Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Houttuynia Cordata Thunb Extracts
2.2. Animals
2.3. Animal Diet
2.4. Assessment of the Plasma Lipid Profile
2.5. Assessment of Aortic Fatty Streak Area
2.6. Assessment of Gut Microbial Community Composition
2.7. Statistical Analysis
3. Results
3.1. Houttuynia cordata Thunb. (HCT) Extracts Do Not Alter Body Weight or Relative Organ Weights in Hamsters Fed with a High-Cholesterol Diet
3.2. Houttuynia cordata Thunb. (HCT) Extracts Reduce Atherosclerotic Plaques and Total Plasma Cholesterol Levels in Hypercholesterolemic Hamsters
3.3. Houttuynia cordata Thunb. (HCT) Modulates Gut Microbial Community Composition in Hypercholesterolemic Hamsters
3.4. Association between HCT-Mediated Shifts in Microbiota at the Genus Level and Its Effects on Lowering Plasma Lipid Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Liu, L.; Zhao, Y.; Ming, J.; Chen, J.; Zhao, G.; Chen, Z.-Y.; Wang, Y.; Lei, L. Polyphenol extract and essential oil of Amomum tsao-ko equally alleviate hypercholesterolemia and modulate gut microbiota. Food Funct. 2021, 12, 12008–12021. [Google Scholar] [CrossRef]
- Raja, V.; Aguiar, C.; Alsayed, N.; Chibber, Y.S.; ElBadawi, H.; Ezhov, M.; Hermans, M.P.; Pandey, R.C.; Ray, K.K.; Tokgözoglu, L. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis 2023, 383, 117312. [Google Scholar] [CrossRef]
- Razavi, A.C.; Jain, V.; Grandhi, G.R.; Patel, P.; Karagiannis, A.; Patel, N.; Dhindsa, D.S.; Liu, C.; Desai, S.R.; Almuwaqqat, Z. Does elevated high-density lipoprotein cholesterol protect against cardiovascular disease? J. Clin. Endocrinol. Metab. 2024, 109, 321–332. [Google Scholar] [CrossRef]
- Loh, W.J.; Soh, H.S.; Tun, M.H.; Tan, P.T.; Lau, C.S.; Tavintharan, S.; Watts, G.F.; Aw, T.C. Elevated remnant cholesterol and non-HDL cholesterol concentrations from real-world laboratory results: A cross-sectional study in Southeast Asians. Front. Cardiovasc. Med. 2024, 11, 1328618. [Google Scholar] [CrossRef]
- TLTI with Pravastatin. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N. Engl. J. Med. 1998, 339, 1349–1357. [Google Scholar] [CrossRef]
- Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389. [Google Scholar]
- Jia, X.; Xu, W.; Zhang, L.; Li, X.; Wang, R.; Wu, S. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Front. Cell. Infect. Microbiol. 2021, 11, 634780. [Google Scholar] [CrossRef]
- Vourakis, M.; Mayer, G.; Rousseau, G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int. J. Mol. Sci. 2021, 22, 8074. [Google Scholar] [CrossRef]
- Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef]
- Yan, S.; Chen, J.; Zhu, L.; Guo, T.; Qin, D.; Hu, Z.; Han, S.; Wang, J.; Matias, F.B.; Wen, L. Oryzanol alleviates high fat and cholesterol diet-induced hypercholesterolemia associated with the modulation of the gut microbiota in hamsters. Food Funct. 2022, 13, 4486–4501. [Google Scholar] [CrossRef]
- He, C.; Zhu, R.; He, L.; Chook, C.Y.B.; Li, H.; Leung, F.P.; Tse, G.; Chen, Z.Y.; Huang, Y.; Wong, W.T. Asperuloside as a Novel NRF2 Activator to Ameliorate Endothelial Dysfunction in High Fat Diet-Induced Obese Mice. Antioxid Redox Signal 2024. [Google Scholar] [CrossRef]
- Li, J.; Zhao, F. Anti-inflammatory functions of Houttuynia cordata Thunb. and its compounds: A perspective on its potential role in rheumatoid arthritis. Exp. Ther. Med. 2015, 10, 3–6. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Jeong, H.-J.; Chung, H.-S.; Seong, J.-H.; Kim, H.-S.; Kim, D.-S.; Lee, Y.-G. Anti-oxidative activity of the extracts from Houttuynia cordata Thunb. fermented by lactic acid bacteria. J. Life Sci. 2016, 26, 468–474. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Yang, D.; Li, R.; Jiang, J. Effect of heat treatment on the anticancer activity of Houttuynia cordata Thunb aerial stem extract in human gastric cancer SGC-7901 cells. Nutr. Cancer 2021, 73, 160–168. [Google Scholar] [CrossRef]
- Wigraiboon, S.; Nomura, N.P.; Whangchai, N. Effect of essential oils from Houttuynia cordata Thunb supplemented diets on growth performance and immune response of Hybrid red tilapia (Oreochromis mossambicus Linn.× Oreochromis niloticus Linn.). Int. J. Fish. Aquat. Stud. 2016, 4, 677–684. [Google Scholar]
- Jiangang, F.; Ling, D.; Zhang, L.; Hongmei, L. Houttuynia cordata Thunb: A review of phytochemistry and pharmacology and quality control. Chin. Med. 2013, 4, 37184. [Google Scholar]
- Kumar, M.; Prasad, S.K.; Hemalatha, S. A current update on the phytopharmacological aspects of Houttuynia cordata Thunb. Pharmacogn. Rev. 2014, 8, 22. [Google Scholar]
- Wu, Z.; Deng, X.; Hu, Q.; Xiao, X.; Jiang, J.; Ma, X.; Wu, M. Houttuynia cordata Thunb: An ethnopharmacological review. Front. Pharmacol. 2021, 12, 714694. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, Y.J.; Pan, J.H.; Park, T.-S.; Shim, S.-M.; Kim, Y.J. Antiatherogenic and antioxidative effects of Houttuynia cordata extracts in rats fed a high-fat diet. Food Sci. Biotechnol. 2014, 23, 2069–2074. [Google Scholar] [CrossRef]
- Kang, H.; Koppula, S. Hepatoprotective effect of Houttuynia cordata thunb extract against carbon tetrachloride-induced hepatic damage in mice. Indian J. Pharm. Sci. 2014, 76, 267. [Google Scholar]
- Lei, L.; Liu, Y.; Wang, X.; Jiao, R.; Ma, K.Y.; Li, Y.M.; Wang, L.; Man, S.W.; Sang, S.; Huang, Y. Plasma cholesterol-lowering activity of gingerol-and shogaol-enriched extract is mediated by increasing sterol excretion. J. Agric. Food Chem. 2014, 62, 10515–10521. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Chen, J.; Liu, Y.; Wang, L.; Zhao, G.; Chen, Z.-Y. Dietary wheat bran oil is equally as effective as rice bran oil in reducing plasma cholesterol. J. Agric. Food Chem. 2018, 66, 2765–2774. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhu, H.; Liu, J.; Kwek, E.; Ma, K.Y.; Chen, Z.-Y. Mangiferin alleviates trimethylamine-N-oxide (TMAO)-induced atherogenesis and modulates gut microbiota in mice. Food Funct. 2023, 14, 9212–9225. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhu, H.; Ma, N.; Ma, K.Y.; Chen, Z.-Y. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur. J. Nutr. 2021, 60, 2735–2746. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Microeco, M.Y. An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Zhao, Y.; He, Z.; Hao, W.; Zhu, H.; Liu, J.; Ma, K.Y.; He, W.-S.; Chen, Z.-Y. Cholesterol-lowering activity of protocatechuic acid is mediated by increasing the excretion of bile acids and modulating gut microbiota and producing short-chain fatty acids. Food Funct. 2021, 12, 11557–11567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Jiao, R.; Peng, C.; Wong, Y.M.; Yeung, V.S.Y.; Huang, Y.; Chen, Z.Y. Choosing hamsters but not rats as a model for studying plasma cholesterol-lowering activity of functional foods. Mol. Nutr. Food Res. 2009, 53, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, V.; Moja, L.; Dall’Olmo, L.; Cappellini, G.; Garattini, S. Most appropriate animal models to study the efficacy of statins: A systematic review. Eur. J. Clin. Investig. 2014, 44, 848–871. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, H.; Guo, X.; Yan, S.; Lu, C.; Zhao, Z.; Feng, X.; Li, Q.; Wang, J.; Zeng, J. Effective dose/duration of natural flavonoid quercetin for treatment of diabetic nephropathy: A systematic review and meta-analysis of rodent data. Phytomedicine 2022, 105, 154348. [Google Scholar] [CrossRef] [PubMed]
- Stefanadis, C.; Antoniou, C.K.; Tsiachris, D.; Pietri, P. Coronary atherosclerotic vulnerable plaque: Current perspectives. J. Am. Heart Assoc. 2017, 6, e005543. [Google Scholar] [CrossRef]
- Schwartz, C.; Valente, A.; Sprague, E.A.; Kelley, J.; Nerem, R. The pathogenesis of atherosclerosis: An overview. Clin. Cardiol. 1991, 14, 1–16. [Google Scholar] [CrossRef]
- Vaughan, C.J.; Gotto, A.M.; Basson, C.T. The evolving role of statins in the management of atherosclerosis. J. Am. Coll. Cardiol. 2000, 35, 1–10. [Google Scholar] [CrossRef]
- Wadhera, R.K.; Steen, D.L.; Khan, I.; Giugliano, R.P.; Foody, J.M. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. J. Clin. Lipidol. 2016, 10, 472–489. [Google Scholar] [CrossRef]
- John, S.; Schmieder, R.E. Potential mechanisms of impaired endothelial function in arterial hypertension and hypercholesterolemia. Curr. Hypertens. Rep. 2003, 5, 199–207. [Google Scholar] [CrossRef]
- Nedeljkovic, Z.; Gokce, N.; Loscalzo, J. Mechanisms of oxidative stress and vascular dysfunction. Postgrad. Med. J. 2003, 79, 195–200. [Google Scholar] [CrossRef]
- He, C.; Zhang, Q.; Zhu, R.; Tse, G.; Wong, W.T. Asperuloside activates hepatic NRF2 signaling to stimulate mitochondrial metabolism and restore lipid homeostasis in high fat diet-induced MAFLD. Eur. J. Pharmacol. 2024, 983, 177003. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.L.; Duclos, Q.; Blesso, C.N. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv. Nutr. 2017, 8, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Jamialahmadi, T.; Sahebkar, A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol. Res. 2022, 184, 106414. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-González, E.; Villagrán, Z.; González-Torres, S.; Iñiguez-Muñoz, L.E.; Isiordia-Espinoza, M.A.; Ruvalcaba-Gómez, J.M.; Arteaga-Garibay, R.I.; Acosta, J.L.; González-Silva, N.; Anaya-Esparza, L.M. Physiological effects and human health benefits of Hibiscus sabdariffa: A review of clinical trials. Pharmaceuticals 2022, 15, 464. [Google Scholar] [CrossRef]
- Biazzo, M.; Deidda, G. Fecal microbiota transplantation as new therapeutic avenue for human diseases. J. Clin. Med. 2022, 11, 4119. [Google Scholar] [CrossRef]
Ingredients (g/kg Diet) | NCD | HCD | L-HCAE | H-HCAE | L-HCEE | H-HCEE |
---|---|---|---|---|---|---|
Corn starch | 508 | 508 | 508 | 508 | 508 | 508 |
Casein | 242 | 242 | 242 | 242 | 242 | 242 |
Sucrose | 119 | 119 | 119 | 119 | 119 | 119 |
Lard | 50 | 50 | 50 | 50 | 50 | 50 |
Mineral mixture | 40 | 40 | 40 | 40 | 40 | 40 |
Vitamin mixture | 20 | 20 | 20 | 20 | 20 | 20 |
Gelatin | 20 | 20 | 20 | 20 | 20 | 20 |
DL-Methionine | 1 | 1 | 1 | 1 | 1 | 1 |
Cholesterol | 1 | 1 | 1 | 1 | 1 | |
HCAE | - | - | 10 | 50 | - | - |
HCEE | 10 | 50 |
NCD | HCD | L-HCAE | H-HCAE | L-HCEE | H-HCEE | p Value | |
---|---|---|---|---|---|---|---|
Daily food intake, g | 8.51 ± 0.24 a | 7.88 ± 0.13 b | 8.42 ± 0.10 a | 8.53 ± 0.15 a | 8.19 ± 0.26 ab | 8.57 ± 0.02 a | <0.01 |
Body weight, g | |||||||
Initial (Week 0) | 111.30 ± 2.04 | 112.18 ± 3.13 | 115.00 ± 2.22 | 115.08 ± 2.01 | 111.00 ± 2.02 | 112.38 ± 2.11 | 0.52 |
Final (Week 6) | 118.00 ± 2.38 | 115.04 ± 2.58 | 123.25 ± 3.31 | 125.08 ± 3.06 | 124.24 ± 3.00 | 124.12 ± 2.04 | 0.05 |
Body weight gain | 6.70 ± 1.23 | 2.86 ± 1.77 | 8.25 ± 2.46 | 10.00 ± 2.31 | 13.24 ± 2.22 | 11.74 ± 0.54 | 0.05 |
Relative organ weight, % of body weight (Week 6) | |||||||
Liver | 3.29 ± 0.10 b | 3.84 ± 0.12 a | 3.85 ± 0.07 a | 3.83 ± 0.06 a | 3.95 ± 0.11 a | 3.92 ± 0.05 a | <0.001 |
Heart | 0.45 ± 0.03 a | 0.40 ± 0.01 a | 0.37 ± 0.01 b | 0.41 ± 0.01 a | 0.41 ± 0.01 a | 0.38 ± 0.01 ab | 0.02 |
Kidney | 0.74 ± 0.02 | 0.80 ± 0.01 | 0.72 ± 0.01 | 0.75 ± 0.01 | 0.74 ± 0.02 | 0.74 ± 0.04 | 0.08 |
Perirenal fat pad | 1.09 ± 0.11 b | 1.08 ± 0.05 b | 1.24 ± 0.06 ab | 1.23 ± 0.09 ab | 1.12 ± 0.05 b | 1.44 ± 0.07 a | <0.01 |
Testis | 3.97 ± 0.33 | 3.84 ± 0.18 | 3.67 ± 0.18 | 3.75 ± 0.06 | 3.43 ± 0.16 | 3.65 ± 0.28 | 0.52 |
Epididymal fat pad | 1.70 ± 0.09 | 1.69 ± 0.11 | 1.83 ± 0.07 | 1.81 ± 0.11 | 1.73 ± 0.09 | 1.85 ± 0.14 | 0.75 |
NCD | HCD | L-HCAE | H-HCAE | L-HCEE | H-HCEE | p Value | |
---|---|---|---|---|---|---|---|
TC, mg/dL | 156 ± 9 c | 199 ± 10 a | 196 ± 7 a | 208 ± 5 a | 189 ± 7 b | 187 ± 4 b | <0.001 |
HDL-C, mg/dL | 131 ± 4 c | 162 ± 7 a | 148 ± 6 ab | 162 ± 4 a | 136 ± 3 b | 144 ± 4 b | <0.001 |
Non-HDL-C, mg/dL | 24 ± 9 b | 37 ± 10 ab | 48 ± 5 ab | 46 ± 2 ab | 53 ± 4 a | 43 ± 5 ab | 0.03 |
HDL-C/TC | 0.86 ± 0.04 b | 0.82 ± 0.04 ab | 0.76 ± 0.02 ab | 0.78 ± 0.01 ab | 0.72 ± 0.01 a | 0.77 ± 0.02 ab | 0.02 |
Non-HDL-C/HDL-C | 0.19 ± 0.07 b | 0.23 ± 0.06 ab | 0.33 ± 0.04 ab | 0.28 ± 0.02 ab | 0.39 ± 0.02 a | 0.31 ± 0.04 ab | 0.04 |
TG, mg/dL | 47 ± 5 | 50 ± 3 | 71 ± 7 | 68 ± 9 | 67 ± 8 | 57 ± 8 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; He, C.; Liu, J.; Chung, H.-Y.; Chen, Z.-Y.; Wong, W.-T. Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters. Nutrients 2024, 16, 3290. https://doi.org/10.3390/nu16193290
Lin Y, He C, Liu J, Chung H-Y, Chen Z-Y, Wong W-T. Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters. Nutrients. 2024; 16(19):3290. https://doi.org/10.3390/nu16193290
Chicago/Turabian StyleLin, Yuhong, Chufeng He, Jianhui Liu, Hau-Yin Chung, Zhen-Yu Chen, and Wing-Tak Wong. 2024. "Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters" Nutrients 16, no. 19: 3290. https://doi.org/10.3390/nu16193290
APA StyleLin, Y., He, C., Liu, J., Chung, H. -Y., Chen, Z. -Y., & Wong, W. -T. (2024). Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters. Nutrients, 16(19), 3290. https://doi.org/10.3390/nu16193290