Pharmacol. 2008, 6, 301–312. [Google Scholar] [CrossRef]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.C.; Hucker, K.A.; Holloszy, J.O.; Han, D.H. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 2004, 53, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Riek, A.E.; Darwech, I.; Funai, K.; Shao, J.; Chin, K.; Sierra, O.L.; Carmeliet, G.; Ostlund, R.E., Jr.; Bernal-Mizrachi, C. Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep. 2015, 10, 1872–1886. [Google Scholar] [CrossRef] [PubMed]
Vitamin D Status and Type 2 Diabetes | |||
Study Design | Characteristics of Participants | Outcome | Reference |
Cross-sectional study | 3rd NHANES, 6228 US population, >20 y | Lower OR for diabetes in highest vitamin D quartile in Mexican Americans and non-Hispanic Whites | (Scragg, Sowers, and Bell 2004) [8] |
Cross-sectional study | 3rd NHANES, 12,719 US population without diabetes, >20 y | Lower serum 25(OH)D levels were associated with prediabetes after adjustment | (Shankar, Sabanayagam, and Kalidindi 2011) [9] |
Cross-sectional study | 9014 Korean adults, >50 y, | Lower OR for T2DM in insufficient (20 to 30 ng/mL) or sufficient (>30 ng/mL) vitamin D group | (Nam et al. 2017) [10] |
Cross-sectional study | 480 Japanese population (35–79 y) | Higher OR for T2DM in lowest vitamin D quartile | (Nakamura et al. 2023) [11] |
Cross-sectional study | 150 healthy glucose-tolerant subjects | Plasma 25(OH)D levels positively associated with β-cell function and insulin sensitivity | (Karnchanasorn, Ou, and Chiu 2012) [16] |
Cross-sectional study | 151 Kenyan T2DM patients (mean age: 58.2y) | Blood vitamin D level inversely correlated with glycemic control and BMI | (Karau et al. 2019) [14] |
Case–control study | 2659 from the Henan Rural Cohort (NGT: 897, IFG: 913, T2DM: 849) | Lower OR for IFG in highest vitamin D quartile (Q4 vs. Q1) and lower OR for T2DM in Q2 and Q3 (vs. Q1) | (Wang et al. 2020) [13] |
(1) Cross-sectional study (2) Prospective cohort study | The Irish Longitudinal Study on Ageing (TILDA): 5272 (wave 1) and 3838 (wave 2), ≥50 y, 4 y follow-up | (1) Increased RRR of having prevalent diabetes was associated with baseline 25(OH)D level (2) 62% increased likelihood of developing prediabetes in vitamin-D-deficient (<12 ng/mL) compared to vitamin-D-insufficient (>30 ng/mL) cases | (McCarthy et al. 2022) [12] |
Prospective cohort study | 9814 from general population (810 developed T2DM), 29 y follow-up | Lower 25(OH)D concentrations were associated with higher cumulative incidence of T2DM | (Afzal, Bojesen, and Nordestgaard 2013) [17] |
Prospective cohort study | Randomly selected 524 non-diabetic population (40–69 y), 10 y follow-up | Baseline serum 25(OH)D inversely associated with 10 y risk of hyperglycemia | (Forouhi et al. 2008) [19] |
Nested case–control study | 7503 Finnish population (412 developed T2DM), 22 y follow-up | Higher baseline 25(OH)D reduced risk of T2DM | (Knekt et al. 2008) [18] |
Nested case–control study | 5140 women (mean age: 66 y; 317 developed T2DM), 7.3 y follow-up | Baseline 25(OH)D was not associated with T2DM incidence | (Robinson et al. 2011) [20] |
Prospective cohort study | 351 aged participants (51% females; 67.9 ± 5.7 years; 45 developed diabetes), 7–9 y follow up | No significant association between 25(OH)D and diabetes incidence, but a significant association with follow-up HbA1c levels | (Pilz et al. 2012) [21] |
Vitamin D Status and Type 1 Diabetes | |||
Study Design | Characteristics of Participants | Outcome | Reference |
Case–control study | Qatari population (<16 y) 170 case and 170 control | Vitamin D deficiency was higher in T1DM children than in control | (Bener et al. 2009) [25] |
Case–control study | 88 newly diagnosed T1DM and 57 control (mean age: 14.6 y) | Blood 25(OH)D and 1,25(OH)2D are lower in T1DM case | (Pozzilli et al. 2005) [26] |
(1) Prospective study (2) Cross-sectional study | (1) 108 children (with multiple islet auto Ab), median 5.8 y follow-up (2) 406 (negative), 244 (newly T1DM) | (1) Incidence of T1DM is not different between vitamin-D-deficient and -sufficient populations (2) Blood 25(OH)D was lower, and prevalence of vitamin D deficiency was higher in cases with multiple islet auto Ab than in those without | (Raab et al. 2014) [34] |
Cross-sectional study | 83 Finnish (29 diabetes-associated auto Ab positive), 32 Estonian (6 positive) children | Vitamin D status was not different between diabetes-associated auto Ab positivity | (Reinert-Hartwall et al. 2014) [35] |
Prospective study | 1316 youth with islet-auto-Ab-positive T1DM, mean follow-up 24.3 mo | Baseline 25(OH)D inversely associated with fasting C-peptide | (Mayer-Davis et al. 2013) [36] |
Multicenter study | 459 new T1DM (15–34 y) cases and 208 control subjects, 8 y follow-up | Baseline 25(OH)D is lower in T1DM, and, 8 y later, 25(OH)D decreased in T1DM cases | (Littorin et al. 2006) [27] |
Case–control study | 56 T1DM, 46 control children | Blood 25(OH)D is lower in T1DM cases No difference in VDR polymorphism | (Greer et al. 2013) [28] |
Case–control study | 82 T1DM, 117 control children | T1DM children showed higher 25(OH)D deficiency | (Federico et al. 2018) [29] |
Preventive Effect of Vitamin D on Type 2 Diabetes | ||||
Study Design | Characteristics of Participants | Treatment (Dose and Duration) | Outcome | Reference |
RCT | 2423 with pre-DM | 4000 IU/day vitamin D3 or placebo, 2.5 y | No difference in hazard ratio of T2DM between Suppl and placebo | (Pittas et al. 2019) [41] |
RCT | 511 with pre-DM (mean age: 62 y, 314 males) | 2000 IU/day vitamin D3 or placebo, 5 y | No difference in hazard ratio of T2DM between Suppl and placebo | (Jorde et al. 2016) [42] |
RCT | 1256 with pre-DM (>30 y) | 0.75 μg/day eldecalcitriol or placebo, 3 y | No difference in hazard ratio of T2DM between Suppl and placebo | (Kawahara et al. 2022) [44] |
RCT | 92 with pre-DM | 2000 IU/day vitamin D3 or placebo, 16 wk | ↑ Pancreatic β-cell function in Suppl | (Mitri et al. 2011) [45] |
RCT | 96 with pre-DM | 5000 IU/day vitamin D3 or placebo, 6 mo | ↑ Pancreatic β-cell function and insulin sensitivity in Suppl | (Lemieux et al. 2019) [46] |
RCT | 89 with pre-DM or new T2DM | 4000 IU/day vitamin D3 or placebo, 12 wk | ↑ Insulin secretion and sensitivity in Suppl No difference in disposition index or glycemia | (Harris, Pittas, and Palermo 2012) [47] |
RCT | 130 with pre-DM | 1200 IU/day vitamin D3 or placebo, 16 wk | No difference in insulin sensitivity Insulinogenic index ↑ β-cell function increased in Suppl | (Oosterwerff et al. 2014) [48] |
Therapeutic Effect of Vitamin D on Type 2 Diabetes | ||||
Characteristics of Participants | Treatment (Dose and Duration) | Outcome | Reference | |
Meta-analysis of RCT | 46 RCTs (2164 intervention, 2149 placebo) patients with T2DM (>18 y) | Oral (42 studies) or intramuscular injection (4 studies) vitamin D supplementation for 8–48 wk supplementation duration | Vitamin D supplementation resulted in a reduction in FPG, HbA1c, and HOMA-IR | (Oosterwerff et al. 2014; Farahmand et al. 2023) [48,49] |
Meta-analysis of RCT | 20 clinical trials involving 2703 adults with T2DM (48–67 y) | Oral vitamin D supplementation for 2–6 mo of vitamin D3 (17 studies) and vitamin D2 (1 study) supplementation | HOMA-IR improved in Suppl, not in other outcomes Subgroup analysis of non-obese, Middle Eastern, large-dose, short-term, baseline-vitamin-D-deficient population: ↓ insulin resistance | (Li et al. 2018) [50] |
Meta-analysis of RCT | (1) 18 RCTs involving 1243 with T2DM (2) 20 observational studies (11,063 participants) | (1) Oral vitamin D supplementation for 8–24 wk | (1) Vitamin D supplementation improved insulin, glucose, HOMA-IR (2) Vitamin D status inversely correlated with insulin, glucose, HOMA-IR | (Lei et al. 2023) [51] |
Preventive Effect of Vitamin D on Type 1 Diabetes | ||||
Study Design | Characteristics of Participants | Treatment (Dose and Duration) | Outcome | Reference |
Multicenter study | Pregnant women (offspring: 85 T1DM, 1071 control) | Cod liver oil supplementation during pregnancy | Cod liver oil supplementation of mothers: ↓ the OR of T1DM of offspring | (Stene et al. 2000) [52] |
Birth cohort study | 12,055 pregnant women (10,821 children followed up at age 1 y, 81 T1DM) | Various amounts of vitamin D supplementation (questionnaire) | Vitamin D supplementation in first year: ↓ frequency of T1DM | (Hyppönen et al. 2001) [53] |
Case–control study | 820 T1DM, 2335 controls | Various amounts of vitamin D supplementation (questionnaire) | Vitamin D supplementation in early childhood: ↓ the risk of T1DM | (Group 1999) [54] |
Birth cohort study | 233 mothers with high risk of T1DM (children 0.8–7.3 y follow-up) | Questionnaire on vitamin D supplementation | Maternal intake of vitamin D supplementation: ↓ the risk of islet autoimmunity | (Fronczak et al. 2003) [55] |
Therapeutic Effect of Vitamin D on Type 1 Diabetes | ||||
Study Design | Status of Participants | Treatment (Dose and Duration) | Outcome | Reference |
RCT | 70 with newly diagnosed T1DM | 0.25 μg 1,25(OH)2D/2 day or 25 mg/kg/d nicotinamide, 1 y | ↑ Fasting C-peptide and ↓ daily insulin dose in the calcitriol group No difference in baseline/stimulated C-peptide or HbA1c between calcitriol and nicotinamide group | (Pitocco et al. 2006) [56] |
RCT | 38 with newly diagnosed T1DM (7–30 y) | 2000 IU/d of vitamin D3 for 18 mo | ↑ CCL2, Treg% ↓ Cumulative incidence of undetectable fasting C-peptide in Suppl compared with placebo | (Gabbay et al. 2012) [57] |
RCT | 29 with newly diagnosed T1DM | 70 IU/kg/day vitamin D3 for 12 mo | ↑ Suppressive capacity of Tregs in Suppl from baseline to 3, 6, and 12 mo and higher than placebo at 12 mo | (Treiber et al. 2015) [58] |
RCT | 34 newly diagnosed T1DM (11–35 y) | 0.25 μg 1,25(OH)2D/d for 2 y | No difference in HbA1C and insulin requirement between Suppl and placebo at 6, 12, and 24 mo follow-up | (Bizzarri et al. 2010) [59] |
RCT | (1) 25 with T1DM (2) 40 with T1DM and 18 placebo (18–39 y) | (1) 0.25 μg 1,25(OH)2D/d for 18 mo (2) 0.25 μg 1,25(OH)2D/d for 9 mo | No differences in AUC C-peptide, peak C-peptide, and fasting C-peptide between Suppl and placebo | (Walter et al. 2010) [60] |
RCT | 27 with new-onset T1DM (mean age: 22 y) | 0.25 μg 1,25(OH)2D/day for 1 y | No difference in HbA1c and insulin requirement between Suppl and placebo | (Napoli et al. 2013) [61] |
RCT | 52 Indian children with T1DM | 60,000–120,000 IU/mo, vitamin D for 6 mo | ↑ C-peptide in Suppl No difference in HbA1c and insulin requirement | (Sharma et al. 2017) [62] |
RCT | 44 children with T1DM | 300,000 IU vitamin D3 single-dose intramuscular injection with Ca (40 mg/kg/d) for 3 mo | ↓ HbA1c in Suppl | (Mohammadian et al. 2015) [63] |
Experimental Model | Treatment (Dose and Duration) | Outcome | Reference |
---|---|---|---|
RINm5F rat β-cells | 1,25(OH)2D (10 nM or 1 μM; 48 h) | ↑ A20 (anti-apoptotic protein) expression under cytokine mixture treatment | (Riachy et al. 2002) [133] |
MIN-6 mouse insulinoma cells | 1,25(OH)2D (0.01 nM; 24 h) | ↑ BCL2 (anti-apoptotic protein) expression under STZ treatment | (Wang et al. 2016) [134] |
Human pancreatic islets | 1,25(OH)2D (10 nM or 1 μM; 48 h) | ↓ FAS (pro-apoptotic protein) expression under cytokine mixture treatment | (Riachy et al. 2006) [135] |
INS-1 rat insulinoma cells | 1,25(OH)2D (10 nM; 24 h or 48 h) | ↑ TMEM27 (an inducer of β-cell proliferation) expression | (Pepaj et al. 2014) [136] |
U-937 human promonocyte-like cells | 1,25(OH)2D (1–100 nM; 24 h) | ↑ IR mRNA expression | (Maestro et al. 2000) [142] |
U-937 human promonocyte-like cells | 1,25(OH)2D (0.01–100 nM; 24 h) | ↑ Insulin-induced glucose oxidation | (Maestro et al. 2002) [126] |
C2C12 myotubes | 1,25(OH)2D (10 nM; 48 h) | ↑ IRS1 phosphorylation at tyrosine residue | (Zhou et al. 2008) [143] |
3T3-L1 adipocytes | 1,25(OH)2D (25 or 50 nM; 2 h) | ↑ IRS1 phosphorylation at tyrosine residue | (Manna, Achari, and Jain 2017) [144] |
Human pancreatic islets | Calcipotriol (100 nM; 1 or 4 wk) | ↑ Ex vivo islet survival and insulin secretion | (Wei et al. 2018) [138] |
Rat pancreatic islets | MC903 or KH1060 (0.1 nM; 28–72 h) | ↑ Insulin secretion under IL-1β treatment | (Sandler, Buschard, and Bendtzen 1994) [139] |
NOD mice | 1,25(OH)2D (5 μg/kg per 2 d; 100 d) | ↓ Incidence of insulitis | (Mathieu et al. 1992) [145] |
NOD mice | 1,25(OH)2D (5 μg/kg per 2 d; 200 d) | ↓ Incidence of glucosuria and hyperglycemia | (Mathieu et al. 1994) [146] |
STZ-injected CD-1 mice | 1α(OH)D (0.3 μg/kg/d; 1 mo) | ↓ Incidence of hyperglycemia and insulitis | (Inaba et al. 1992) [147] |
STZ-injected Wistar rats | Vitamin D (10 IU/kg/d; 2 mo) | ↑ Pancreatic β-cell function ↓ Blood glucose and HbA1c levels | (Sadek and Shaheen 2014) [148] |
STZ-injected C57BL/6J mice | 1,25(OH)2D (5 μg/kg per 2 d; 3 wk) | ↓ Incidence of diabetes | (Wang et al. 2016) [134] |
NOD mice | 1,25(OH)2D (5 μg/kg per 2 d; 4, 8, or 12 wk) | ↑ Insulin content in pancreas ↓ Insulitis score | (Gysemans et al. 2005) [149] |
T1D mice | Vitamin D (2200 IU/kg/d; 4 wk) | ↑ Pancreatic β-cell survival and insulin content | (Lai et al. 2022) [91] |
Ovariectomized rats | Vitamin D (100, 1000, 10,000 IU/kg/wk; 8 wk) | ↑ Insulin sensitivity through PPARγ activation | (Hoseini, Damirchi, and Babaei 2017) [150] |
STZ-injected Wistar rats | Vitamin D3 (12 μg/kg/d; 15 d) | ↑ IR mRNA expression | (George et al. 2012) [151] |
NOD mice | Ro 26-2198 (0.03 μg/kg, 5 times/wk; 1 or 2 mo) | ↓ Incidence of hyperglycemia and insulitis | (Gregori et al. 2002) [117] |
Ins2-lacking NOD mice | 2α-methyl-19-nor(20S)-1,25(OH)2D (600 pg/d; 3 mo) | ↓ Insulitis score and T1D progression | (Kiekhaefer et al. 2011) [152] |
Diet-induced obese mice | Calcipotriol (20 μg/kg/d; 4 wk) | ↓ Hepatic insulin resistance and inflammation | (Dong et al. 2020) [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.Y.; Shin, S.; Han, S.N. Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations. Nutrients 2024, 16, 3185. https://doi.org/10.3390/nu16183185
Park CY, Shin S, Han SN. Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations. Nutrients. 2024; 16(18):3185. https://doi.org/10.3390/nu16183185
Chicago/Turabian StylePark, Chan Yoon, Sunhye Shin, and Sung Nim Han. 2024. "Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations" Nutrients 16, no. 18: 3185. https://doi.org/10.3390/nu16183185
APA StylePark, C. Y., Shin, S., & Han, S. N. (2024). Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations. Nutrients, 16(18), 3185. https://doi.org/10.3390/nu16183185