Influence of Cardiovascular Risk Factors and Metabolic Syndrome on Epicardial Adipose Tissue Thickness in Rural Spanish Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sample
2.2. Measures and Instruments
2.2.1. Anthropometric Measurements
2.2.2. Blood Pressure
2.2.3. Lipidic and Glycemic Profile
2.2.4. Metabolic Status
2.2.5. Echocardiographic Study
2.2.6. Procedure
2.2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabrera-Rego, J.O.; Iacobellis, G.; Castillo-Herrera, J.A.; Valiente-Mustelier, J.; Gandarilla-Sarmientos, J.C.; Marín-Juliá, S.M.; Navarrete-Cabrera, J. Epicardial Fat Thickness Correlates with Carotid Intima-Media Thickness, Arterial Stiffness, and Cardiac Geometry in Children and Adolescents. Pediatr. Cardiol. 2014, 35, 450–456. [Google Scholar] [CrossRef]
- Bussler, S.; Penke, M.; Flemming, G.; Elhassan, Y.S.; Kratzsch, J.; Sergeyev, E.; Lipek, T.; Vogel, M.; Spielau, U.; Körner, A.; et al. Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm. Res. Paediatr. 2017, 88, 181–193. [Google Scholar] [CrossRef]
- Lavie, C.J.; Oktay, A.A.; Pandey, A. Pericardial Fat and CVD. JACC Cardiovasc. Imaging 2017, 10, 1028–1030. [Google Scholar] [CrossRef]
- Foraster, M.; Eze, I.C.; Vienneau, D.; Brink, M.; Cajochen, C.; Caviezel, S.; Héritier, H.; Schaffner, E.; Schindler, C.; Wanner, M.; et al. Long-Term Transportation Noise Annoyance Is Associated with Subsequent Lower Levels of Physical Activity. Environ. Int. 2016, 91, 341–349. [Google Scholar] [CrossRef]
- Trabzon, G.; Güngör, Ş.; Güllü, Ş.D.; Çalışkan, O.F.; Güllü, U.U. Evaluation of Epicardial Adipose Tissue in Children with Type 1 Diabetes. Pediatr. Res. 2024. [Google Scholar] [CrossRef]
- Calabuig, Á.; Barba, J.; Guembe, M.J.; Díez, J.; Berjón, J.; Martínez-Vila, E.; Irimia, P.; Toledo, E. Epicardial Adipose Tissue in the General Middle-Aged Population and Its Association with Metabolic Syndrome. Rev. Española Cardiol. (Engl. Ed.) 2017, 70, 254–260. [Google Scholar] [CrossRef]
- López-Bermejo, A.; Prats-Puig, A.; Osiniri, I.; Martínez-Calcerrada, J.-M.; Bassols, J. Perirenal and Epicardial Fat and Their Association with Carotid Intima-Media Thickness in Children. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 220–225. [Google Scholar] [CrossRef]
- Sinha, S.K.; Thakur, R.; Jha, M.J.; Goel, A.; Kumar, V.; Kumar, A.; Mishra, V.; Varma, C.M.; Krishna, V.; Singh, A.K.; et al. Epicardial Adipose Tissue Thickness and Its Association with the Presence and Severity of Coronary Artery Disease in Clinical Setting: A Cross-Sectional Observational Study. J. Clin. Med. Res. 2016, 8, 410–419. [Google Scholar] [CrossRef]
- Walpot, J.; Van Herck, P.; Van de Heyning, C.M.; Bosmans, J.; Massalha, S.; Malbrain, M.L.N.G.; Heidbuchel, H.; Inácio, J.R. Computed Tomography Measured Epicardial Adipose Tissue and Psoas Muscle Attenuation: New Biomarkers to Predict Major Adverse Cardiac Events (MACE) and Mortality in Patients with Heart Disease and Critically Ill Patients. Part I: Epicardial Adipose Tissue. Anaesthesiol. Intensive Ther. 2023, 55, 141–157. [Google Scholar] [CrossRef]
- Toemen, L.; Santos, S.; Roest, A.A.W.; Vernooij, M.W.; Helbing, W.A.; Gaillard, R.; Jaddoe, V.W.V. Pericardial Adipose Tissue, Cardiac Structures, and Cardiovascular Risk Factors in School-Age Children. Eur. Heart J.-Cardiovasc. Imaging 2021, 22, 307–313. [Google Scholar] [CrossRef]
- Patro Golab, B.; Voerman, E.; van der Lugt, A.; Santos, S.; Jaddoe, V.W.V. Subcutaneous Fat Mass in Infancy and Abdominal, Pericardial and Liver Fat Assessed by Magnetic Resonance Imaging at the Age of 10 Years. Int. J. Obes. 2019, 43, 392–401. [Google Scholar] [CrossRef]
- Correia, E.; Barbetta, L. Epicardial Adipose Tissue: A New Cardiovascular Imaging Parameter Deeply Connected with Cardiovascular Diseases. Arq. Bras. Cardiol. 2020, 115, 971–972. [Google Scholar] [CrossRef]
- Schweighofer, N.; Rupreht, M.; Varda, N.; Caf, P.; Povalej, P.; Kanic, V. Epicardial Adipose Tissue: A Piece of The Puzzle in Pediatric Hypertension. J. Clin. Med. 2023, 12, 2192. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int. J. Med. Sci. 2016, 13, 25–38. [Google Scholar] [CrossRef]
- Lozano-Berges, G.; Matute-Llorente, Á.; Gómez-Bruton, A.; González-Agüero, A.; Vicente-Rodríguez, G.; Casajús, J.A. Accurate Prediction Equation to Assess Body Fat in Male and Female Adolescent Football Players. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 297–302. [Google Scholar] [CrossRef]
- Aguilar-Morales, I.; Colin-Ramirez, E.; Rivera-Mancía, S.; Vallejo, M.; Vázquez-Antona, C. Performance of Waist-To-Height Ratio, Waist Circumference, and Body Mass Index in Discriminating Cardio-Metabolic Risk Factors in a Sample of School-Aged Mexican Children. Nutrients 2018, 10, 1850. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H. Is the Measurement of Epicardial Fat in Obese Adolescents Valuable? Korean Circ. J. 2012, 42, 447. [Google Scholar] [CrossRef] [PubMed]
- Smulyan, H. The Computerized ECG: Friend and Foe. Am. J. Med. 2019, 132, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Eren, E.; Koca, B.; Ture, M.; Guzel, B. Epicardial Adiposity in Children with Obesity and Metabolic Syndrome. Iran. J. Pediatr. 2014, 24, 7. [Google Scholar]
- Farghaly, H.; Metwalley, K.; Raafat, D.; Algowhary, M.; Said, G. Epicardial Fat Thickness in Children with Subclinical Hypothyroidism and Its Relationship to Subclinical Atherosclerosis: A Pilot Study. Horm. Res. Paediatr. 2020, 92, 99–105. [Google Scholar] [CrossRef]
- Chillón, P.; Ortega, F.B.; Ferrando, J.A.; Casajus, J.A. Physical Fitness in Rural and Urban Children and Adolescents from Spain. J. Sci. Med. Sport 2011, 14, 417–423. [Google Scholar] [CrossRef] [PubMed]
- De Bont, J.; Diaz, Y.; Casas, M.; Garcia-Gil, M.; Vrijheid, M.; Duarte-Salles, T. Time Trends and Sociodemographic Factors Associated with Overweight and Obesity in Children and Adolescents in Spain. JAMA Netw. Open 2020, 3, e201171. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Cena, H.; Garella, V.; Loperfido, F.; Chillemi, C.; Manuelli, M.; Mannarino, S.; Zuccotti, G. Assessment of Epicardial Fat in Children: Its Role as a Cardiovascular Risk Factor and How It Is Influenced by Lifestyle Habits. Nutrients 2024, 16, 420. [Google Scholar] [CrossRef]
- Norton, K.I. Standards for Anthropometry Assessment. In Kinanthropometry and Exercise Physiology; Norton, K., Eston, R., Eds.; Routledge: New York, NY, USA, 2018; pp. 68–137. ISBN 978-1-315-38566-2. [Google Scholar]
- Melo Salor, J.A. Child Growth Standards for 0–5 Years, 2006 and WHO Growth Reference 5–19 Years. Table of BMI Values for the Diagnosis of Childhood Overweight and Obesity; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Cleeman, J.I. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a Metabolic Syndrome Phenotype in Adolescents: Findings from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- Ford, E.S.; Ajani, U.A.; Mokdad, A.H. The Metabolic Syndrome and Concentrations of C-Reactive Protein among U.S. Youth. Diabetes Care 2005, 28, 878–881. [Google Scholar] [CrossRef]
- De Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the Metabolic Syndrome in American Adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The Prevalence of Pediatric Metabolic Syndrome—A Critical Look on the Discrepancies between Definitions and Its Clinical Importance. Int. J. Obes. 2021, 45, 12–24. [Google Scholar] [CrossRef]
- Iacobellis, G.; Assael, F.; Ribaudo, M.; Zappaterreno, A.; Alessi, G.; Mario, U.; Leonetti, F. Epicardial Fat from Echocardiography: A New Method for Visceral Adipose Tissue Prediction. Obes. Res. 2003, 11, 304–310. [Google Scholar] [CrossRef]
- Reyes, Y.; Paoli, M.; Camacho, N.; Molina, Y.; Santiago, J.; Lima-Martínez, M.M. Epicardial Adipose Tissue Thickness in Children and Adolescents with Cardiometabolic Risk Factors. Endocrinol. Nutr. (Engl. Ed.) 2016, 63, 70–78. [Google Scholar] [CrossRef]
- Hanusz, Z.; Tarasińska, J. Normalization of the Kolmogorov–Smirnov and Shapiro–Wilk Tests of Normality. Biom. Lett. 2015, 52, 85–93. [Google Scholar] [CrossRef]
- Díez, F.J.A.; Albillos, J.A.R.; Valero, G.N.L. Dislipemias en edad pediátrica. Protoc. Diagn. Ter. Pediatr. 2019, 1, 125–140. [Google Scholar]
- González, N.; Moreno-Villegas, Z.; González-Bris, A.; Egido, J.; Lorenzo, Ó. Regulation of Visceral and Epicardial Adipose Tissue for Preventing Cardiovascular Injuries Associated to Obesity and Diabetes. Cardiovasc. Diabetol. 2017, 16, 44. [Google Scholar] [CrossRef]
- Mattson, A.R.; Soto, M.J.; Iaizzo, P.A. The Quantitative Assessment of Epicardial Fat Distribution on Human Hearts: Implications for Epicardial Electrophysiology: Epicardial Fat Distribution on Human Hearts. Clin. Anat. 2018, 31, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Megchún-Hernández, M.; Espinosa-Raya, J.; García-Parra, E.; Albavera-Hernández, C.; Briones Aranda, A. Association of Anthropometric Indicators to Evaluate Nutritional Status and Cardiometabolic Risk in Mexican Teenagers. Nutr. Hosp. 2020, 37, 1049. [Google Scholar] [CrossRef]
- Heinen, M.; Bel-Serrat, S.; Kelleher, C.; Buoncristiano, M.; Spinelli, A.; Nardone, P.; Milanovic, S.; Rito, A.; Bosi, A.; Gutierrrez-Gonzalez, E.; et al. Urban and Rural Differences in Frequency of Fruit, Vegetable, and Soft Drink Consumption among 6-9-Year-Old Children from 19 Countries from the WHO European Region. Obes. Rev. 2021, 22, e13207. [Google Scholar] [CrossRef] [PubMed]
- Contreras, D.; Martoccio, T.; Brophy-Herb, H.; Horodynski, M.; Peterson, K.; Miller, A.; Senehi, N.; Sturza, J.; Kaciroti, N.; Lumeng, J. Rural-Urban Differences in Body Mass Index and Obesity-Related Behaviors among Low-Income Preschoolers. J. Public Health 2021, 43, e637–e644. [Google Scholar] [CrossRef]
- Santos, S.; Severo, M.; Lopes, C.; Oliveira, A. Anthropometric Indices Based on Waist Circumference as Measures of Adiposity in Children: Anthropometric Indices in Children. Obesity 2018, 26, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S. Profiles of Body Mass Index and Blood Pressure among Young Adults Categorised by Waist-to-Height Ratio Cut-Offs in Shandong, China. Null 2019, 46, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.A.; Shaibi, G.Q.; Kapadia, C.R.; Vander Wyst, K.B.; Campos, A.; Pimentel, J.; Gonsalves III, R.F.; Sandweiss, B.M.; Olson, M.L. Epicardial Adipose Thickness in Youth with Type 1 Diabetes. Pediatr. Diabetes 2019, 20, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, L.; Liang, H.; Zhang, C.; Guan, L.; Li, M. A New Measurement Site for Echocardiographic Epicardial Adipose Tissue Thickness and Its Value in Predicting Metabolic Syndrome. Adv. Clin. Exp. Med. 2019, 28, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
Total | Normal Weight (n = 114) | Overweight (n = 113) | p-Value | |
---|---|---|---|---|
Age (years) | 10.94 (2.86) | 11.02 (3.13) | 10.84 (2.59) | 0.74 |
Height (cm) | 144.07 (16.86) | 142.39 (17.46) | 145.33 (14.87) | 0.14 |
Weight (kg) | 44.06 (16.86) | 36.91 (13.09) | 50.98 (16.75) | <0.001 |
BMI (kg/m2) | 20.29 (4.54) | 17.42 (2.22) | 23.35 (3.93) | <0.001 |
WC (cm) | 66.03 (11.31) | 59.50 (7.26) | 72.69 (10.82) | <0.001 |
WHtR | 0.45 (0.06) | 0.41 (0.032) | 0.49 (0.0538) | <0.001 |
BF% | 24.76 (8.59) | 18.54 (5.6) | 31.12 (6.02) | <0.001 |
FF% | 31.74 (4.34) | 32.70 (5.06) | 30.78 (3.24) | <0.01 |
EAT thickness (cm) | 1.86 (0.53) | 1.7 (0.43) | 2.06 (0.61) | <0.001 |
SBP (mmHg) | 110.40 (10.88) | 107.67 (10.73) | 112.85 (10.07) | <0.001 |
DBP (mmHg) | 68.27 (6.52) | 67.41 (5.99) | 69.13 (6.92) | 0.16 |
HbA1c | 5.32 (0.29) | 5.29 (0.27) | 5.34 (0.32) | 0.36 |
HDL cholesterol (mg/dL) | 57.06 (12.81) | 59.24 (12.38) | 55.97 (12.94) | <0.01 |
LDL cholesterol (mg/dL) | 94.63 (24.37) | 89.12 (21.03) | 100.25 (26.35) | <0.001 |
Total cholesterol (mg/dL) | 167.34 (29.43) | 162.58 (26.04) | 172.18 (32.02) | <0.01 |
Triglycerides (mg/dL) | 73.00 (39.79) | 66.69 (30.42) | 79.43 (46.92) | <0.05 |
Frequency | Total | Normal weight (n = 114) | Overweight (n = 113) | p-value |
Being male | 120 (53.1%) | 59 (51.8%) | 61 (54.0%) | 0.89 |
Positive criteria for metabolic Syndrome | 13 (5.7%) | 1 (0.9%) | 12 (10.6%) | <0.01 |
Anthropometric Variables | Standard Deviation (SD) | t-Test | 95.0% Confidence Interval | p-Value | |
---|---|---|---|---|---|
Height (cm) | 0.014 | −1.111 | −0.061 | −0.005 | 0.009 |
BMI percentile | 0.065 | 0.339 | 0.075 | 0.329 | 0.002 |
WC (cm) | 0.032 | 3.153 | 0.037 | 0.159 | 0.002 |
WHtR | 4.546 | −1.468 | −22.818 | −4.554 | 0.003 |
Cardiovascular Risk Factors | Standard Deviation (SD) | t-Test | 95.0% Confidence Interval | p-Value | |
Being male | 0.072 | 2.991 | 0.073 | 0.355 | 0.003 |
High blood pressure | 0.145 | 2.283 | 0.045 | 0.617 | 0.033 |
High levels of LDL | 0.272 | −2.052 | −0.31 | −0.007 | 0.041 |
Metabolic Syndrome | 0.158 | 2.074 | 0.060 | 0.675 | 0.019 |
High levels of HbA1c | 0.107 | 0.107 | −0.265 | 0.155 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blancas Sánchez, I.M.; Aristizábal-Duque, C.H.; Cabeza, J.F.; Vaquero Álvarez, M.; Aparicio-Martínez, P.; Abellán, M.V.; Ruíz Ortiz, M.; Mesa Rubio, M.D.; Fonseca del Pozo, F.J. Influence of Cardiovascular Risk Factors and Metabolic Syndrome on Epicardial Adipose Tissue Thickness in Rural Spanish Children and Adolescents. Nutrients 2024, 16, 3321. https://doi.org/10.3390/nu16193321
Blancas Sánchez IM, Aristizábal-Duque CH, Cabeza JF, Vaquero Álvarez M, Aparicio-Martínez P, Abellán MV, Ruíz Ortiz M, Mesa Rubio MD, Fonseca del Pozo FJ. Influence of Cardiovascular Risk Factors and Metabolic Syndrome on Epicardial Adipose Tissue Thickness in Rural Spanish Children and Adolescents. Nutrients. 2024; 16(19):3321. https://doi.org/10.3390/nu16193321
Chicago/Turabian StyleBlancas Sánchez, Isabel María, Cristhian H. Aristizábal-Duque, Juan Fernández Cabeza, Manuel Vaquero Álvarez, Pilar Aparicio-Martínez, Manuel Vaquero Abellán, Martín Ruíz Ortiz, María Dolores Mesa Rubio, and Francisco Javier Fonseca del Pozo. 2024. "Influence of Cardiovascular Risk Factors and Metabolic Syndrome on Epicardial Adipose Tissue Thickness in Rural Spanish Children and Adolescents" Nutrients 16, no. 19: 3321. https://doi.org/10.3390/nu16193321
APA StyleBlancas Sánchez, I. M., Aristizábal-Duque, C. H., Cabeza, J. F., Vaquero Álvarez, M., Aparicio-Martínez, P., Abellán, M. V., Ruíz Ortiz, M., Mesa Rubio, M. D., & Fonseca del Pozo, F. J. (2024). Influence of Cardiovascular Risk Factors and Metabolic Syndrome on Epicardial Adipose Tissue Thickness in Rural Spanish Children and Adolescents. Nutrients, 16(19), 3321. https://doi.org/10.3390/nu16193321