Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Evaluation of Adherence to MD and Dietary Recall
2.3. Radiological Variables
2.4. Laboratory Testing, Circulating Inflammatory Markers and Potential Intermediaries
2.4.1. Endothelial Progenitor Cells
2.4.2. Choline Pathway Metabolites
2.4.3. Adipokines
2.5. Prognostic Clinical Variables
2.6. Statystical Analysis
3. Results
3.1. General Description of the Sample
3.1.1. Clinical and Diet Variables
3.1.2. Circulating Biomarkers and Dietary Variables
3.2. Mediterranean Diet and Prognosis
3.3. Potential Biomarkers Involved in Prognosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-Style Diet for the Primary and Secondary Prevention of Cardiovascular Disease. Cochrane Database Syst. Rev. 2019, 3, CD009825. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean Diet and Incidence and Mortality of Coronary Heart Disease and Stroke in Women. Circulation 2010, 119, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Agnoli, C.; Krogh, V.; Grioni, S.; Sieri, S.; Palli, D.; Masala, G.; Sacerdote, C.; Vineis, P.; Tumino, R.; Frasca, G.; et al. A Priori-Defined Dietary Patterns Are Associated with Reduced Risk of Stroke in a Large Italian Cohort 1-3. J. Nutr. 2011, 141, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Misirli, G.; Benetou, V.; Lagiou, P.; Bamia, C.; Trichopoulos, D.; Trichopoulou, A. Relation of the Traditional Mediterranean Diet to Cerebrovascular Disease in a Mediterranean Population. Am. J. Epidemiol. 2012, 176, 1185–1192. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Lagiou, P. Healthy Traditional Mediterranean Diet: An Expression of Culture, History, and Lifestyle. Nutr. Rev. 1997, 55, 383–389. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; De Lorgeril, M. Definitions and Potential Health Benefits of the Mediterranean Diet: Views from Experts around the World. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef]
- Lavados, P.M.; Mazzon, E.; Rojo, A.; Brunser, A.M.; Olavarría, V.V. Pre-Stroke Adherence to a Mediterranean Diet Pattern Is Associated with Lower Acute Ischemic Stroke Severity: A Cross-Sectional Analysis of a Prospective Hospital-Register Study. BMC Neurol. 2020, 20, 252. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Casuccio, A.; Butt, C.; Pecoraro, R.; Raimondo, D.D.; Corte, V.D.; Arnao, V.; Clemente, G.; Maida, C.; Simonetta, I.; et al. Mediterranean Diet in Patients with Acute Ischemic Stroke: Relationships between Mediterranean Diet Score, Diagnostic Subtype, and Stroke Severity Index. Atherosclerosis 2015, 243, 260–267. [Google Scholar] [CrossRef]
- García-Cabo, C.; Castañón-Apilánez, M.; Benavente-Fernández, L.; Jimenez, J.M.; Arenillas, J.; Castellanos, M.; Rodrigo-Stevens, G.; Tejada-Meza, H.; Pérez, C.; Martínez-Zabaleta, M.; et al. Impact of Mediterranean Diet Prior to Stroke on the Prognosis of Patients Undergoing Endovascular Treatment. Cerebrovasc. Dis. 2021, 50, 303–309. [Google Scholar] [CrossRef]
- De La Cruz, J.P.; Ruiz-Moreno, M.I.; Guerrero, A.; López-Villodres, J.A.; Reyes, J.J.; Espartero, J.L.; Labajos, M.T.; González-Correa, J.A. Role of the Catechol Group in the Antioxidant and Neuroprotective Effects of Virgin Olive Oil Components in Rat Brain. J. Nutr. Biochem. 2015, 26, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Khalatbary, A.R. Olive Oil Phenols and Neuroprotection. Nutr. Neurosci. 2013, 16, 243–249. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, P.; Ma, F.; Río, C.d.; Romero-Bernal, M.; Najar, A.M.; Cádiz-Gurrea, M.d.l.L.; Leyva-Jimenez, F.J.; Ramiro, L.; Menéndez-Valladares, P.; Pérez-Sánchez, S.; et al. Diet Supplementation with Polyphenol-Rich Salicornia Ramosissima Extracts Protects against Tissue Damage in Experimental Models of Cerebral Ischemia. Nutrients 2022, 14, 5077. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Babio, N.; Martínez-González, M.A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary Fat Intake and Risk of Cardiovascular Disease and All-Cause Mortality in a Population at High Risk of Cardiovascular Disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated Fatty Acids and Risk of Cardiovascular Disease: Synopsis of the Evidence Available from Systematic Reviews and Meta-Analyses. Nutrients 2012, 4, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
- Casula, M.; Soranna, D.; Catapano, A.L.; Corrao, G. Long-Term Effect of High Dose Omega-3 Fatty Acid Supplementation for Secondary Prevention of Cardiovascular Outcomes: A Meta-Analysis of Randomized, Double Blind, Placebo Controlled Trials. Atheroscler. Suppl. 2013, 14, 243–251. [Google Scholar] [CrossRef]
- Chowdhury, R.; Stevens, S.; Gorman, D.; Pan, A.; Warnakula, S.; Chowdhury, S.; Ward, H.; Johnson, L.; Crowe, F.; Hu, F.B.; et al. Association between Fish Consumption, Long Chain Omega 3 Fatty Acids, and Risk of Cerebrovascular Disease: Systematic Review and Meta-Analysis. BMJ Online 2012, 345, e6698. [Google Scholar] [CrossRef]
- Khaw, K.T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma Phospholipid Fatty Acid Concentration and Incident Coronary Heart Disease in Men and Women: The EPIC-Norfolk Prospective Study. PLoS Med. 2012, 9, 1001255. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Gonzalo-Gobernado, R.; Ayuso, M.I.; Sansone, L.; Bernal-Jiménez, J.J.; Ramos-Herrero, V.D.; Sánchez-García, E.; Ramos, T.L.; Abia, R.; Muriana, F.J.G.; Bermúdez, B.; et al. Neuroprotective Effects of Diets Containing Olive Oil and DHA/EPA in a Mouse Model of Cerebral Ischemia. Nutrients 2019, 11, 1109. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Kuan, Y.-H.; Li, J.-R.; Chen, W.-Y.; Ou, Y.-C.; Pan, H.-C.; Liao, S.-L.; Raung, S.-L.; Chang, C.-J.; Chen, C.-J. Docosahexaenoic Acid Reduces Cellular Inflammatory Response Following Permanent Focal Cerebral Ischemia in Rats. J. Nutr. Biochem. 2013, 24, 2127–2137. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.; Ramirez, R.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Perez-Martinez, P.; Carracedo, J.; Garcia-Rios, A.; Rodriguez, F.; Gutierrez-Mariscal, F.M.; Gomez, P.; et al. Mediterranean Diet Reduces Endothelial Damage and Improves the Regenerative Capacity of Endothelium. Am. J. Clin. Nutr. 2011, 93, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Sobrino, T.; Hurtado, O.; Moro, M.Á.; Rodríguez-Yáñez, M.; Castellanos, M.; Brea, D.; Moldes, O.; Blanco, M.; Arenillas, J.F.; Leira, R.; et al. The Increase of Circulating Endothelial Progenitor Cells After Acute Ischemic Stroke Is Associated With Good Outcome. Stroke 2007, 38, 2759–2764. [Google Scholar] [CrossRef] [PubMed]
- Cesari, F.; Dinu, M.; Pagliai, G.; Rogolino, A.; Giusti, B.; Gori, A.M.; Casini, A.; Marcucci, R.; Sofi, F. Mediterranean, but Not Lacto-Ovo-Vegetarian, Diet Positively Influence Circulating Progenitor Cells for Cardiovascular Prevention: The CARDIVEG Study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Fatima, K.; Rashid, A.M.; Memon, U.A.A.; Fatima, S.S.; Javaid, S.S.; Shahid, O.; Zehri, F.; Obaid, M.A.; Ahmad, M.; Almas, T.; et al. Mediterranean Diet and Its Effect on Endothelial Function: A Meta-Analysis and Systematic Review. Ir. J. Med. Sci. 2023, 192, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Millard, H.R.; Musani, S.K.; Dibaba, D.T.; Talegawkar, S.A.; Taylor, H.A.; Tucker, K.L.; Bidulescu, A. Dietary Choline and Betaine; Associations with Subclinical Markers of Cardiovascular Disease Risk and Incidence of CVD, Coronary Heart Disease and Stroke: The Jackson Heart Study. Eur. J. Nutr. 2018, 57, 51–60. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Hu, F.B.; Ruiz-Canela, M.; Bulló, M.; Toledo, E.; Wang, D.D.; Corella, D.; Gómez-Gracia, E.; Fiol, M.; Estruch, R.; et al. Plasma Metabolites From Choline Pathway and Risk of Cardiovascular Disease in the PREDIMED (Prevention With Mediterranean Diet) Study. J. Am. Heart Assoc. 2017, 6, e006524. [Google Scholar] [CrossRef]
- Wang, L.; Nan, Y.; Zhu, W.; Wang, S. Effect of TMAO on the Incidence and Prognosis of Cerebral Infarction: A Systematic Review and Meta-Analysis. Front. Neurol. 2024, 14, 1287928. [Google Scholar] [CrossRef]
- Opatrilova, R.; Caprnda, M.; Kubatka, P.; Valentova, V.; Uramova, S.; Nosal, V.; Gaspar, L.; Zachar, L.; Mozos, I.; Petrovic, D.; et al. Adipokines in Neurovascular Diseases. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 98, 424–432. [Google Scholar] [CrossRef]
- Mattu, H.S.; Randeva, H.S. Role of Adipokines in Cardiovascular Disease. J. Endocrinol. 2013, 216, T17–T36. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T. Adiponectin and Adiponectin Receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, R.; Gong, Y.; Berzins, B.; Wu, X.; Mahadev, K.; Hough, K.; Chan, L.; Goldstein, B.J.; Scalia, R. Adiponectin Deficiency Increases Leukocyte-Endothelium Interactions via Upregulation of Endothelial Cell Adhesion Molecules in Vivo. J. Clin. Investig. 2007, 117, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Perovic, E.; Mrdjen, A.; Harapin, M.; Tesija Kuna, A.; Simundic, A.-M. Diagnostic and Prognostic Role of Resistin and Copeptin in Acute Ischemic Stroke. Top. Stroke Rehabil. 2017, 24, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Rajpathak, S.N.; Kaplan, R.C.; Wassertheil-Smoller, S.; Cushman, M.; Rohan, T.E.; McGinn, A.P.; Wang, T.; Strickler, H.D.; Scherer, P.E.; Mackey, R.; et al. Resistin, but Not Adiponectin and Leptin, Is Associated With the Risk of Ischemic Stroke Among Postmenopausal Women. Stroke 2011, 42, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Burnett, M.; Lee, C.; Kinnaird, T.; Stabile, E.; Durrani, S.; Dullum, M.; Devaney, J.; Fishman, C.; Stamou, S.; Canos, D.; et al. The Potential Role of Resistin in Atherogenesis. Atherosclerosis 2005, 182, 241–248. [Google Scholar] [CrossRef]
- Yanofsky, R.; Sancho, C.; Gasbarrino, K.; Zheng, H.; Doonan, R.J.; Jaunet, F.; Steinmetz-Wood, S.; Veinot, J.P.; Lai, C.; Daskalopoulou, S.S. Expression of Resistin, Chemerin, and Chemerin’s Receptor in the Unstable Carotid Atherosclerotic Plaque. Stroke 2021, 52, 2537–2546. [Google Scholar] [CrossRef]
- Yang, D.; Liu, M.; Khasiyev, F.; Rundek, T.; Del Brutto, V.J.; Cheung, K.; Marinovic Gutierrez, C.; Hornig, M.; Elkind, M.S.V.; Gutierrez, J. Immune Markers Are Associated With Asymptomatic Intracranial Large Artery Stenosis and Future Vascular Events in NOMAS. Stroke 2023, 54, 3030–3037. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Fernández-Jarne, E.; Serrano-Martínez, M.; Wright, M.; Gomez-Gracia, E. Development of a Short Dietary Intake Questionnaire for the Quantitative Estimation of Adherence to a Cardioprotective Mediterranean Diet. Eur. J. Clin. Nutr. 2004, 58, 1550–1552. [Google Scholar] [CrossRef]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martn-Moreno, J.M. Relative Validity of a Semi-Quantitative Food-Frequency Questionnaire in an Elderly Mediterranean Population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef]
- Sims, J.R.; Gharai, L.R.; Schaefer, P.W.; Vangel, M.; Rosenthal, E.S.; Lev, M.H.; Schwamm, L.H. ABC/2 for Rapid Clinical Estimate of Infarct, Perfusion, and Mismatch Volumes. Neurology 2009, 72, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Pías-Peleteiro, J.; Pérez-Mato, M.; López-Arias, E.; Rodríguez-Yáñez, M.; Blanco, M.; Campos, F.; Castillo, J.; Sobrino, T. Increased Endothelial Progenitor Cell Levels Are Associated with Good Outcome in Intracerebral Hemorrhage. Sci. Rep. 2016, 6, 28724. [Google Scholar] [CrossRef] [PubMed]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of Acute Cerebral Infarction: A Clinical Examination Scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue Plasminogen Activator for Acute Ischemic Stroke. N. Engl. J. Med. 1995, 333, 1581–1587. [Google Scholar] [CrossRef]
- Kharitonova, T.; Mikulik, R.; Roine, R.O.; Soinne, L.; Ahmed, N.; Wahlgren, N.; Safe Implementation of Thrombolysis in Stroke (SITS) Investigators. Association of Early National Institutes of Health Stroke Scale Improvement With Vessel Recanalization and Functional Outcome After Intravenous Thrombolysis in Ischemic Stroke. Stroke 2011, 42, 1638–1643. [Google Scholar] [CrossRef]
- Ding, P.-F.; Zhang, H.-S.; Wang, J.; Gao, Y.-Y.; Mao, J.-N.; Hang, C.-H.; Li, W. Insulin Resistance in Ischemic Stroke: Mechanisms and Therapeutic Approaches. Front. Endocrinol. 2022, 13, 1092431. [Google Scholar] [CrossRef]
- Rehni, A.K.; Cho, S.; Dave, K.R. Ischemic Brain Injury in Diabetes and Endoplasmic Reticulum Stress. Neurochem. Int. 2022, 152, 105219. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Martínez-Rodríguez, J.; González-Lucán, M.; Fernández-Fernández, C.; Castro-Quintela, E. Insulin Resistance Is a Cardiovascular Risk Factor in Humans. Diabetes Metab. Syndr. 2019, 13, 1449–1455. [Google Scholar] [CrossRef]
- Mi, D.; Wang, Y.; Wang, Y.; Liu, L. Insulin Resistance Is an Independent Risk Factor for Early Neurological Deterioration in Non-Diabetic Patients with Acute Ischemic Stroke. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2020, 41, 1467–1473. [Google Scholar] [CrossRef]
- Camps-Renom, P.; Jiménez-Xarrié, E.; Soler, M.; Puig, N.; Aguilera-Simón, A.; Marín, R.; Prats-Sánchez, L.; Delgado-Mederos, R.; Martínez-Domeño, A.; Guisado-Alonso, D.; et al. Endothelial Progenitor Cells Count after Acute Ischemic Stroke Predicts Functional Outcome in Patients with Carotid Atherosclerosis. J. Stroke Cerebrovasc. Dis. 2021, 30, 106144. [Google Scholar] [CrossRef] [PubMed]
- Custodia, A.; Ouro, A.; Sargento-Freitas, J.; Aramburu-Núñez, M.; Pías-Peleteiro, J.M.; Hervella, P.; Rosell, A.; Ferreira, L.; Castillo, J.; Romaus-Sanjurjo, D.; et al. Unraveling the Potential of Endothelial Progenitor Cells as a Treatment Following Ischemic Stroke. Front. Neurol. 2022, 13, 940682. [Google Scholar] [CrossRef] [PubMed]
- Calahorra, J.; Shenk, J.; Wielenga, V.H.; Verweij, V.; Geenen, B.; Dederen, P.J.; Peinado, M.Á.; Siles, E.; Wiesmann, M.; Kiliaan, A.J. Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke. Nutrients 2019, 11, 2430. [Google Scholar] [CrossRef] [PubMed]
- Richard, N.; Arnold, S.; Hoeller, U.; Kilpert, C.; Wertz, K.; Schwager, J. Hydroxytyrosol Is the Major Anti-Inflammatory Compound in Aqueous Olive Extracts and Impairs Cytokine and Chemokine Production in Macrophages. Planta Med. 2011, 77, 1890–1897. [Google Scholar] [CrossRef]
- Michas, G.; Micha, R.; Zampelas, A. Dietary Fats and Cardiovascular Disease: Putting Together the Pieces of a Complicated Puzzle. Atherosclerosis 2014, 234, 320–328. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Zheng, X.; Zeng, N.; Wang, A.; Zhu, Z.; Zhong, C.; Xu, T.; Xu, T.; Peng, Y.; Peng, H.; Li, Q.; et al. Elevated C-Reactive Protein and Depressed High-Density Lipoprotein Cholesterol Are Associated with Poor Function Outcome After Ischemic Stroke. Curr. Neurovasc Res. 2018, 15, 226–233. [Google Scholar] [CrossRef]
- Romaus-Sanjurjo, D.; Castañón-Apilánez, M.; López-Arias, E.; Custodia, A.; Martin-Martín, C.; Ouro, A.; López-Cancio, E.; Sobrino, T. Neuroprotection Afforded by an Enriched Mediterranean-like Diet Is Modified by Exercise in a Rat Male Model of Cerebral Ischemia. Antioxid. Basel Switz. 2024, 13, 138. [Google Scholar] [CrossRef]
- Matsumoto, M.; Ishikawa, S.; Kajii, E. Association of Adiponectin With Cerebrovascular Disease. Stroke 2008, 39, 323–328. [Google Scholar] [CrossRef]
- Arregui, M.; Buijsse, B.; Fritsche, A.; Giuseppe, R.D.; Schulze, M.B.; Westphal, S.; Isermann, B.; Boeing, H.; Weikert, C. Adiponectin and Risk of Stroke: Prospective Study and Meta-Analysis. Stroke 2014, 45, 10–17. [Google Scholar] [CrossRef]
- Choi, K.M.; Cho, H.J.; Choi, H.Y.; Yang, S.J.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Baik, S.H.; Choi, D.S.; Kim, N.H. Higher Mortality in Metabolically Obese Normal-Weight People than in Metabolically Healthy Obese Subjects in Elderly Koreans. Clin. Endocrinol. 2013, 79, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, J.; Yañez, A.; Moñino, M.; Babio, N.; Toledo, E.; Martínez-González, M.A.; Sorlí, J.V.; Salas-Salvadó, J.; Estruch, R.; Ros, E.; et al. Longitudinal Changes in Mediterranean Diet and Transition between Different Obesity Phenotypes. Clin. Nutr. 2020, 39, 966–975. [Google Scholar] [CrossRef] [PubMed]
Global (n = 70) | Low Adherence to MD (n = 33) | High Adherence to MD (n = 37) | p | |
---|---|---|---|---|
Age, years | 74.7 ± 10.7 | 74.9 ± 12.5 | 73.9 ± 8.4 | 0.56 |
Gender (female) | 28 (40) | 14 (42.4) | 14 (37.8) | 0.69 |
Smokers | 33 (48.6) | 19 (57.6) | 14 (40) | 0.34 |
Alcohol intake | 5 (7.1) | 1 (3) | 4 (10.8) | 0.36 |
Dyslipidemia | 40 (57.1) | 21 (63.6) | 19 (51.4) | 0.30 |
Hypertension | 44 (62.9) | 20 (60.6) | 24 (64.9) | 0.71 |
Diabetes | 23 (32.9) | 16 (48.5) | 7 (18.9) | <0.01 |
Atrial fibrillation | 46 (65.7) | 21 (63.7) | 25 (53.5) | 0.94 |
Clinical atherosclerosis 1 | 18 (25.7) | 11 (33.3) | 7 (18.9) | 0.17 |
Metabolic syndrome | 34 (48.6) | 16 (48.5) | 18 (48.6) | 0.81 |
BMI | 27.6 [25.2–30.1] | 26.6 [24.7–28.9] | 27.8 [24.2–30.6] | 0.17 |
Obesity according to BMI | 19 (27.1) | 6 (18.2) | 13 (35.1) | 0.11 |
Waist circumference (cm) | 101 [93–112] | 97.9 [87–107] | 99 [93.7–111.2] | 0.11 |
Fasting glucose, mg/dL | 109 [99.7–123.2] | 111 [95–131] | 105 [96.5–112.2] | 0.07 |
Insulinemia, microU/mL | 14.1 [8.7–21.8] | 19 [9–23] | 13.5 [9.6–17.5] | 0.19 |
HbA1c | 6 [6–6] | 6 [6–7] | 6 [5–6] | 0.03 |
LDL–cholesterol, mg/dL | 84 [62–112] | 84 [65–96] | 99.5 [63.5–123.7] | 0.45 |
HDL–cholesterol, mg/dL | 44 [35–56] | 42 [32–52] | 49 [39–59.5] | 0.07 |
Triglycerides, mg/dL | 95 [75.5–133] | 98 [80–132] | 91.5 [74–138.5] | 0.85 |
Occlusion site | 0.73 | |||
TICA | 11 (15.7) | 5 (15.2) | 6 (16.2) | |
M1 | 37 (52.9) | 19 (57.6) | 18 (48.6) | |
M2 | 22 (31.4) | 9 (27.3) | 13 (35.1) | |
Tandem occlusions (%) | 10 (14.3) | 8 (24.2) | 2 (5.4) | 0.04 |
ASPECTS | 8 [7–9] | 8 [7–9] | 7.5 [6–9] | 0.35 |
TOAST ethiology | ||||
Aterothrombotic | 7 (10) | 6 (18.2) | 1 (2.7) | 0.04 |
Cardioembolic | 49 (70) | 21 (63.6) | 28 (75.7) | |
Unusual | 3 (4.3) | 1 (3) | 2 (5.4) | |
Undetermined | 11 (15.7) | 5 (15.2) | 6 (16.2) |
Global (n = 70) | Low Adherence (n = 33) | High Adherence (n = 37) | p | |
---|---|---|---|---|
HOMA index | 3.91 [1.97–6.63] | 4.66 [2–7.1] | 3.5 [1.96–5.1] | 0.22 |
Baseline EPC, mill/events | 30 [10–97.75] | 22.5 [10–101.5] | 45 [9–97.5] | 0.61 |
EPC’s increase 1, % | 32 (71.1) | 17 (73.9) | 15 (68.2) | 0.67 |
Betaine, PPM | 3.55 [2.77–4.44] | 3.59 [2.77–4.84] | 3.6 [3.14–4.27] | 0.28 |
Choline, PPM | 1.89 [1.63–2.34] | 1.87 [1.54–2.49] | 1.86 [1.63–2.15] | 0.97 |
TMAO, PPM | 0.21 [0.12–0.35] | 0.25 [0.18–0.43] | 0.19 [0.11–0.28] | 0.002 |
Resistin, ng/mL | 8.62 [6.72–11.85] | 8.83 [6.08–11.5] | 7.96 [6.73–9.83] | 0.4 |
Leptin, ng/dL | 13 [7.35–33.05] | 12.95 [5.57–20.9] | 15.5 [9.55–47.05] | 0.15 |
Adiponectin, µg/mL | 11.3 [7.5–14.6] | 10.5 [5.53–12.45] | 11.7 [9.4–15.35] | 0.53 |
Global (n = 70) | Low Adherence (n = 33) | High Adherence (n = 37) | p | |
---|---|---|---|---|
NIHSS pre-treatment | 14 [10–18] | 13 [10–17] | 14 [10–18] | 0.48 |
ENI | 62 (88.6) | 26 (78.8) | 36 (97.3) | 0.03 |
END | 44 (62.9) | 18 (54.5) | 26 (70.3) | 0.17 |
Final infarct volume, mL | 7.8 [1.3–25.2] | 7.9 [1.5–23.9] | 6.2 [1.2–25.6] | 0.75 |
mRS 0–2 at 3 months | 50 (71.4) | 20 (60.6) | 30 (81.8) | 0.06 |
mRS 0–1 at 3 months | 35 (50) | 16 (48.5) | 19 (51.4) | 0.4 |
OR (95% IC) | p Value | |
---|---|---|
High adherence to MD | 11.98 (1.1–130.32) | 0.04 |
Age | 0.88 (0.78–0.99) | 0.04 |
Sex, women | 17.73 (1.11–283.91) | 0.04 |
Fasting glucose | 0.97 (0.93–1) | 0.11 |
OR (95% IC) | p Value | |
---|---|---|
High adherence to MD | 4.88 (1.26–18.93) | 0.02 |
Age | 0.94 (0.88–0.99) | 0.04 |
Sex, women | 1.37 (0.4–4.67) | 0.61 |
NIHSS pre-treatment | 0.84 (0.74–0.96) | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañón-Apilánez, M.; García-Cabo, C.; Martin-Martin, C.; Prieto, B.; Cernuda-Morollón, E.; Rodríguez-González, P.; Pineda-Cevallos, D.; Benavente, L.; Calleja, S.; López-Cancio, E. Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes. Nutrients 2024, 16, 3218. https://doi.org/10.3390/nu16183218
Castañón-Apilánez M, García-Cabo C, Martin-Martin C, Prieto B, Cernuda-Morollón E, Rodríguez-González P, Pineda-Cevallos D, Benavente L, Calleja S, López-Cancio E. Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes. Nutrients. 2024; 16(18):3218. https://doi.org/10.3390/nu16183218
Chicago/Turabian StyleCastañón-Apilánez, María, Carmen García-Cabo, Cristina Martin-Martin, Belén Prieto, Eva Cernuda-Morollón, Pablo Rodríguez-González, Daniela Pineda-Cevallos, Lorena Benavente, Sergio Calleja, and Elena López-Cancio. 2024. "Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes" Nutrients 16, no. 18: 3218. https://doi.org/10.3390/nu16183218
APA StyleCastañón-Apilánez, M., García-Cabo, C., Martin-Martin, C., Prieto, B., Cernuda-Morollón, E., Rodríguez-González, P., Pineda-Cevallos, D., Benavente, L., Calleja, S., & López-Cancio, E. (2024). Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes. Nutrients, 16(18), 3218. https://doi.org/10.3390/nu16183218