The Relevance of Plant-Based Diets and Micronutrient Supplementation for Body Composition: Data from the VeggieNutri Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.2.1. Food and Nutritional Intake Assessment and Diet Group Definition
2.2.2. Anthropometric and Body Composition Assessment
2.2.3. Blood Pressure, Heart Rate, and HGS Measurements
2.2.4. Iron, Ferritin, B12, CRP, and Homocysteine Blood Analysis
2.3. Statistical Analysis
3. Results
3.1. Sociodemographic Characterization
3.2. Anthropometry, Body Composition, and Health Characteristics by Dietary Pattern
3.3. Food Intake and Blood Biomarkers in Relation to Body Composition
3.4. B12 and Iron Supplementation in Association with Muscle Mass
4. Discussion
Strengths and Limitations
5. Perspectives and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa Leite, J.; Caldeira, S.; Watzl, B.; Wollgast, J. Healthy low nitrogen footprint diets. Glob. Food Secur. 2020, 24, 100342. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.; Cappuccio, F.P. Plant-Based Dietary Patterns for Human and Planetary Health. Nutrients 2022, 14, 1614. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10, S275–S283. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.; Torres, D.; Oliveira, A.; Severo, M.; Alarcão, V.; Guiomar, S.; Mota, J.; Teixeira, P.; Rodrigues, S.; Lobato, L.; et al. Inquérito Alimentar Nacional e de Atividade Física, IAN-AF 2015–2016: Relatório de Resultados. Available online: https://ian-af.up.pt/ (accessed on 28 July 2024).
- Rodrigues, S.S.P.; Franchini, B.; Graça, P.; de Almeida, M.D.V. A New Food Guide for the Portuguese Population: Development and Technical Considerations. J. Nutr. Educ. Behav. 2006, 38, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Silva, S.C.G.; Pinho, J.P.; Borges, C.; Santos, C.T.; Santos, A.; Graça, P. Linhas de Orientação para uma Alimentação Vegetariana Saudável; Programa Nacional para a Promoção da Alimentação Saudável: Lisboa, Portugal, 2015. [Google Scholar]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef]
- Rosi, A.; Mena, P.; Pellegrini, N.; Turroni, S.; Neviani, E.; Ferrocino, I.; Di Cagno, R.; Ruini, L.; Ciati, R.; Angelino, D.; et al. Environmental impact of omnivorous, ovo-lacto-vegetarian, and vegan diet. Sci. Rep. 2017, 7, 6105. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Temple, N.; Woodside, J.V. Vegetarian diets, low-meat diets and health: A review. Public Health Nutr. 2012, 15, 2287–2294. [Google Scholar] [CrossRef]
- Lantern. The Green Revolution 2021 Portugal November 2021. Available online: https://www.lantern.es/lantern-papers-pt/the-green-revolution-2021-portugal (accessed on 21 June 2024).
- Fontes, T.; Rodrigues, L.M.; Ferreira-Pêgo, C. Comparison between Different Groups of Vegetarianism and Its Associations with Body Composition: A Literature Review from 2015 to 2021. Nutrients 2022, 14, 1853. [Google Scholar] [CrossRef]
- Huang, R.-Y.; Huang, C.-C.; Hu, F.B.; Chavarro, J.E. Vegetarian Diets and Weight Reduction: A Meta-Analysis of Randomized Controlled Trials. J. Gen. Intern. Med. 2016, 31, 109–116. [Google Scholar] [CrossRef]
- Barnard, N.; Levin, S.; Yokoyama, Y. A Systematic Review and Meta-Analysis of Changes in Body Weight in Clinical Trials of Vegetarian Diets. J. Acad. Nutr. Diet. 2015, 115, 954–969. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, A.; Levy, J.; Berthezène, C.; Alpers, D.H.; Guéant, J.L. Health outcomes associated with vegetarian diets: An umbrella review of systematic reviews and meta-analyses. Clin. Nutr. 2020, 39, 3283–3307. [Google Scholar] [CrossRef]
- Key, T.J.; Papier, K.; Tong, T.Y.N. Plant-based diets and long-term health: Findings from the EPIC-Oxford study. Proc. Nutr. Soc. 2022, 81, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Masedunskas, A.; Willett, W.C.; Fontana, L. Vegetarian and vegan diets: Benefits and drawbacks. Eur. Heart J. 2023, 44, 3423–3439. [Google Scholar] [CrossRef] [PubMed]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef] [PubMed]
- Eveleigh, E.; Coneyworth, L.; Welham, S. The Role of Micronutrients and Micronutrient Supplements in Vegetarian and Vegan Diets. In Dietary Supplements-Challenges and Future Research; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Association, B.D. Supplements. Available online: https://www.bda.uk.com/resource/supplements.html (accessed on 28 July 2024).
- American Dietetic Association; Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. J. Am. Diet. Assoc. 2003, 103, 748–765. [Google Scholar] [CrossRef]
- Agnoli, C.; Baroni, L.; Bertini, I.; Ciappellano, S.; Fabbri, A.; Papa, M.; Pellegrini, N.; Sbarbati, R.; Scarino, M.L.; Siani, V.; et al. Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1037–1052. [Google Scholar] [CrossRef]
- Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Eur. J. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef]
- Gaio, V.; Antunes, L.; Namorado, S.; Barreto, M.; Gil, A.; Kyslaya, I.; Rodrigues, A.P.; Santos, A.; Bøhler, L.; Castilho, E.; et al. Prevalence of overweight and obesity in Portugal: Results from the First Portuguese Health Examination Survey (INSEF 2015). Obes. Res. Clin. Pract. 2018, 12, 40–50. [Google Scholar] [CrossRef]
- Oliveira, A.; Araújo, J.; Severo, M.; Correia, D.; Ramos, E.; Torres, D.; Lopes, C. Prevalence of general and abdominal obesity in Portugal: Comprehensive results from the National Food, nutrition and physical activity survey 2015–2016. BMC Public Health 2018, 18, 614. [Google Scholar] [CrossRef]
- Rodrigues, A.P.; Gaio, V.; Kislaya, I.; Graff-Iversen, S.; Cordeiro, E.; Silva, A.C.; Namorado, S.; Barreto, M.; Gil, A.P.; Antunes, L.; et al. Sociodemographic disparities in hypertension prevalence: Results from the first Portuguese National Health Examination Survey. Rev. Port. Cardiol. 2019, 38, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C. Reprodutibilidade e Validação de um questionário semi-quantitativo de frequência alimentar. In Alimentação e Enfarte Agudo do Miocárdio: Um Estudo Caso-Controlo de Base Populacional. 2000. Available online: https://repositorio-aberto.up.pt/ (accessed on 21 June 2024).
- Lopes, C.; Aro, A.; Azevedo, A.; Ramos, E.; Barros, H. Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male Portuguese community sample. J. Am. Diet. Assoc. 2007, 107, 276–286. [Google Scholar] [CrossRef]
- Institute of Medicine (US). Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56070/ (accessed on 25 July 2024). [CrossRef]
- Norton, K. Standards for Anthropometry Assessment. In Kinanthropometry and Exercise Physiology; Routledge: London, UK, 2018; pp. 68–137. [Google Scholar]
- Brown, R.E.; Randhawa, A.K.; Canning, K.L.; Fung, M.; Jiandani, D.; Wharton, S.; Kuk, J.L. Waist circumference at five common measurement sites in normal weight and overweight adults: Which site is most optimal? Clin. Obes. 2018, 8, 21–29. [Google Scholar] [CrossRef]
- Lemoncito, M.; Paz-Pacheco, E.; Lim-Abrahan, M.; Jasul, G.; Thiele, I.; Sison, C. Impact of Waist Circumference Measurement Variation on the Diagnosis of Metabolic Syndrome. Risk 2010, 8, 9–12. [Google Scholar]
- Jackson, A.A.; Johnson, M.; Durkin, K.; Wootton, S. Body composition assessment in nutrition research: Value of BIA technology. Eur. J. Clin. Nutr. 2013, 67, S71–S78. [Google Scholar] [CrossRef]
- World Health Organization. A Healthy Lifestyle—WHO Recommendations. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 25 July 2024).
- Weber, M.A.; Schiffrin, E.L.; White, W.B.; Mann, S.; Lindholm, L.H.; Kenerson, J.G.; Flack, J.M.; Carter, B.L.; Materson, B.J.; Ram, C.V.; et al. Clinical practice guidelines for the management of hypertension in the community: A statement by the American Society of Hypertension and the International Society of Hypertension. J. Clin. Hypertens. 2014, 16, 14–26. [Google Scholar] [CrossRef] [PubMed]
- MacDermid, J.S.G.; Fedorczyk, J.; Valdes, K. Clinical Assessment Recommendations 3rd Edition: Impairment-Based Conditions, 3rd ed.; American Society of Hand Therapists: Chicago, IL, USA, 2015. [Google Scholar]
- Jedut, P.; Glibowski, P.; Skrzypek, M. Comparison of the Health Status of Vegetarians and Omnivores Based on Biochemical Blood Tests, Body Composition Analysis and Quality of Nutrition. Nutrients 2023, 15, 3038. [Google Scholar] [CrossRef]
- Karlsen, M.C.; Lichtenstein, A.H.; Economos, C.D.; Folta, S.C.; Chang, R.; Rogers, G.; Jacques, P.F.; Livingston, K.A.; McKeown, N.M. Participant characteristics and self-reported weight status in a cross-sectional pilot survey of self-identified followers of popular diets: Adhering to Dietary Approaches for Personal Taste (ADAPT) Feasibility Survey. Public Health Nutr. 2020, 23, 2717–2727. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline for the Pharmacological Treatment of Hypertension in Adults; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Malesza, I.J.; Bartkowiak-Wieczorek, J.; Winkler-Galicki, J.; Nowicka, A.; Dzięciołowska, D.; Błaszczyk, M.; Gajniak, P.; Słowińska, K.; Niepolski, L.; Walkowiak, J.; et al. The Dark Side of Iron: The Relationship between Iron, Inflammation and Gut Microbiota in Selected Diseases Associated with Iron Deficiency Anaemia-A Narrative Review. Nutrients 2022, 14, 3478. [Google Scholar] [CrossRef]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef] [PubMed]
- Hoek, A.C.; Luning, P.A.; Stafleu, A.; de Graaf, C. Food-related lifestyle and health attitudes of Dutch vegetarians, non-vegetarian consumers of meat substitutes, and meat consumers. Appetite 2004, 42, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, C.; Weidauer, T.; Richert, C.; Schlattmann, P.; Dawczynski, K.; Kiehntopf, M. Nutrient Intake and Nutrition Status in Vegetarians and Vegans in Comparison to Omnivores—The Nutritional Evaluation (NuEva) Study. Front. Nutr. 2022, 9, 819106. [Google Scholar] [CrossRef]
- Crowe, F.L.; Steur, M.; Allen, N.E.; Appleby, P.N.; Travis, R.C.; Key, T.J. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC–Oxford study. Public Health Nutr. 2011, 14, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.L.; Fraser, G.E.; Beeson, W.L.; Knutsen, S.F.; Herring, R.P.; Chan, J.; Sabaté, J.; Montgomery, S.; Haddad, E.; Preston-Martin, S.; et al. Cohort profile: The Adventist Health Study-2 (AHS-2). Int. J. Epidemiol. 2008, 37, 260–265. [Google Scholar] [CrossRef]
- Lehto, E.; Kaartinen, N.E.; Sääksjärvi, K.; Männistö, S.; Jallinoja, P. Vegetarians and different types of meat eaters among the Finnish adult population from 2007 to 2017. Br. J. Nutr. 2022, 127, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Fundação Francisco Manuel dos Santos, P. População Residente com Idade Entre 16 e 89 Anos por Nível de Escolaridade Completo Mais Elevado (%); Fundação Francisco Manuel dos Santos: Lisboa, Portugal, 2023. [Google Scholar]
- Silva, P.; Araújo, R.; Lopes, F.; Ray, S. Nutrition and Food Literacy: Framing the Challenges to Health Communication. Nutrients 2023, 15, 4708. [Google Scholar] [CrossRef]
- Begley, A.; Paynter, E.; Butcher, L.M.; Dhaliwal, S.S. Examining the Association between Food Literacy and Food Insecurity. Nutrients 2019, 11, 445. [Google Scholar] [CrossRef]
- Karlsen, M.C.; Pollard, K.J. Strategies for practitioners to support patients in plant-based eating. J. Geriatr. Cardiol. 2017, 14, 338–341. [Google Scholar] [CrossRef]
- Weikert, C.; Trefflich, I.; Menzel, J.; Obeid, R.; Longree, A.; Dierkes, J.; Meyer, K.; Herter-Aeberli, I.; Mai, K.; Stangl, G.I.; et al. Vitamin and Mineral Status in a Vegan Diet. Dtsch. Arztebl. Int. 2020, 117, 575–582. [Google Scholar] [CrossRef]
- Larsson, C.L.; Klock, K.S.; Astrøm, A.N.; Haugejorden, O.; Johansson, G. Food habits of young Swedish and Norwegian vegetarians and omnivores. Public Health Nutr. 2001, 4, 1005–1014. [Google Scholar] [CrossRef]
- Larsson, C.L.; Johansson, G.K. Dietary intake and nutritional status of young vegans and omnivores in Sweden. Am. J. Clin. Nutr. 2002, 76, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Wirnitzer, K.; Motevalli, M.; Tanous, D.R.; Gregori, M.; Wirnitzer, G.; Leitzmann, C.; Hill, L.; Rosemann, T.; Knechtle, B. Supplement Intake in Recreational Vegan, Vegetarian, and Omnivorous Endurance Runners—Results from the NURMI Study (Step 2). Nutrients 2021, 13, 2741. [Google Scholar] [CrossRef] [PubMed]
- Henjum, S.; Groufh-Jacobsen, S.; Stea, T.H.; Tonheim, L.E.; Almendingen, K. Iron Status of Vegans, Vegetarians and Pescatarians in Norway. Biomolecules 2021, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Cho, S.W.; Park, Y.K. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutr. Res. Pract. 2012, 6, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Yang, K.C.; Chang, H.H.; Lee, L.T.; Lu, C.W.; Huang, K.C. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan. Nutrients 2016, 8, 373. [Google Scholar] [CrossRef] [PubMed]
- Borda, M.G.; Samuelsson, J.; Cederholm, T.; Baldera, J.P.; Pérez-Zepeda, M.U.; Barreto, G.E.; Zettergren, A.; Kern, S.; Rydén, L.; Gonzalez-Lara, M.; et al. Nutrient Intake and Its Association with Appendicular Total Lean Mass and Muscle Function and Strength in Older Adults: A Population-Based Study. Nutrients 2024, 16, 568. [Google Scholar] [CrossRef]
- Lim, H.; Son, K.; Lim, H. Association between Skeletal Muscle Mass-to-Visceral Fat Ratio and Dietary and Cardiometabolic Health Risk Factors among Korean Women with Obesity. Nutrients 2023, 15, 1574. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, Q.; Zhang, X. Associations of serum vitamin B12 and its biomarkers with musculoskeletal health in middle-aged and older adults. Front. Endocrinol. 2024, 15, 1387035. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Chon, J.; Lee, S.A.; Yoo, M.C.; Chung, S.J.; Shim, G.Y.; Soh, Y.; Won, C.W. Impact of Vitamin B12 Insufficiency on the Incidence of Sarcopenia in Korean Community-Dwelling Older Adults: A Two-Year Longitudinal Study. Nutrients 2023, 15, 936. [Google Scholar] [CrossRef] [PubMed]
- Kositsawat, J.; Vogrin, S.; French, C.; Gebauer, M.; Candow, D.G.; Duque, G.; Kirk, B. Relationship Between Plasma Homocysteine and Bone Density, Lean Mass, Muscle Strength and Physical Function in 1480 Middle-Aged and Older Adults: Data from NHANES. Calcif. Tissue Int. 2023, 112, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Seo, J.W.; Lee, M.Y.; Lee, Y.T.; Yoon, K.J.; Park, C.H. Association between Elevated Plasma Homocysteine and Low Skeletal Muscle Mass in Asymptomatic Adults. Endocrinol. Metab. 2022, 37, 333–343. [Google Scholar] [CrossRef]
- Huo, C.; Li, G.; Hu, Y.; Sun, H. The Impacts of Iron Overload and Ferroptosis on Intestinal Mucosal Homeostasis and Inflammation. Int. J. Mol. Sci. 2022, 23, 14195. [Google Scholar] [CrossRef] [PubMed]
- Wright, M. Nutrition Assessment: Nutrition-Focused History and Physical Examination. Physician Assist. Clin. 2022, 7, 579–587. [Google Scholar] [CrossRef]
Total Sample (n = 425) | OMNI (n = 263) | LOV (n = 98) | VEG (n = 64) | p | |
---|---|---|---|---|---|
Age | |||||
Mean ± SD, years | 36 ± 12 | 37 ± 12 | 33 ± 10 | 32 ± 9 | 0.001 a |
Min–max | 18–63 | 18–63 | 18–62 | 20–52 | |
Sex | |||||
Male | 117 (28) | 74 (28) | 22 (22) | 21 (33) | 0.331 b |
Female | 308 (72) | 189 (72) | 76 (78) | 43 (67) | |
Marital status, n (%) | |||||
Single | 256 (61) | 146 (56) | 69 (71) | 41 (64) | 0.028 b |
Married or de facto union | 136 (32) | 90 (34) | 25 (26) | 21 (33) | |
Divorced or widowed | 31 (7) | 26 (10) | 3 (3) | 2 (3) | |
Physical exercise *, n (%) | |||||
No | 156 (37) | 102 (39) | 31 (32) | 23 (36) | 0.451 b |
Yes | 269 (63) | 161 (61) | 67 (68) | 41 (64) | |
Physical exercise frequency, n (%) | |||||
up to 2×/week | 99 (37) | 66 (41) | 22 (33) | 11 (27) | 0.293 b |
3 to 4×/week | 106 (39) | 62 (39) | 28 (42) | 16 (39) | |
≥5x/week | 64 (24) | 33 (20) | 17 (25) | 14 (34) | |
Supplement intake, n (%) | |||||
No | 230 (55) | 175 (67) | 46 (47) | 9 (14) | 0.001 b |
Yes | 191 (45) | 85 (33) | 51 (53) | 55 (86) | |
Multivitamin | |||||
No | 141 (74) | 50 (60) | 41 (80) | 50 (91) | 0.001 b |
Yes | 49 (26) | 34 (41) | 10 (20) | 5 (9) | |
B12 vitamin | |||||
No | 95 (50) | 70 (83) | 21 (41) | 4 (7) | 0.001 b |
Yes | 95 (50) | 14 (17) | 30 (59) | 51 (93) | |
Omega-3 | |||||
No | 154 (81) | 68 (81) | 42 (82) | 44 (80) | 0.953 b |
Yes | 36 (19) | 16 (19) | 9 (18) | 11 (20) | |
Iron | |||||
No | 156 (82) | 72 (86) | 36 (71) | 48 (87) | 0.042 b |
Yes | 34 (18) | 12 (14) | 15 (29) | 7 (13) | |
Selenium | |||||
No | 186 (98) | 81 (96) | 51 (100) | 54 (98) | 0.369 b |
Yes | 4 (2) | 3 (4) | 0 (0) | 1 (2) | |
Calcium | |||||
No | 184 (97) | 82 (98) | 49 (96) | 53 (96) | 0.859 b |
Yes | 6 (3) | 2 (2) | 2 (4) | 2 (4) | |
Zinc | |||||
No | 183 (96) | 80 (95) | 50 (98) | 53 (96) | 0.704 b |
Yes | 7 (4) | 4 (5) | 1 (2) | 2 (4) | |
Magnesium | 190 | 84 | 51 | 55 | |
No | 163 (86) | 69 (82) | 46 (90) | 48 (87) | 0.401 b |
Yes | 27 (14) | 15 (18) | 5 (9) | 7 (13) | |
Protein supplementation | |||||
No | 408 (96) | 253 (96) | 95 (97) | 60 (94) | 0.598 c |
Yes | 17 (4) | 10 (4) | 3 (3) | 4 (6) | |
Nutritional counseling, n (%) | |||||
No | 340 (80) | 228 (87) | 67 (68) | 45 (70) | 0.001 b |
Yes | 84 (20) | 34 (13) | 31 (32) | 19 (30) | |
Doctor (only) | 3 (4) | 2 (6) | 0 (0) | 1 (5) | 0.476 c |
Nutritionist (only) | 73 (86) | 29 (85) | 29 (94) | 15 (79) | |
Homeopath (only) | 3 (4) | 0 (0) | 1 (3) | 2 (11) | |
Doctor and Nutritionist | 3 (4) | 1 (3) | 1 (3) | 1 (5) | |
Other | 2 (2) | 2 (6) | 0 (0) | 0 (0) |
Characteristics | Total Sample (n = 425) | OMNI (n = 263) | LOV (n = 98) | VEG (n = 64) | p |
---|---|---|---|---|---|
Weight | |||||
Median (P25; P75), kg | 63.5 (56.2; 73.8) | 64.0 (56.4; 74.4) | 65.4 (57.7; 71.9) | 61.0 (53.3; 74.7) | 0.384 a |
Height | |||||
Mean ± SD, cm | 166.5 ± 8.9 | 166.3 ± 8.9 | 166.7 ± 7.2 | 167.4 ± 9.7 | 0.637 b |
BMI | |||||
Median (P25; P75), kg/m2 | 23.2 (21.0; 25.6) | 23.3 (21.4; 25.6) | 23.4 (20.9; 25.6) | 22.3 (20.3; 25.7) | 0.118 a |
Underweight | 9 (2) | 3 (1) | 2 (2) | 4 (6) | |
Normal weight | 274 (65) | 171 (65) | 62 (63) | 41 (64) | 0.352 c |
Overweight | 111 (26) | 70 (27) | 25 (26) | 16 (25) | |
Obese | 31 (7) | 19 (7) | 9 (9) | 3 (5) | |
Waist circumference (WC) | |||||
Median (P25; P75), cm | 82.0 (74.6; 89.4) | 83.4 (76.6; 90.3) | 80.2 (72.2; 86.8) | 79.7 (72.8; 88.6) | 0.010 a |
Fat mass (FM) # | |||||
Median (P25; P75), % | 25 (20; 30) | 24.5 (19.6; 29.8) | 26.3 (20.2; 31.2) | 24.3 (17.9; 28.2) | 0.082 a |
Visceral Fat (VF) | |||||
Median (P25; P75) | 3.5 (2.0; 6.5) | 4.0 (2.0; 6.5) | 3.5 (1.5; 5.0) | 3.0 (1.5; 5.0) | 0.033 a |
Bone mass (BM) | |||||
Median (P25; P75), kg | 2.4 (2.2; 2.8) | 2.4 (2.2; 2.9) | 2.4 (2.2; 2.7) | 2.3 (2.1; 2.9) | 0.471 a |
Muscle mass (MM) | |||||
Median (P25; P75), kg | 44.1 (40.3; 52.8) | 44.6 (40.4; 54.4) | 44.1 (40.9; 50.1) | 43.0 (39.1; 54.5) | 0.534 a |
Muscle mass adjusted for body weight (%MM) | |||||
Mean ± SD, % | 71.3 ± 7.4 | 71.4 ± 7.2 | 70.1 ± 7.9 | 72.6 ± 7.1 | 0.101 b |
Total body water (TBW) # | |||||
Median (P25; P75), % | 51.7 (47.6; 55.6) | 51.3 (47.5; 55.2) | 51.1 (47.1; 55.3) | 53.6 (51.3; 57.0) | 0.009 a |
OMNI | LOV | VEG | |||||
---|---|---|---|---|---|---|---|
Beta a | 95% CI | p | Beta a | 95% CI | p | ||
Weight, kg | Ref | 1.615 | (−2.516; 5.747) | 0.444 | −0.466 | (−5.337; 4.404) | 0.851 |
Height, cm | Ref | 2.010 | (−0.0333; 4.354) | 0.093 | 0.176 | (−2.597; 2.950) | 0.901 |
BMI, kg/m2 | Ref | −0.142 | (−1.152; 1.435) | 0.830 | −0.342 | (−1.867; 1.183) | 0.660 |
Waist circumference, cm | Ref | −2.006 | (−5.481; 1.468) | 0.258 | −0.971 | (−5.083; 3.142) | 0.644 |
Visceral Fat | Ref | −0.058 | (−0.800; 0.685) | 0.879 | 0.067 | (−0.809; 0.942) | 0.881 |
Fat Mass #, % | Ref | 4.832 | (1.774; 7.891) | 0.002 | 1.549 | (−2.056; 5.155) | 0.400 |
Bone Mass, kg | Ref | −0.011 | (−0.119; 0.097) | 0.843 | −0.065 | (−0.192; 0.063) | 0.320 |
Muscle Mass, kg | Ref | −0.408 | (−2.555; 1.740) | 0.710 | −1.030 | (−3.562; 1.501) | 0.425 |
% Muscle Mass, % | Ref | −2.232 | (−4.396; −0.068) | 0.043 | −0.702 | (−3.253; 1.848) | 0.589 |
Hand Grip strength, kgf | Ref | 1.063 | (−1.759; 3.885) | 0.460 | −0.216 | (−3.627; 3.188) | 0.900 |
Systolic blood pressure, mmHg | Ref | −1.258 | (−5.757; 3.240) | 0.584 | −1.801 | (−7.081; 3.479) | 0.504 |
Diastolic blood pressure, mmHg | Ref | 1.255 | (−1.696; 4.205) | 0.405 | −0.393 | (−3.855; 3.070) | 0.824 |
Total body water #, % | Ref | −0.987 | (−2.842; 0.867) | 0.297 | 1.125 | (−1.061; 3.311) | 0.313 |
Total (n = 425) | OMNI (n = 263) | LOV (n = 98) | VEG (n = 64) | p | |
---|---|---|---|---|---|
Nutrient intake | |||||
Total water from foods * | |||||
Median (P25; P75), mL/d | 1410 (1089; 1851) | 1377 (1061; 1836) | 1527 (1133; 1835) | 1390 (1095; 1945) | 0.403 a |
Total energy intake | |||||
Median (P25; P75), Kcal/d | 2184.2 (1716.3; 2737.2) | 2119.4 (1668.2; 2583.1) | 2344.1 (1901.4; 2856.2) | 2168.8 (1711.8; 2900.0) | 0.125 a |
Total carbohydrate intake | |||||
Median (P25; P75), g/d | 249.1 (195.5; 326.0) | 231.5 (178.4; 287.9) | 283.9 (227.3; 342.6) | 263.0 (222.0; 348.3) | 0.001 a |
Total fat intake | |||||
Median (P25; P75), g/d | 87.6 (67.3; 116.8) | 85.7 (67.5; 113.8) | 94.4 (66.9; 129.0) | 81.9 (66.6; 110.1) | 0.338 a |
Total protein intake | |||||
Median (P25; P75), g/d | 95.4 (72.7; 122.1) | 98.6 (79.5; 123.1) | 90.4 (65.9; 121.0) | 87.6 (59.8; 118.5) | 0.020 a |
Protein intake adequacy # | |||||
below adequacy, n (%) | 5 (1.2) | 0 (0.0) | 2 (2.0) | 3 (4.7) | |
within adequacy, n (%) | 420 (98.8) | 263 (100.0) | 96 (98.0) | 61 (95.3) | 0.004 b |
above adequacy, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Total iron intake | |||||
Median (P25; P75), mg/d | 18.8 (13.8; 25.7) | 16.2 (12.7; 21.7) | 22.9 (18.1; 29.4) | 23.2 (17.8; 32.7) | 0.001 a |
Total B12 vitamin intake | |||||
Median (P25; P75), µg/d | 4.7 (1.3; 9.2) | 8.0 (5.2; 11.5) | 1.4 (0.8; 1.8) | 0.5 (0.3; 0.9) | 0.001 a |
Blood biomarkers | |||||
Blood level of iron | |||||
Median (P25; P75), µg/dL | 98 (73; 121) | 98 (74; 118) | 92 (69; 118) | 107 (76; 135) | 0.117 a |
Blood level of ferritin | |||||
Median (P25; P75), ng/mL | 52 (27; 100) | 61 (31; 121) | 42 (25; 61) | 40 (22; 72) | 0.001 a |
Blood level of B12 vitamin | |||||
Median (P25; P75), pg/mL | 373 (287; 496) | 389 (316; 532) | 310 (234; 399) | 412 (281; 536) | 0.001 a |
Iron Supplement | |||
---|---|---|---|
Non-Users | Users | p | |
Blood level of iron, n | 156 | 33 | |
Median (P25; P75), µg/dL | 99.0 (77.5; 126.0) | 87.0 (71.0; 115.0) | 0.215 a |
Blood level of ferritin, n | 156 | 33 | |
Median (P25; P75), ng/mL | 49.2 (30.6; 87.2) | 42.4 (26.8; 58.6) | 0.133 a |
CRP, n | 156 | 33 | |
Median (P25; P75), mg/L | 1.0 (0.5; 2.1) | 2.1 (0.8; 6.7) | 0.014 a |
% MM, n | 155 | 34 | |
mean ± SD, % | 72.6 ± 7.1 | 68.6 ± 7.0 | 0.003 b |
Blood Level of Homocysteine (μmol/mL) | % Muscle Mass | |||||
---|---|---|---|---|---|---|
n | rs | p | n | rs | p | |
Blood level of B12 vitamin (pg/mL) | 418 | −0.386 | <0.001 a | 423 | 0.136 | 0.005 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, C.; Silva, F.; Rocha, I.; Martins, C.; Giesteira, L.; Dias, B.; Lucas, A.; Alexandre, A.M.; Ferreira, C.; Viegas, B.; et al. The Relevance of Plant-Based Diets and Micronutrient Supplementation for Body Composition: Data from the VeggieNutri Cross-Sectional Study. Nutrients 2024, 16, 3322. https://doi.org/10.3390/nu16193322
Pinheiro C, Silva F, Rocha I, Martins C, Giesteira L, Dias B, Lucas A, Alexandre AM, Ferreira C, Viegas B, et al. The Relevance of Plant-Based Diets and Micronutrient Supplementation for Body Composition: Data from the VeggieNutri Cross-Sectional Study. Nutrients. 2024; 16(19):3322. https://doi.org/10.3390/nu16193322
Chicago/Turabian StylePinheiro, Cátia, Flávia Silva, Inês Rocha, Carina Martins, Liliana Giesteira, Bruna Dias, Ana Lucas, Ana Margarida Alexandre, Catarina Ferreira, Bruna Viegas, and et al. 2024. "The Relevance of Plant-Based Diets and Micronutrient Supplementation for Body Composition: Data from the VeggieNutri Cross-Sectional Study" Nutrients 16, no. 19: 3322. https://doi.org/10.3390/nu16193322
APA StylePinheiro, C., Silva, F., Rocha, I., Martins, C., Giesteira, L., Dias, B., Lucas, A., Alexandre, A. M., Ferreira, C., Viegas, B., Bracchi, I., Guimarães, J., Amaro, J., Amaral, T. F., Dias, C. C., Oliveira, A., Ndrio, A., Guimarães, J. T., Leite, J. C., ... Keating, E. (2024). The Relevance of Plant-Based Diets and Micronutrient Supplementation for Body Composition: Data from the VeggieNutri Cross-Sectional Study. Nutrients, 16(19), 3322. https://doi.org/10.3390/nu16193322