Improving Undernutrition with Microalgae
Abstract
:1. Introduction
2. Microalgae in the Environment
3. Nutritional Components of Microalgae
3.1. Lipids
3.2. Carbohydrates
3.3. Protein
3.4. Vitamins, Minerals and Pigments
4. Microalgae in Foods
5. Commercialisation of Microalgae
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- UNICEF/WHO/World Bank Group. Levels and Trends in Child Malnutrition: Joint Child Malnutrition Estimates: Key Findings of the 2023 Edition. 2023. Available online: https://www.who.int/publications/i/item/9789240073791 (accessed on 28 April 2024).
- World Health Organisation (WHO). Nutrition. 2024. Available online: https://www.who.int/health-topics/nutrition#tab=tab_1 (accessed on 28 April 2024).
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in older adults—Recent advances and remaining challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Bosaeus, I. Malnutrition in adults. N. Engl. J. Med. 2024, 391, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef]
- Matsunaga, T.; Takeyama, H.; Miyashita, H.; Yokouchi, H. Marine microalgae. Adv. Biochem. Eng. Biotechnol. 2005, 96, 165–188. [Google Scholar] [CrossRef]
- Tragin, M.; Vaulot, D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. 2018, 8, 14020. [Google Scholar] [CrossRef]
- Borjas Esqueda, A.; Gardarin, C.; Laroche, C. Exploring the diversity of red microalgae for exopolysaccharide production. Mar. Drugs 2022, 20, 246. [Google Scholar] [CrossRef]
- Thoré, E.S.J.; Muylaert, K.; Bertram, M.G.; Brodin, T. Microalgae. Curr. Biol. 2023, 33, R91–R95. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Brocks, J.J.; Kilburn, M.R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 2008, 455, 1101–1104. [Google Scholar] [CrossRef]
- Berry, C.M.; Marshall, J.E.A. Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard. Geology 2015, 43, 1043–1046. [Google Scholar] [CrossRef]
- Carvalho, M.R.; Jaramillo, C.; de la Parra, F.; Caballero-Rodríguez, D.; Herrera, F.; Wing, S.; Turner, B.L.; D’Apolito, C.; Romero-Báez, M.; Narváez, P.; et al. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science 2021, 372, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Demoulin, C.F.; Lara, Y.J.; Cornet, L.; François, C.; Baurain, D.; Wilmotte, A.; Javaux, E.J. Cyanobacteria evolution: Insight from the fossil record. Free Rad. Biol. Med. 2019, 140, 206–223. [Google Scholar] [CrossRef]
- Simon, N.; Cras, A.-L.; Foulon, E.; Lemée, R. Diversity and evolution of marine phytoplankton. C. R. Biol. 2009, 332, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Tetu, S.G.; Sarker, I.; Schrameyer, V.; Pickford, R.; Elbourne, L.D.H.; Moore, L.R.; Paulsen, I.T. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun. Biol. 2019, 2, 184. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. How Much Oxygen Comes from the Ocean? 2023. Available online: https://oceanservice.noaa.gov/facts/ocean-oxygen.html (accessed on 28 April 2024).
- Lewin, R.A.; Andersen, R.A. Algae. 2023. Available online: https://www.britannica.com/science/algae (accessed on 5 January 2024).
- Panchal, S.K.; Brown, L. Ageing, health and macroalgae. Med. Res. Arch. 2024, 12, 5551. [Google Scholar] [CrossRef]
- Guiry, M.D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef]
- Melis, A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009, 177, 272–280. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation (FAO). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation; FAO: Rome, Italy, 2022; Available online: https://openknowledge.fao.org/items/11a4abd8-4e09-4bef-9c12-900fb4605a02 (accessed on 20 July 2024).
- Food and Agriculture Organisation (FAO). The State of World Fisheries and Aquaculture 2020: Sustainability in Action; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/documents/card/en/c/ca9229en (accessed on 5 January 2024).
- Zhong, Y.; Su, Y.; Zhang, D.; She, C.; Chen, N.; Chen, J.; Yang, H.; Balaji-Prasath, B. The spatiotemporal variations in microalgae communities in vertical waters of a subtropical reservoir. J. Environ. Manag. 2022, 317, 115379. [Google Scholar] [CrossRef]
- Prihanto, A.A.; Jatmiko, Y.D.; Nurdiani, R.; Miftachurrochmah, A.; Wakayama, M. Freshwater microalgae as promising food sources: Nutritional and functional properties. Open Microbiol. J. 2022, 16, E187428582206200. [Google Scholar] [CrossRef]
- Song, X.; Bo, Y.; Feng, Y.; Tan, Y.; Zhou, C.; Yan, X.; Ruan, R.; Xu, Q.; Cheng, P. Potential applications for multifunctional microalgae in soil improvement. Front. Environ. Sci. 2022, 10, 1035332. [Google Scholar] [CrossRef]
- Little, S.M.; Senhorinho, G.N.A.; Saleh, M.; Basiliko, N.; Scott, J.A. Antibacterial compounds in green microalgae from extreme environments: A review. Algae 2021, 36, 61–72. [Google Scholar] [CrossRef]
- Huerlimann, R.; Heimann, K. Comprehensive guide to acetyl-carboxylases in algae. Crit. Rev. Biotechnol. 2013, 33, 49–65. [Google Scholar] [CrossRef] [PubMed]
- von Alvensleben, N.; Heimann, K. Chapter 4—The potential of microalgae for biotechnology: A focus on carotenoids. In Blue Biotechnology: Production and Use of Marine Molecules; La Barre, S., Bates, S.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; Volume 1, pp. 117–142. [Google Scholar] [CrossRef]
- Del Mondo, A.; Smerilli, A.; Sané, E.; Sansone, C.; Brunet, C. Challenging microalgal vitamins for human health. Microb. Cell Fact. 2020, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Cardoso, C.; Bandarra, N.M.; Afonso, C. Microalgae as healthy ingredients for functional food: A review. Food Funct. 2017, 8, 2672–2685. [Google Scholar] [CrossRef] [PubMed]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Lucakova, S.; Branyikova, I.; Hayes, M. Microalgal proteins and bioactives for food, feed, and other applications. Appl. Sci. 2022, 12, 4402. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Patil, V.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int. 2007, 15, 1–9. [Google Scholar] [CrossRef]
- Renata, M.; Shahab, K.; Peilin, S.; Saman, F.; Stephen, L.; Kathryn, G.A.; Rebecca, E.E.; John, P.; Majid, E.; Dariush, M. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, M.; Rockwell, M.S.; Wentz, L.M. The influence of dietary and supplemental omega-3 fatty acids on the omega-3 index: A scoping review. Front. Nutr. 2023, 10, 1072653. [Google Scholar] [CrossRef] [PubMed]
- Fishmeal production up in 2021, fish oil production drops. Feed and Additive: International Magazine for Animal Feed & Additive Industry 2022; issue 14, pp. 8–9. Available online: https://www.feedandadditive.com/digital-magazines/Issue14_March2022/#zoom=true (accessed on 17 September 2024).
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The health benefits of dietary fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Chevalier, S.; Leidy, H.J. Protein “requirements” beyond the RDA: Implications for optimizing health. Appl. Physiol. Nutr. Metab. 2016, 41, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The contribution of fisheries and aquaculture to the global protein supply. Food Sec. 2022, 14, 805–827. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Tai, T.C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 2020, 7, 523. [Google Scholar] [CrossRef]
- Paul, K.; Gaikwad, M.; Choudhary, P.; Mohan, N.; Pai, P.; Patil, S.D.; Pawar, Y.; Chawande, A.; Banerjee, A.; Nagle, V.; et al. Year-round sustainable biomass production potential of Nannochloris sp. in outdoor raceway pond enabled through strategic photobiological screening. Photosynth. Res. 2022, 154, 303–328. [Google Scholar] [CrossRef]
- Patel, A.; Liefeldt, S.; Rova, U.; Christakopoulos, P.; Matsakas, L. Co-production of DHA and squalene by thraustochytrid from forest biomass. Sci. Rep. 2020, 10, 1992. [Google Scholar] [CrossRef]
- Tamel Selvan, K.; Goon, J.A.; Makpol, S.; Tan, J.K. Therapeutic potentials of microalgae and their bioactive compounds on diabetes mellitus. Mar. Drugs 2023, 21, 462. [Google Scholar] [CrossRef]
- du Preez, R.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Nannochloropsis oceanica as a microalgal food intervention in diet-induced metabolic syndrome in rats. Nutrients 2021, 13, 3991. [Google Scholar] [CrossRef]
- Castel, T.; Léon, K.; Gandubert, C.; Gueguen, B.; Amérand, A.; Guernec, A.; Théron, M.; Pichavant-Rafini, K. Comparison of sodium selenite and selenium-enriched Spirulina supplementation effects after selenium deficiency on growth, tissue selenium concentrations, antioxidant activities, and selenoprotein expression in rats. Biol. Trace Elem. Res. 2024, 202, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Stiefvatter, L.; Frick, K.; Lehnert, K.; Vetter, W.; Montoya-Arroyo, A.; Frank, J.; Schmid-Staiger, U.; Bischoff, S.C. Potentially beneficial effects on healthy aging by supplementation of the EPA-rich microalgae Phaeodactylum tricornutum or its supernatant—A randomized controlled pilot trial in elderly individuals. Mar. Drugs 2022, 20, 716. [Google Scholar] [CrossRef]
- Rao, A.; Briskey, D.; Nalley, J.O.; Ganuza, E. Omega-3 eicosapentaenoic acid (EPA) rich extract from the microalga Nannochloropsis decreases cholesterol in healthy individuals: A double-blind, randomized, placebo-controlled, three-month supplementation study. Nutrients 2020, 12, 1869. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, R.S.; Miller, D.D.; Padilla-Zakour, O.I.; Lei, X.G. Supplemental microalgal iron helps replete blood hemoglobin in moderately anemic mice fed a rice-based diet. Nutrients 2020, 12, 2239. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, H.; Brown, L. Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function? Prog. Lipid Res. 2015, 59, 172–200. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, H.; Kumar, S.A.; Iyer, A.; Waanders, J.; Ward, L.C.; Brown, L. Responses to oleic, linoleic and α-linolenic acids in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J. Nutr. Biochem. 2013, 24, 1381–1392. [Google Scholar] [CrossRef]
- Ravaut, G.; Légiot, A.; Bergeron, K.F.; Mounier, C. Monounsaturated fatty acids in obesity-related inflammation. Int. J. Mol. Sci. 2020, 22, 330. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of α-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Herold, P.M.; Kinsella, J.E. Fish oil consumption and decreased risk of cardiovascular disease: A comparison of findings from animal and human feeding trials. Am. J. Clin. Nutr. 1986, 43, 566–598. [Google Scholar] [CrossRef]
- Harris, W.S. Fish oils and plasma lipid and lipoprotein metabolism in humans: A critical review. J. Lipid Res. 1989, 30, 785–807. [Google Scholar] [CrossRef]
- Chen, G.; Qian, Z.M.; Zhang, J.; Zhang, S.; Zhang, Z.; Vaughn, M.G.; Aaron, H.E.; Wang, C.; Lip, G.Y.; Lin, H. Regular use of fish oil supplements and course of cardiovascular diseases: Prospective cohort study. BMJ Med. 2024, 3, e000451. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, CD003177. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Libby, P.; Bhatt, D.L. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fatty Acids 2018, 136, 3–13. [Google Scholar] [CrossRef]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef]
- Heart Foundation. Fish and Omega-3: Questions and Answers for Health Professionals. 2023. Available online: https://www.heartfoundation.org.au/getmedia/741b352b-1746-48f4-806a-30f55fddfad2/Health_Professional_QA_Fish_Omega3_Cardiovascular_Health.pdf (accessed on 28 April 2024).
- Derbyshire, E. Oily fish and omega-3s across the life stages: A focus on intakes and future directions. Front. Nutr. 2019, 6, 165. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation (FAO). Salmon—Main Producers See Record-Breaking Exports. 2023. Available online: https://www.fao.org/in-action/globefish/news-events/news/news-detail/Salmon---Main-producers-see-record-breaking-exports/en (accessed on 28 April 2024).
- Rizzo, G.; Baroni, L.; Lombardo, M. Promising sources of plant-derived polyunsaturated fatty acids: A narrative review. Int. J. Environ. Res. Public Health 2023, 20, 1683. [Google Scholar] [CrossRef]
- Qin, J.; Kurt, E.; LBassi, T.; Sa, L.; Xie, D. Biotechnological production of omega-3 fatty acids: Current status and future perspectives. Front. Microbiol. 2023, 14, 1280296. [Google Scholar] [CrossRef]
- Prasad, P.; Anjali, P.; Sreedhar, R.V. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit. Rev. Food Sci. Nutr. 2021, 61, 1725–1737. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, M.; Tan, Q.; Ji, J.; Lu, F. Association between dietary omega-3 intake and coronary heart disease among American adults: The NHANES, 1999–2018. PLoS ONE 2023, 18, e0294861. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.M.; Ma, D.W.L. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis. 2009, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, H.; Panchal, S.K.; Ward, L.C.; Brown, L. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J. Nutr. Biochem. 2013, 24, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, C.; Abodi, M.; D’Oria, V.; Milani, G.P.; Agostoni, C.; Mazzocchi, A. Alpha-linolenic acid and cardiovascular events: A narrative review. Int. J. Mol. Sci. 2023, 24, 14319. [Google Scholar] [CrossRef] [PubMed]
- Adarme-Vega, T.C.; Lim, D.K.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef]
- Perdana, B.A.; Chaidir, Z.; Kusnanda, A.J.; Dharma, A.; Zakaria, I.J.; Syafrizayanti; Bayu, A.; Putra, M.Y. Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. Algal Res. 2021, 60, 102542. [Google Scholar] [CrossRef]
- Jónasdóttir, S.H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 2019, 17, 151. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, M.; Yu, L.; Sun, H.; Liu, J. Nannochloropsis as an emerging algal chassis for light-driven synthesis of lipids and high-value products. Mar. Drugs 2024, 22, 54. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Chen, C.-W.; Yadav, H.; Parameswaran, B.; Singhania, R.R.; Dong, C.-D.; Patel, A.K. Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery. J. Food Sci. Technol. 2023, 60, 2955–2967. [Google Scholar] [CrossRef]
- Soto-Sánchez, O.; Hidalgo, P.; González, A.; Oliveira, P.E.; Hernández Arias, A.J.; Dantagnan, P. Microalgae as raw materials for aquafeeds: Growth kinetics and improvement strategies of polyunsaturated fatty acids production. Aquac. Nutr. 2023, 2023, 5110281. [Google Scholar] [CrossRef]
- Ruiz-Lopez, N.; Usher, S.; Sayanova, O.V.; Napier, J.A.; Haslam, R.P. Modifying the lipid content and composition of plant seeds: Engineering the production of LC-PUFA. Appl. Microbiol. Biotechnol. 2015, 99, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, Z.; Li, S.; Yang, H.; Li, S.; Lv, C.; Zaynab, M.; Cheng, C.H.K.; Chen, H.; Yang, X. Comparative transcriptomic analysis uncovers genes responsible for the DHA enhancement in the mutant Aurantiochytrium sp. Microorganisms 2020, 8, 529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, X.; Fan, C.; Wu, W.; Zhang, W.; Wang, Y. Health benefits, food applications, and sustainability of microalgae-derived n-3 PUFA. Foods 2022, 11, 1883. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Fahey, G.C., Jr.; Slavin, J.; van der Kamp, J.W. Fibre intake for optimal health: How can healthcare professionals support people to reach dietary recommendations? BMJ 2022, 378, e054370. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Siedenburg, J. Could microalgae offer promising options for climate action via their agri-food applications? Front. Sustain. Food Syst. 2022, 6, 976946. [Google Scholar] [CrossRef]
- Ran, W.; Wang, H.; Liu, Y.; Qi, M.; Xiang, Q.; Yao, C.; Zhang, Y.; Lan, X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresour. Technol. 2019, 291, 121894. [Google Scholar] [CrossRef]
- Cantrell, M.; Cano, M.; Sebesta, J.; Paddock, T.; Xiong, W.; Chou, K.J.; Yu, J. Manipulation of glycogen and sucrose synthesis increases photosynthetic productivity in cyanobacteria. Front. Microbiol. 2023, 14, 1124274. [Google Scholar] [CrossRef]
- Laroche, C. Exopolysaccharides from microalgae and cyanobacteria: Diversity of strains, production strategies, and applications. Mar. Drugs 2022, 20, 336. [Google Scholar] [CrossRef]
- Gouda, M.; Tadda, M.A.; Zhao, Y.; Farmanullah, F.; Chu, B.; Li, X.; He, Y. Microalgae bioactive carbohydrates as a novel sustainable and eco-friendly source of prebiotics: Emerging health functionality and recent technologies for extraction and detection. Front. Nutr. 2022, 9, 806692. [Google Scholar] [CrossRef]
- Dai, J.; He, J.; Chen, Z.; Qin, H.; Du, M.; Lei, A.; Zhao, L.; Wang, J. Euglena gracilis promotes Lactobacillus growth and antioxidants accumulation as a potential next-generation prebiotic. Front. Nutr. 2022, 9, 864565. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhao, Y.; Wu, X.; Du, Y.; Zhou, W. Health inequalities of global protein-energy malnutrition from 1990 to 2019 and forecast prevalence for 2044: Data from the Global Burden of Disease Study 2019. Public Health 2023, 225, 102–109. [Google Scholar] [CrossRef] [PubMed]
- OECD; Food Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Grossmann, L.; Weiss, J. Alternative protein sources as technofunctional food ingredients. Annu. Rev. Food Sci. Technol. 2021, 12, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Rosell, C.M.; Rosene, S.; Bover-Cid, S.; Castellari, M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 6390–6420. [Google Scholar] [CrossRef]
- Guo, B.; Sun, L.; Jiang, S.; Ren, H.; Sun, R.; Wei, Z.; Hong, H.; Luan, X.; Wang, J.; Wang, X.; et al. Soybean genetic resources contributing to sustainable protein production. Theor. Appl. Genet. 2022, 135, 4095–4121. [Google Scholar] [CrossRef]
- Cardoso Alves, S.; Díaz-Ruiz, E.; Lisboa, B.; Sharma, M.; Mussatto, S.I.; Thakur, V.K.; Kalaskar, D.M.; Gupta, V.K.; Chandel, A.K. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food Res. Int. 2023, 166, 112596. [Google Scholar] [CrossRef]
- Frontera, W.R. Rehabilitation of older adults with sarcopenia: From cell to functioning. Prog. Rehabil. Med. 2022, 7, 20220044. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Ageing and Health. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 28 April 2024).
- Coelho-Junior, H.J.; Calvani, R.; Azzolino, D.; Picca, A.; Tosato, M.; Landi, F.; Cesari, M.; Marzetti, E. Protein intake and sarcopenia in older adults: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2022, 19, 8718. [Google Scholar] [CrossRef]
- Xu, J.; Wan, C.S.; Ktoris, K.; Reijnierse, E.M.; Maier, A.B. Sarcopenia is associated with mortality in adults: A systematic review and meta-analysis. Gerontology 2021, 68, 361–376. [Google Scholar] [CrossRef]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.L.; Soares, J.; Coimbra, J.S.d.R.; Leite, M.d.O.; Albino, L.F.T.; Martins, M.A. Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Crit. Rev. Food Sci. Nutr. 2021, 61, 1976–2002. [Google Scholar] [CrossRef] [PubMed]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae—Sustainable source for alternative proteins and functional ingredients promoting gut and liver health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as sources of high-quality protein for human food and protein supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Janssen, M.; Wijffels, R.H.; Barbosa, M.J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 2022, 75, 102705. [Google Scholar] [CrossRef]
- Williamson, E.; Ross, I.L.; Wall, B.T.; Hankamer, B. Microalgae: Potential novel protein for sustainable human nutrition. Trends Plant Sci. 2024, 29, 370–382. [Google Scholar] [CrossRef]
- Ahmad, A.; Ashraf, S.S. Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Res. 2023, 74, 103185. [Google Scholar] [CrossRef]
- Vasconcellos, R.S.; Volpato, J.A.; Komarcheuski, A.S.; Costa, J.L.G. Chapter 36—Microalgae in pet foods. In Handbook of Food and Feed from Microalgae; Jacob-Lopes, E., Queiroz, M.I., Maroneze, M.M., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 471–485. [Google Scholar] [CrossRef]
- Safdar, L.B.; Foulkes, M.J.; Kleiner, F.H.; Searle, I.R.; Bhosale, R.A.; Fisk, I.D.; Boden, S.A. Challenges facing sustainable protein production: Opportunities for cereals. Plant Commun. 2023, 4, 100716. [Google Scholar] [CrossRef]
- Black, J.L.; Davison, T.M.; Box, I. Methane emissions from ruminants in Australia: Mitigation potential and applicability of mitigation strategies. Animals 2021, 11, 951. [Google Scholar] [CrossRef]
- Ahmed, E.; Suzuki, K.; Nishida, T. Micro- and macro-algae combination as a novel alternative ruminant feed with methane-mitigation potential. Animals 2023, 13, 796. [Google Scholar] [CrossRef]
- Levasseur, W.; Perré, P.; Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Philippidis, G.P. The prospects of algae-derived vitamins and their precursors for sustainable cosmeceuticals. Processes 2023, 11, 587. [Google Scholar] [CrossRef]
- Smith, T.J.; Johnson, C.R.; Koshy, R.; Hess, S.Y.; Qureshi, U.A.; Mynak, M.L.; Fischer, P.R. Thiamine deficiency disorders: A clinical perspective. Ann. N. Y. Acad. Sci. 2021, 1498, 9–28. [Google Scholar] [CrossRef]
- Rowe, S.; Carr, A.C. Global vitamin C status and prevalence of deficiency: A cause for concern? Nutrients 2020, 12, 2008. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Liu, S.; Zhang, R.; Zhao, Z.; Yu, H.; Pu, L.; Wang, L.; Han, L. Global burden of vitamin A deficiency in 204 countries and territories from 1990–2019. Nutrients 2022, 14, 950. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Kiani, A.K.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; et al. Main nutritional deficiencies. J. Prev. Med. Hyg. 2022, 63, E93–E101. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 22–33. [Google Scholar] [CrossRef]
- Hatch-McChesney, A.; Lieberman, H.R. Iodine and iodine deficiency: A comprehensive review of a re-emerging issue. Nutrients 2022, 14, 3474. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Kronzucker, H.J.; Shi, W. Selenium biofortification and interaction with other elements in plants: A review. Front. Plant Sci. 2020, 11, 586421. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Gómez-Villegas, P.; Gonda, M.L.; León-Vaz, A.; León, R.; Mildenberger, J.; Rebours, C.; Saravia, V.; Vero, S.; Vila, E.; et al. Microalgae, seaweeds and aquatic bacteria, archaea, and yeasts: Sources of carotenoids with potential antioxidant and anti-inflammatory health-promoting actions in the sustainability era. Mar. Drugs 2023, 21, 340. [Google Scholar] [CrossRef]
- Cichoński, J.; Chrzanowski, G. Microalgae as a source of valuable phenolic compounds and carotenoids. Molecules 2022, 27, 8852. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, L.; Ben Hlima, H.; Hentati, F.; Hentati, O.; Derbel, H.; Michaud, P.; Abdelkafi, S. Microalgae: A promising source of bioactive phycobiliproteins. Mar. Drugs 2023, 21, 440. [Google Scholar] [CrossRef] [PubMed]
- Temple, N.J. A rational definition for functional foods: A perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef]
- Panchal, S.K.; Brown, L. Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr. Opin. Pharmacol. 2022, 63, 102182. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.C.D.; Oliveira Filho, J.G.; Sousa, T.L.; Ribeiro, C.B.; Egea, M.B. Ameliorating effects of metabolic syndrome with the consumption of rich-bioactive compounds fruits from Brazilian Cerrado: A narrative review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7632–7649. [Google Scholar] [CrossRef] [PubMed]
- Kee, P.E.; Phang, S.M.; Lan, J.C.; Tan, J.S.; Khoo, K.S.; Chang, J.S.; Ng, H.S. Tropical seaweeds as a sustainable resource towards circular bioeconomy: Insights and way forward. Mol. Biotechnol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Tamel Selvan, K.; Goon, J.A.; Makpol, S.; Tan, J.K. Effects of microalgae on metabolic syndrome. Antioxidants 2023, 12, 449. [Google Scholar] [CrossRef]
- Mafra, D.; Ugochukwu, S.A.; Borges, N.A.; Cardozo, L.; Stenvinkel, P.; Shiels, P.G. Food for healthier aging: Power on your plate. Crit. Rev. Food Sci. Nutr. 2024, 64, 603–616. [Google Scholar] [CrossRef]
- Diaz, C.J.; Douglas, K.J.; Kang, K.; Kolarik, A.L.; Malinovski, R.; Torres-Tiji, Y.; Molino, J.V.; Badary, A.; Mayfield, S.P. Developing algae as a sustainable food source. Front. Nutr. 2022, 9, 1029841. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Microalgae: Bioactive composition, health benefits, safety and prospects as potential high-value ingredients for the functional food industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a sustainable source of edible proteins and bioactive peptides—Current trends and future prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef] [PubMed]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A promising source of valuable bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
- Remize, M.; Brunel, Y.; Silva, J.L.; Berthon, J.-Y.; Filaire, E. Microalgae n-3 PUFAs production and use in food and feed industries. Mar. Drugs 2021, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Singhania, R.R.; Awasthi, M.K.; Varjani, S.; Bhatia, S.K.; Tsai, M.-L.; Hsieh, S.-L.; Chen, C.-W.; Dong, C.-D. Emerging prospects of macro- and microalgae as prebiotic. Microb. Cell Fact. 2021, 20, 112. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Zepka, L.Q. Chapter 1—Food and feed from microalgae: A historical perspective to future directions. In Handbook of Food and Feed from Microalgae; Jacob-Lopes, E., Queiroz, M.I., Maroneze, M.M., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 3–7. [Google Scholar] [CrossRef]
- Pérez-Lloréns, J.L. Microalgae: From staple foodstuff to avant-garde cuisine. Int. J. Gastron. Food Sci. 2020, 21, 100221. [Google Scholar] [CrossRef]
- Vrenna, M.; Peruccio, P.P.; Liu, X.; Zhong, F.; Sun, Y. Microalgae as future superfoods: Fostering adoption through practice-based design research. Sustainability 2021, 13, 2848. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Chapter 9—Microalgae in Medicine and Human Health: A Historical Perspective. In Microalgae in Health and Disease Prevention; Levine, I.A., Fleurence, J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 195–210. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol. Adv. 2019, 37, 107419. [Google Scholar] [CrossRef]
- Gheysen, L.; Demets, R.; Devaere, J.; Bernaerts, T.; Goos, P.; Van Loey, A.; De Cooman, L.; Foubert, I. Impact of microalgal species on the oxidative stability of n-3 LC-PUFA enriched tomato puree. Algal Res. 2019, 40, 101502. [Google Scholar] [CrossRef]
- Lafarga, T.; Mayre, E.; Echeverria, G.; Viñas, I.; Villaró, S.; Acién-Fernández, F.G.; Castellari, M.; Aguiló-Aguayo, I. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT 2019, 115, 108439. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. LWT 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Raymundo, A.; Fradinho, P.; Nunes, M.C. Chapter 26—Application of microalgae in baked goods and pasta. In Handbook of Food and Feed from Microalgae; Jacob-Lopes, E., Queiroz, M.I., Maroneze, M.M., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 317–334. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Hassan, S.W.; Banat, F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef] [PubMed]
- Saadaoui, I.; Rasheed, R.; Aguilar, A.; Cherif, M.; Al Jabri, H.; Sayadi, S.; Manning, S.R. Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotechnol. 2021, 12, 76. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Castro-Montoya, J.M.; Harper, K.; Trevaskis, L.; Jackson, E.L.; Quigley, S. Algae as feedstuff for ruminants: A focus on single-cell species, opportunistic use of algal by-products and on-site production. Microorganisms 2022, 10, 2313. [Google Scholar] [CrossRef]
- Kaur, M.; Bhatia, S.; Gupta, U.; Decker, E.; Tak, Y.; Bali, M.; Gupta, V.K.; Dar, R.A.; Bala, S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: Inspiring therapy for health benefits. Phytochem. Rev. 2023, 22, 903–933. [Google Scholar] [CrossRef]
- Kiran, B.R.; Venkata Mohan, S. Microalgal cell biofactory—Therapeutic, nutraceutical and functional food applications. Plants 2021, 10, 836. [Google Scholar] [CrossRef]
- Xia, D.; Qiu, W.; Wang, X.; Liu, J. Recent advancements and future perspectives of microalgae-derived pharmaceuticals. Mar. Drugs 2021, 19, 703. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Fernandes, T.; Cordeiro, N. Microalgae as sustainable biofactories to produce high-value lipids: Biodiversity, exploitation, and biotechnological applications. Mar. Drugs 2021, 19, 573. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Romero, B.; Perales, J.A.; Pereira, H.; Barbosa, M.; Ruiz, J. Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture. Sci. Total Environ. 2022, 837, 155742. [Google Scholar] [CrossRef] [PubMed]
- Vecchi, V.; Barera, S.; Bassi, R.; Dall’Osto, L. Potential and challenges of improving photosynthesis in algae. Plants 2020, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, E.; Sik Ok, Y.; Tavakoli, S.; Sarkar, B.; Shaheen, S.M.; Hong, H.; Luo, Y.; Rinklebe, J.; Song, H.; Bhatnagar, A. Insights into upstream processing of microalgae: A review. Bioresour. Technol. 2021, 329, 124870. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.D.; Vasconcelos, V. Legal aspects of microalgae in the European food sector. Foods 2023, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and challenges of large-scale cultivation of photosynthetic microalgae and cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef] [PubMed]
- Zuccaro, G.; Yousuf, A.; Pollio, A.; Steyer, J.-P. Chapter 2—Microalgae Cultivation Systems. In Microalgae Cultivation for Biofuels Production; Yousuf, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 11–29. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for high-value products towards human health and nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, Y. Review of advances in microalgae cultivation technology. J. Innov. Develop. 2023, 3, 51–53. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, Z.; Zheng, J.; Zhou, J.; He, D.; Ma, J. Microalgae production in human urine: Fundamentals, opportunities, and perspectives. Front. Microbiol. 2022, 13, 1067782. [Google Scholar] [CrossRef]
- Abdur Razzak, S.; Bahar, K.; Islam, K.M.O.; Haniffa, A.K.; Faruque, M.O.; Hossain, S.M.Z.; Hossain, M.M. Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future. Green. Chem. Eng. 2023, 5, 418–439. [Google Scholar] [CrossRef]
- Patwardhan, S.B.; Pandit, S.; Ghosh, D.; Dhar, D.W.; Banerjee, S.; Joshi, S.; Gupta, P.K.; Lahiri, D.; Nag, M.; Ruokolainen, J.; et al. A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biomass Convers. Biorefin. 2024, 14, 7219–7236. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Wang, J.-X.; Liu, Y.; Zhang, Y.; Wang, J.-H.; Chi, Z.-Y.; Kong, F.-T. Microalgal-bacterial biofilms for wastewater treatment: Operations, performances, mechanisms, and uncertainties. Sci. Total Environ. 2024, 907, 167974. [Google Scholar] [CrossRef] [PubMed]
- Joy, S.R.; Anju, T.R. Microalgal Biomass: Introduction and Production Methods. In Handbook of Biomass; Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C., Eds.; Springer Nature: Singapore, 2023; pp. 1–28. [Google Scholar] [CrossRef]
- Guieysse, B.; Plouviez, M. Microalgae cultivation: Closing the yield gap from laboratory to field scale. Front. Bioeng. Biotechnol. 2024, 12, 1359755. [Google Scholar] [CrossRef] [PubMed]
- Casanova, L.M.; Mendes, L.B.; Corrêa, T.D.; da Silva, R.B.; Joao, R.R.; Macrae, A.; Vermelho, A.B. Development of microalgae biodiesel: Current status and perspectives. Microorganisms 2023, 11, 34. [Google Scholar] [CrossRef]
- Barbosa, M.J.; Janssen, M.; Südfeld, C.; D’Adamo, S.; Wijffels, R.H. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol. 2023, 41, 452–471. [Google Scholar] [CrossRef]
- Mullen, C. Summer Legume Forage Crops: Cowpeas, Lablab, Soybeans; NSW Department of Primary Industries: ND. Available online: https://www.dpi.nsw.gov.au/agriculture/broadacre-crops/forage-fodder/crops/summer-legume-forage (accessed on 5 January 2024).
- Sun, H.; Zhao, W.; Mao, X.; Li, Y.; Wu, T.; Chen, F. High-value biomass from microalgae production platforms: Strategies and progress based on carbon metabolism and energy conversion. Biotechnol. Biofuels 2018, 11, 227. [Google Scholar] [CrossRef]
- Amaro, H.M.; Salgado, E.M.; Nunes, O.C.; Pires, J.C.M.; Esteves, A.F. Microalgae systems—Environmental agents for wastewater treatment and further potential biomass valorisation. J. Environ. Manag. 2023, 337, 117678. [Google Scholar] [CrossRef]
- Liu, R.; Li, S.; Tu, Y.; Hao, X.; Qiu, F. Recovery of value-added products by mining microalgae. J. Environ. Manag. 2022, 307, 114512. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; van Vliet, M.T.H.; Jones, E.R.; Huang, Z.; Liu, M.; Bi, J. Economic risks hidden in local water pollution and global markets: A retrospective analysis (1995–2010) and future perspectives on sustainable development goal 6. Water Res. 2024, 252, 121216. [Google Scholar] [CrossRef]
- Levett, A.; Gagen, E.J.; Levett, I.; Erskine, P.D. Integrating microalgae production into mine closure plans. J. Environ. Manag. 2023, 337, 117736. [Google Scholar] [CrossRef]
- Kumar, V.; Jaiswal, K.K.; Verma, M.; Vlaskin, M.S.; Nanda, M.; Chauhan, P.K.; Singh, A.; Kim, H. Algae-based sustainable approach for simultaneous removal of micropollutants, and bacteria from urban wastewater and its real-time reuse for aquaculture. Sci. Total Environ. 2021, 774, 145556. [Google Scholar] [CrossRef]
- Mehariya, S.; Das, P.; Thaher, M.I.; Abdul Quadir, M.; Khan, S.; Sayadi, S.; Hawari, A.H.; Verma, P.; Bhatia, S.K.; Karthikeyan, O.P.; et al. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. Chemosphere 2024, 351, 141245. [Google Scholar] [CrossRef] [PubMed]
- Maurya, R.; Zhu, X.; Valverde-Pérez, B.; Ravi Kiran, B.; General, T.; Sharma, S.; Kumar Sharma, A.; Thomsen, M.; Venkata Mohan, S.; Mohanty, K.; et al. Advances in microalgal research for valorization of industrial wastewater. Bioresour. Technol. 2022, 343, 126128. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lian, J.; Wang, L.; Su, H.; Tan, L.; Xu, Q.; Wang, H.; Li, Y.; Li, M.; Han, D.; et al. Enhanced brewery wastewater purification and microalgal production through algal-bacterial synergy. J. Cleaner Prod. 2022, 376, 134361. [Google Scholar] [CrossRef]
- Blanco-Vieites, M.; Suárez-Montes, D.; Delgado, F.; Álvarez-Gil, M.; Battez, A.H.; Rodríguez, E. Removal of heavy metals and hydrocarbons by microalgae from wastewater in the steel industry. Algal Res. 2022, 64, 102700. [Google Scholar] [CrossRef]
- Dell’ Anno, F.; Rastelli, E.; Sansone, C.; Brunet, C.; Ianora, A.; Dell’ Anno, A. Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms 2021, 9, 1695. [Google Scholar] [CrossRef]
- Anli Dino, A.; Kishore, G. Microalgae: An emerging source of bioplastics productionl. Discov. Environ. 2024, 2, 10. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Rodas-Zuluaga, L.I.; Cuellar-Bermudez, S.P.; Hidalgo-Vázquez, E.; Molina-Vazquez, A.; Araújo, R.G.; Martínez-Ruiz, M.; Varjani, S.; Barceló, D.; Iqbal, H.M.N.; et al. Revalorization of microalgae biomass for synergistic interaction and sustainable applications: Bioplastic generation. Mar. Drugs 2022, 20, 601. [Google Scholar] [CrossRef]
- Barone, G.D.; Rodríguez-Seijo, A.; Parati, M.; Johnston, B.; Erdem, E.; Cernava, T.; Zhu, Z.; Liu, X.; Axmann, I.M.; Lindblad, P.; et al. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. Environ. Sci. Ecotechnol 2024, 20, 100407. [Google Scholar] [CrossRef]
- Morillas-España, A.; Lafarga, T.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; González-López, C. Microalgae based wastewater treatment coupled to the production of high value agricultural products: Current needs and challenges. Chemosphere 2022, 291, 132968. [Google Scholar] [CrossRef]
- Parmar, P.; Kumar, R.; Neha, Y.; Srivatsan, V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Front. Plant Sci. 2023, 14, 1073546. [Google Scholar] [CrossRef] [PubMed]
- Prisa, D.; Spagnuolo, D. Plant production with microalgal biostimulants. Horticulturae 2023, 9, 829. [Google Scholar] [CrossRef]
- Srivastava, K.; Mickan, B.S.; O’Connor, J.; Gurung, S.K.; Moheimani, N.R.; Jenkins, S.N. Development of a controlled release fertilizer by incorporating lauric acid into microalgal biomass: Dynamics on soil biological processes for efficient utilisation of waste resources. J. Environ. Manag. 2023, 344, 118392. [Google Scholar] [CrossRef] [PubMed]
- Ng, Z.Y.; Ajeng, A.A.; Cheah, W.Y.; Ng, E.-P.; Abdullah, R.; Ling, T.C. Towards circular economy: Potential of microalgae—Bacterial-based biofertilizer on plants. J. Environ. Manag. 2024, 349, 119445. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.S.; Mohanty, K. Valorization of Chlorella thermophila biomass cultivated in dairy wastewater for biopesticide production against bacterial rice blight: A circular biorefinery approach. BMC Plant Biol. 2023, 23, 644. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, L.M.; de-Bashan, L.E. The potential of microalgae-bacteria consortia to restore degraded soils. Biology 2023, 12, 693. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y. Macro assessment of microalgae-based CO2 sequestration: Environmental and energy effects. Algal Res. 2020, 51, 102066. [Google Scholar] [CrossRef]
- Biscaia, W.L.; Miyawaki, B.; de Mello, T.C.; de Vasconcelos, E.C.; de Arruda, N.M.B.; Maranho, L.T. Biofixation of air emissions and biomass valorization—Evaluation of microalgal biotechnology. Appl. Biochem. Biotechnol. 2022, 194, 4033–4048. [Google Scholar] [CrossRef]
- Cutolo, E.A.; Caferri, R.; Campitiello, R.; Cutolo, M. The clinical promise of microalgae in rheumatoid arthritis: From natural compounds to recombinant therapeutics. Mar. Drugs 2023, 21, 630. [Google Scholar] [CrossRef]
- Qiao, Y.; Yang, F.; Xie, T.; Du, Z.; Zhong, D.; Qi, Y.; Li, Y.; Li, W.; Lu, Z.; Rao, J.; et al. Engineered algae: A novel oxygen-generating system for effective treatment of hypoxic cancer. Sci. Adv. 2020, 6, eaba5996. [Google Scholar] [CrossRef]
- Özugur, S.; Chávez, M.N.; Sanchez-Gonzalez, R.; Kunz, L.; Nickelsen, J.; Straka, H. Green oxygen power plants in the brain rescue neuronal activity. iScience 2021, 24, 103158. [Google Scholar] [CrossRef] [PubMed]
- Corrales-Orovio, R.; Carvajal, F.; Holmes, C.; Miranda, M.; González-Itier, S.; Cárdenas, C.; Vera, C.; Schenck, T.L.; Egaña, J.T. Development of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules. Acta Biomater. 2023, 155, 154–166. [Google Scholar] [CrossRef] [PubMed]
Microalgae | Protein (%) | Carbohydrate (%) | Lipids (%) |
---|---|---|---|
Chlorella vulgaris Beijerinck | 51–58 | 12–17 | 14–22 |
Euglena gracilis Klebs | 39–61 | 14–18 | 14–20 |
Porphyridium cruentum (S.F.Gray) Nägeli | 28–39 | 40–57 | 9–14 |
Arthrospira maxima Setchell & N.L. Gardner | 60–71 | 13–16 | 6–7 |
Spirulina platensis (Gomont) Geitler | 46–63 | 8–14 | 4–9 |
Tetraselmis suecica (Kylin) Butcher | 34–42 | 10–17 | 28 |
Tisochrysis lutea (Droop) Bendif & Probert | 20–35 | 15–25 | 20–30 |
Nannochloropsis sp. | 29–32 | 9–36 | 15–18 |
Arthrospira platensis (Gomont) G. Hassall | 60–66 | 18–23 | 2–7 |
Schizochytrium sp. | 12 | 32 | 38–71 |
Microalgae | SFA | MUFA | Omega-3 PUFA | Omega-6 PUFA | EPA | DHA |
---|---|---|---|---|---|---|
Nannochloropsis oceanica (Kützing) Basso, Croot & M.J. van der Merwe | 3.71 | 2.28 | 2.39 | 1.39 | 2.34 | - |
Arthrospira platensis (Gomont) G. Hassall | 2.7 | 0.5 | 0.01 | 2.82 | ||
Isochrysis galbana Parke | 2.04 | 1.7 | 3.73 | 0.25 | 1.8 | 1.32 |
Phaeodactylum tricornutum Bohlin | 2.76 | 2.81 | 3.72 | 0.5 | 2.84 | 0.02 |
Porphyridium cruentum (S.F.Gray) Nägeli | 0.61 | 0.01 | 0.61 | 0.84 | 0.61 | - |
Rhodomonas baltica Kiesel | 1.7 | 0.4 | 2.15 | 1.22 | 0.44 | - |
Nutrient | Average Intake | Recommended Intake | Amount Needed to Achieve This Intake | Fish Oil Production Required | Current Production | Amount of Microalgae Required to Meet Intakes | Annual Cultivation Requirements to Produce Amounts |
---|---|---|---|---|---|---|---|
Omega-3 PUFA [22,37,38,39,40] | <100 mg/day in 100 countries representing 66.8% of the world’s population | 250 mg/day | 806 tonnes of omega-3 PUFA/day or 294,000 tonnes/year | - | 546,000 tonnes fish oil in 2021—75% used in aquaculture; about 15% used for human consumption | 3.2 million tonnes dry weight microalgae | Phototrophic: A 50,000 ha raceways Heterotrophic: B 253 m3 CSTRs |
500 mg/day | 490,000 tonnes/year | 1.634 million tonnes of fish oil with 30% EPA + DHA | 5.4 million tonnes dry weight microalgae | Phototrophic: A 84,375 ha raceways Heterotrophic: B 423 m3 CSTRs | |||
1000–1500 mg/day | 451,000 tonnes (for 12 weeks) | - | - | - | |||
Dietary fibre [32,41] | 20–25 g/day in men; 15–22 g/day in women | 30–35 g/day in men; 25–32 g/day in women | 25 million tonnes fibre/year | - | - | 250 million tonnes of microalgae dry matter each year | Biorefined fractional contribution of A&B 4.3% |
Protein [32,42,43,44] | - | 0.6–0.8 g/kg/day | ~154 million tonnes protein/year (for 7 billion people assuming a body weight of 50 kg) | - | ~77 million tonnes of crude protein from meat, milk and eggs; ~14 million tonnes crude protein from aquatic animals (in 2018) | 120 million tonnes of microalgae dry matter each year | Biorefined fractional contribution of A&B 9% |
Model Used | Microalgal Species (Phylum) | Dose/Form | Effects Observed |
---|---|---|---|
Effect of whole microalgae on diabetes mellitus | |||
Male Albino rats | Arthrospira platensis Gomont (Cyanophyta) | 500 mg/kg body weight twice weekly for 2 months | Reduced serum glucose concentrations and increased serum insulin concentrations in diabetic rats |
Male Wistar rats or Swiss mice | Arthrospira platensis Gomont (Cyanophyta) | 25, 50, 100 mg/kg body weight for 5 and 10 days | Reduced serum glucose |
Male Sprague Dawley rats | Dunaliella salina (Dunal) Teodoresco (Chlorophyta) | 150 mg/kg body weight at 72, 64, 48, 40 and 24 h before sacrifice for 3 days | Increased body weight and reduced triglyceride concentrations |
Male Wistar rats | Nannochloropsis gaditana Lubian (Ochrophyta) | 10% freeze-dried powder incorporated into diet for 2 months | Increased body weight and decreased serum glucose concentrations |
Male healthy and diabetic Wistar rats | Nannochloropsis oculata (Droop) Hibberd (Ochrophyta) | Freeze-dried powder at 0, 10, 20 mg/kg body weight/day for 21 days | Increased body weight and serum insulin concentrations, but decreased serum glucose concentrations |
Male Wistar rats | Nannochloropsis oculata (Droop) Hibberd (Ochrophyta) | Powder at 0, 10, 20 mg/kg body weight/day for 3 weeks | Increased body weight and decreased serum glucose concentrations |
Male Sprague Dawley rats | Porphoridium cruentum (C. Agardh) Borzi (Rhodophyta) | 600, 1200, 1800 mg/kg body weight/day for 14 days | Increased food intake and pancreatic β-cell numbers and granulation. Increased pancreatic islets area at 1200 mg/kg body weight/day |
Obesity | |||
High-carbohydrate, high-fat diet-fed male Wistar rats | Nannochloropsis oceanica Hibberd (Ochrophyta) | 5% as freeze-dried, mixed in food | Increased lean mass, decreased fat mass, no change in cardiovascular, liver and metabolic parameters or gut structure, increase in relative abundance of Oxyphotobacteria in colon |
Selenium (Se) deficiency and antioxidant activities | |||
Female Wistar rats 3 weeks old | Limnospira platensis (Gomont) Nowicka-Krawczyk, Mühlsteinová & Hauer Basionym: Arthrospira platensis Gomont Synonym: Spirulina platensis Gomont (Cyanophyta) | 12-week feed trial SS-group: Sodium selenite 20 µg/kg body weight Spi-group: 3 g Spirulina powder/kg body weight SeSP group: Se-enriched Spirulina biomass (20 µg Se + 3 g Spirulina powder/kg weight | SS-group: minor weight loss in week 12; increased antioxidant activity of glutathione peroxidase and selenoproteins. SeSP group: restored selenium concentrations, especially in liver, kidney, soleus |
Healthy individuals | |||
19 healthy individuals 60–90 years old | Phaeodactylum tricornutum Bohlin (Ochrophyta) | 2-week diet trial Biomass A (2.3 g/day): Nutrient-replete cultivated lyophilised microalgal power, containing 312.1 mg omega-3 fatty acids (293.5 mg EPA + DHA) SupB (1.8 g/day): Nutrient-deplete lyophilised cellular microalgal extract, containing 1.2 mg EPA + DHA) Biomass A + SupB (2.3 g of biomass A + 1.8 g of SupB) | Diet Biomass A + SupB: reduced plasma concentrations of interleukin-6; improved mobility parameters (5 s sit to stand test; trend gait speed); reduced omega-6/omega-3 ratio; reduced arachidonic acid/EPA ratio |
Effect of microalgal ethanol or water extracts on diabetes mellitus | |||
High-fat, high-sucrose chow-fed male rats | Chlorella pyrenoidosa H. Chick (Chlorophyta) or Arthrospira platensis Gomont (Cyanophyta) | 150 and 300 mg/kg body weight/day for 8 weeks | Improvement in glucose tolerance |
Male Wistar rats | Arthrospira platensis Gomont (Cyanophyta) | Extracts at 10, 20, 30 mg/kg body weight/day for 3 weeks | Reduced plasma glucose concentrations |
Healthy individuals | |||
Healthy individuals 25+ years | Ethanol extract of Nannochloropsis sp. (Ochrophyta) | 1 g Almega®PL (Qualitas Health (Houston, TX, USA) under the brand name iWi) daily for 3 months, containing 250 mg EPA and polar lipids, or placebo (1 g soy oil) | Increased omega-3 index, EPA concentrations; decreased very-low-density lipoprotein cholesterol without an increase in low-density lipoprotein cholesterol, leading to reduced total cholesterol |
Effect of microalgal fatty acids on diabetes mellitus | |||
Male diabetic (db/db mice) and healthy mice (CD1 mice) | Chlorophyceae and Eustigmatophyceae | Freeze-dried EPA/DHA at 1 mg/g body weight or 2% incorporated into chow | Microalgal omega-3 fatty acid improved antioxidant activity in adipose tissue in diabetic mice and in the plasma of healthy mice |
Effect of microalgal carbohydrates on diabetes mellitus | |||
High-glucose, high-fat diet-fed Male Kumming mice | Chlorella pyrenoidosa H. Chick (Chlrophyta) | 150 and 300 mg/kg body weight/day for 8 weeks | Increased body weight and serum insulin concentrations for both doses and increased glucose uptake at 300 mg/kg/day |
Male Sprague Dawley rats | Porphoridium cruentum (C. Agardh) Drew & Ross (Rhodophyta) | 150, 300, 450 mg/kg body weight/day of extracellular polysaccharides for 14 days | Reduced blood glucose, increased food intake, pancreatic β-cell numbers and granulation, and pancreatic islets area |
Effect of microalgal pigments on diabetes mellitus | |||
Female db/db mice | Marine microalgae | Astaxanthin at 1 mg/mouse/day for 12 weeks | Increased serum insulin and improvement in glucose tolerance |
Effect of microalgal iron on iron deficiency | |||
Iron-deficient C57BL/6 mice (7 weeks old) | Nannochloropsis oceanica Hibberd (Ochrophyta)—Fe | 6-week trial with control diet (6 mg Fe/kg + 39 mg Fe/kg (iron extracted from microalgal biomass)) Control diet (6 mg Fe/kg) + 1% inulin + 250 units phytase | 39 mg microalgal Fe-enriched diet: elevated blood haemoglobin and 2-fold greater liver non-haem iron concentration; increased mRNA of hepcidin and decreased divalent cation transporter 1, transferrin and transferrin receptor 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panchal, S.K.; Heimann, K.; Brown, L. Improving Undernutrition with Microalgae. Nutrients 2024, 16, 3223. https://doi.org/10.3390/nu16183223
Panchal SK, Heimann K, Brown L. Improving Undernutrition with Microalgae. Nutrients. 2024; 16(18):3223. https://doi.org/10.3390/nu16183223
Chicago/Turabian StylePanchal, Sunil K., Kirsten Heimann, and Lindsay Brown. 2024. "Improving Undernutrition with Microalgae" Nutrients 16, no. 18: 3223. https://doi.org/10.3390/nu16183223
APA StylePanchal, S. K., Heimann, K., & Brown, L. (2024). Improving Undernutrition with Microalgae. Nutrients, 16(18), 3223. https://doi.org/10.3390/nu16183223