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Abstract: Background: Training of machine learning algorithms on dish images collected in other
countries requires possible sources of systematic discrepancies, including country-specific food
composition databases (FCDBs), to be tackled. The US Nutrition5k project provides for ~5000 dish
images and related dish- and ingredient-level information on mass, energy, and macronutrients
from the US FCDB. The aim of this study is to (1) identify challenges/solutions in linking the
nutritional composition of Italian foods with food images from Nutrition5k and (2) assess potential
differences in nutrient content estimated across the Italian and US FCDBs and their determinants.
Methods: After food matching, expert data curation, and handling of missing values, dish-level
ingredients from Nutrition5k were integrated with the Italian-FCDB-specific nutritional composition
(86 components); dish-specific nutrient content was calculated by summing the corresponding
ingredient-specific nutritional values. Measures of agreement/difference were calculated between
Italian- and US-FCDB-specific content of energy and macronutrients. Potential determinants of
identified differences were investigated with multiple robust regression models. Results: Dishes
showed a median mass of 145 g and included three ingredients in median. Energy, proteins, fats,
and carbohydrates showed moderate-to-strong agreement between Italian- and US-FCDB-specific
content; carbohydrates showed the worst performance, with the Italian FCDB providing smaller
median values (median raw difference between the Italian and US FCDBs: —2.10 g). Regression
models on dishes suggested a role for mass, number of ingredients, and presence of recreated recipes,
alone or jointly with differential use of raw/cooked ingredients across the two FCDBs. Conclusions:
In the era of machine learning approaches for food image recognition, manual data curation in the
alignment of FCDBs is worth the effort.

Keywords: database harmonization; dish images; food composition database; food matching; manual
data curation; missing imputation; nutritional composition of foods; nutrition; “Nutrition5k” dataset

1. Introduction

In the era of global nutrition research, the comparability of food composition databases
(FCDBs) across culturally diverse countries is increasingly important [1-5]. In the past, sev-
eral studies have similarly recognized that the harmonization of national /regional FCDBs
allows individual and aggregate estimates of dietary intakes to be properly compared
across multiple countries (e.g., [6-8]).
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Information on dietary intake is still mostly collected through 24 h dietary recalls, food
frequency questionnaires, and dietary records [9-11]. These traditional methods are affected
by well-known issues (e.g., they are time-consuming, and data quality may be affected by
consumers’ behavior) that can limit data collection [3,12]. Unprecedented opportunities to
improve dietary assessment are offered by technological advancements that are reshaping
the landscape of nutritional epidemiology [5]. For example, the integration of deep learning
techniques (i.e., an artificial intelligence approach that teaches computers to process data
in a way that is inspired by the human brain) in the domain of food image recognition is
reported to be at the basis of innovative dietary assessment methods with higher accuracy
and precision [13,14].

In the Nutrition5k project, a specific deep learning algorithm, deep convolutional
neural networks (CNNSs), was trained to predict the portion size and nutritional compo-
sition of food dishes obtained from US Google cafeterias [15]. The Nutrition5k project is
also currently offering the first and largest open-access dataset for training deep learning
algorithms on food images. As detailed information (RGB video streams, depth images, in-
gredient weights, and nutritional values from the US FCDB [16]) on almost 5000 real world
food images is provided, Nutrition5k represents the natural framework to support the
future development of a deep-learning-based dietary assessment tool able to: (1) recognize
Italian foods and/or recipes and (2) estimate their nutrient content.

Since the accuracy and precision of such algorithms depend on the quality of metadata
used for training, assessing potential differences in the nutritional composition of US and
Italian foods is important. While investigating sources of differences in nutrient content
across the two FCDBs, acknowledgement of natural variation in the amount of nutrients
in foods over time and space [17-19] and country-specific variation in culinary traditions,
portion sizes, and regional ingredients between the United States and Italy still support
the need for a meticulous cross-country comparison of foods and nutrients. In addition, a
standardized approach to handling missing values [17,20-23] is likely to reduce the risk of
introducing additional bias in the analysis.

Within the framework of a widely used Italian FCDB, the Banca Dati di Composizione
degli Alimenti (BDA) [21,24,25], the current study aims at:

(1) Elucidating challenges and solutions in linking the nutritional composition of Italian
foods with food images from Nutrition5k;

(2) Assessing the presence of potential differences in nutrient content estimated across
the Italian and US FCDBs and their determinants, within a comparative analysis.

This work holds promise not only for enhancing the accuracy of dietary assessments
in Italy but also for paving the way toward a more globally applicable framework for
leveraging deep learning in nutritional epidemiology.

2. Materials and Methods

The harmonization process was handled by a team of nutritionists with different
expertise and seniority who shares the management of the Italian FCDB.

Figure 1 shows the workflow of the analysis, including data extraction, data curation,
the matching between dish ingredients in Nutrition5k and food items in the Italian FCDB,
the derivation of Italian-FCDB-specific nutritional compositions, and the statistical analyses
needed to compare the nutrient content obtained for each dish under the Italian and US
FCDBs. Additional details are provided in the following paragraphs.

2.1. Data Extraction and Preliminary Data Management

We downloaded metadata files of dishes (dish_metadata_cafel.csv, dish_metadata_cafe2.csv)
and ingredients (ingredients_metadata.csv) within the Nutrition5k project to extract nutritional
information at both the dish- and ingredient-level. Within these files, each dish informa-
tion is displayed in a single row and includes the following dish-level details: ID, total
mass (corresponding to the mass in grams of the ration served in the cafeterias), number
of ingredients, energy and macronutrient content (variables: dish_id, total_mass, total_calories,
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total_fat, total_carb, total_protein, and num_ingrs). Within each row, ingredient-level details are
additionally displayed and include, for each ingredient used, the following: ID, name, mass
(corresponding to mass of ingredients in the ration served), energy and macronutrient content
(variables: ingr_id, ingr_name, ingr_grams, ingr_calories, ingr_fat, ingr_carb, and ingr_protein).
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Figure 1. Comprehensive work plan related to research data acquisition and processing.

A single dish can be composed by one or more ingredients, and ingredients can
be single foods or composite recipes. Nutritional values provided in Nutrition5k were
automatically obtained by matching the corresponding ingredient with the US FCDB, i.e.,
the US Department of Agriculture food composition data [16].

From the metadata files, we extracted the following information: dish and ingredient
IDs, ingredient name, and ingredient mass. We created separate rows for each ingredient
within a dish by transforming the original dataset from the wide to the long format (Figure
51), to later link the Italian-FCDB-specific nutritional composition with the corresponding
dish ingredient in Nutrition5k via food matching.

2.2. Exact and Indirect Matching of Ingredients with Their Nutritional Composition

We matched each ingredient from any Nutrition5k dish with the corresponding food
item in the Italian FCDB and linked the corresponding Italian-FCDB-specific nutritional
composition (expressed in terms of 86 components, including energy (2 components), water,
alcohol, and macro- and micro-nutrients) to the dish- and ingredient-level information in
Nutrition5k (expressed in terms of 477 components, including energy).

The linkage procedure requires that the definition of each component was checked
across the Italian and US FCDBs [16,21]. A harmonization process was carried out for the
following nutrients definitions in the Italian FCDB [21], which applied the corresponding
US FCDB values [16]:

o Available carbohydrates = carbohydrate-by-difference—total dietary fiber;
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o Vitamin A components:

O (-carotene equivalents = 1 3-carotene + 0.5 o-carotene + 0.5 3-cryptoxanthin;
O Retinol equivalent = retinol + 1/6 [3-carotene equivalents;

o Alpha-tocopherol equivalents = «-tocopherol + 0.4 3-tocopherol + 0.1 y-tocopherol + 0.01
d-tocopherol + 0.3 «-tocotrienol + 0.05 (3-tocotrienol + 0.01 y-tocotrienol;

o Short-chain saturated fatty acids: butyric fatty acid (C4:0) + caproic fatty acid (C6:0) + caprylic
fatty acid (C8:0) + capric fatty acid (C10:0).

Finally, since the variable “Other PolyUnsaturated Fatty Acids (PUFAs)” was present
in the Italian FCDB but not in the US FCDB, we obtained the corresponding variable by
summing the US-provided values for the single polyunsaturated fatty acids included in the
US but not in the Italian FCDB.

The Italian FCDB contains nutritional values for each food item expressed per 100 g of
the edible part; therefore, we expressed the Italian-FCDB-specific nutritional values on a
mass basis for each ingredient in Nutrition5k. In addition, the nutrient content of dishes in
Nutrition5k [15] was obtained via per-ingredient mass (i.e., incremental weight measured
by a digital scale under the plate) and volume measurements (i.e., overhead depth data
collected by an Intel RealSense D435 camera). Based on this information, we assumed that
portions of ingredients and dishes provided in Nutrition5k referred to the cooked weight
(e.g., pasta, meat, or cooked vegetables); therefore, when needed and available, for each
ingredient, we referred to the cooked rather than the corresponding raw food item in the
Italian FCDB to link nutritional values. When the cooked food item was not available in
the Italian FCDB, we used the corresponding raw food item instead (e.g., cooked salmon in
the US FCDB matched with (raw) salmon in the Italian FCDB).

We identified five matching criteria [26] between the Nutrition5k-specific ingredients
and Italian-FCDB-specific food items, which are described in detail hereafter.

2.2.1. Exact Matching between Ingredients in Nutrition5k and Food Items in the
Italian FCDB

The matching was exact when: (1) the same name was available for the ingredient in
NutritionSk and the food item in the Italian FCDB (e.g., eggplant-melanzane, salmon—salmone,
or butter-burro); (2) names were formally different, but it was possible to precisely identify
the ingredient as the food available in the Italian FCDB (e.g., celery root—celeriac, green
beans—French beans, or cookies—biscuits).

When an exact match was not possible, separate indirect matching strategies were
adopted, as described in the following paragraphs.

2.2.2. Indirect Matching: Similarity between Ingredients in Nutrition5k and Food Items in
the Italian FCDB

When the Italian FCDB showed a food item with a similar definition, appearance,
description, or nutritional composition, we considered it as a substitute of the Nutrition5k
ingredient. When more than one food item in the Italian FCDB was suitable, we selected
the one that was closest to that in Nutrition5k in terms of calories, macronutrients, and
water content.

2.2.3. Indirect Matching: Dish Ingredients Present in Nutrition5k Were Missing Food Items
in the Italian FCDB

When a food ingredient from Nutrition5k was missing in the Italian FCDB and no
suitable Italian alternatives were available, food items from the US FCDB were considered
in the harmonization process. To identify the most appropriate food item for matching, we
checked the nutritional composition of the closest US FCDB food items.
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2.2.4. Indirect Matching: Dish Ingredients Present in NutritionSk Were Too Generic for
Matching: Mean Values of the Corresponding Nutrients

When an ingredient in Nutrition5k was too generic (e.g., berries), we accounted for
potential variability in food images (e.g., cheese could refer to cheddar cheese in a dish and
to mozzarella cheese in another one) by identifying a group of potentially matching foods
in the Italian FCDB. We then calculated the mean value of each nutrient associated with
each Italian-FCDB-specific food item.

2.2.5. Indirect Matching: Single Dish Ingredients in Nutrition5k Were Composite Recipes

When ingredients in the Nutrition5k dataset were composite recipes not available
in the Italian FCDB, we created new recipes and adopted them as dish ingredients in
Nutrition5k. Recipes were formulated by first using the Italian food atlas (i.e., “Atlante
Fotografico Alimentare—uno strumento per le indagini nutrizionali”) [27] and, in its
absence, the most followed cooking websites in Italy [28,29]. When the ingredient in
Nutrition5k was a generic recipe (e.g., tuna salad or pasta salad) or the recipe was very
unusual in Italy (e.g., coleslaw or succotash), we used dish images to better mimic the
original recipes in Nutrition5k.

2.3. Manual Data Curation
2.3.1. “Plate Only” and “Missing-Name Ingredients”

When a “plate only” dish was identified in Nutrition5k, the corresponding dish was
removed from the dataset after assessing that the plate was empty. When an ingredient
was indicated with its number but the corresponding name was missing in the dish-level
files (dish_metadata_cafel.csv, dish_metadata_cafe2.csv) (“missing-name ingredients” from
now onwards), we used either the additional ingredients file (ingredients_metadata.csv) or
the dish images to identify it.

2.3.2. Ingredients Portion: Checks

We checked the summary statistics (minimum, 1st quartile, median, 3rd quartile, mean,
standard deviation, and maximum values) of mass across all ingredients in Nutrition5k.
When the maximum values were extremely high, we used dish images to identify the most
likely portion and modified the mass accordingly.

2.3.3. Nutrients in Trace

The Italian FCDB flags nutrients in trace amounts (i.e., present in such small quantities
that cannot be measured adequately) with a specific code. The criterion to define amounts
of nutrients as traces is <0.6, <0.06, or <0.006 depending on the analytical method used [17].
Therefore, we imputed trace values with 0.5, 0.05, or 0.005 according to the methodology
proposed by Greenfield and Southgate [17]. For example, we indicated a retinol trace
content <0.6 pg as 0.5 pg, a vitamin D trace content <0.06 ug as 0.05 ug, a tocopherol trace
content <0.006 mg as 0.005 mg, and so on for each nutrient-specific criterion.

2.4. Missing Values

Several food items in the Italian or US FCDBs showed missing values for some
nutritional components. To increase the comparability between the two FCDBs, we handled
missing values by using a standardized approach [17,24], as described below:

o Imputation by similar food items: missing values were replaced with other values based
on a similar food item (e.g., values for blueberries used for raspberries), or another
form of the same food (e.g., values for “boiled” used for “steamed”);

o [mputation by calculation: missing values were imputed by calculation from incomplete
or partial analyses of a food (e.g., carbohydrates or fats by difference, or chloride
calculated from the value for sodium);
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o [mputation by assumption: when the source or origin of the values may be referred to as
“assumed” or “presumed” zero (e.g., vitamin B12 in vegetables), missing values were
replaced with zero;

o [Imputation by recipe calculation: missing values were substituted with values derived
from recipes, calculated from the nutrient content of the ingredients and corrected for
preparation factors (i.e., yield and retention factors);

o [Imputation by borrowed values: when original sources were adequate, missing values
were replaced with values taken from other tables and databases, including FCDBs
from the USA, UK, Denmark, France, and New Zealand [16,22,23,30,31]. In some
cases, the borrowed values were adapted to the different macronutrient content (e.g.,
calculation based on a reference profile for individual fatty acids, and/or individual
soluble carbohydrates, and/or individual amino acids).

2.5. Dish-Level Nutritional Composition

After dishes and ingredients (including mass) were checked and missing values
were imputed, final dish-specific nutritional information including mass, energy, macro-
and micro-nutrient content (86 components plus mass) was calculated by summing the
corresponding nutrient content for each dish.

2.6. Statistical Analysis

We calculated the summary statistics (minimum, 1st quartile, median, 3rd quartile,
mean, standard deviation, and maximum values) for the distributions of the number of
ingredients, mass, energy (here expressed in kcal), and the remaining 85 components across
all dishes.

We also compared energy and macro-nutrients (i.e., proteins, fats, and carbohydrates)
derived from the Italian FCDB and those indicated in the metadata files of Nutrition5k.
The comparison was restricted to energy and macronutrients, because this is the only
information provided in Nutrition5k; the comparison accounted for the correction of mass
values described in Methods, Section 2.3.2, to avoid systematically inflating the difference
with a material error already fixed. As the corresponding nutrient content was derived
from the US FCDB, we herein refer to this comparison as Italian FCDB-US FCDB. The
comparison was carried out by targeting the following measures of agreement or differences
between the two FCDBs:

1. Scatterplot of each nutrient’s distributions under the two FCDBs, Pearson correlation
coefficients, and hypothesis testing on the correlation coefficients;

2. Percentages of agreement on the classification of dishes into quintiles for each nutrient,
and Cohen’s kappa (unweighted) coefficient for each nutrient to take into account the
possibility of agreement occurring by chance; the cut-offs for quintiles were separately
calculated on Nutrition5k and the Italian FCDB; interpretation of Cohen’s kappa
results followed stricter criteria used in a recent publication [32]: 0.01-0.39 as none
to slight, 0.40-0.59 as weak, 0.60-0.79 as moderate, and 0.80-1.00 as strong to very
strong agreement;

3. Bland-Altman plot for each nutrient and corresponding 95% limits of agreement;

4. (Raw, absolute) differences between nutrients calculated with the Italian and US
FCDBs (i.e., nutrients in the Italian FCDB-nutrients in the US FCDB), summary
statistics of the difference distributions (minimum, 1st quartile, median, 3rd quartile,
mean, standard deviation, and maximum values), kernel density estimation plots of
the difference distributions, Kolmogorov-Smirnov normality test on the difference
distributions (as the huge number of available dishes prevented us from using the
Shapiro-Wilk method), and Wilcoxon signed-rank test for paired data for each nutrient
(as the normality assumption was not satisfied for any of the investigated nutrients);

5. Differences in absolute values between nutrients calculated with the Italian and US
FCDBs, to identify the nutrient-specific top 25 dishes showing the most extreme
differences, regardless of the sign.
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To further investigate potential determinants of disagreement between the two FCDBs,
we fitted a series of ordinary least-squares multiple regression models including the differ-
ence between energy/macronutrient content as the dependent variable and the following
independent variables as main effects: (1) dish mass (continuous); (2) number of ingredients
per dish (discrete); (3) presence of recreated recipes in each dish (categorical, with “no” (ref-
erence category), “yes” categories); and (4) differential use of raw and cooked ingredients
in each dish (categorical, with “no difference” (reference category), “one ingredient”, and
“more than one ingredient” categories). The interaction term between the two categorical
variables (differential use of raw and cooked ingredients and presence of recreated recipes
in each dish) was added based on the nutritionists” knowledge. Violations of ordinary
least-squares model assumptions suggested using the robust MM estimator [33] in the
final analyses.

All statistical tests were two-sided, with a statistical significance level of « = 0.05.
Python (version 3.10) [34] was used for data structure management and curation, and the R
statistical software (version 4.3.2) for the statistical analysis [35], with the corresponding
packages [36-39] for robust linear models, robust ANOVA tests, and Wald tests for multiple
coefficients (robust F-test) [40]. Food matching was performed using Microsoft Excel©,
(version 2016).

3. Results
3.1. Data Curation of Dishes and Dish Ingredients in Nutrition5k

A total of 5006 dishes (4768 from the café 1 and 238 from the café 2 file) and 249 different
ingredients among 28,455 total ingredients (i.e., total number of ingredients used over
available dishes, with the same ingredient counted as many times as used) were available
from the Nutrition5k datasets café 1 and café 2.

We removed “plate only” (one item, appearing twice) from the total dishes, and this
left us with 5004 dishes and 248 different ingredients. After matching the missing-name
ingredients (1 item with no name appearing 110 times) with the additional ingredients
in ingredients_metadata.csv, we regained 6 different ingredients appearing 79 times. We
also manually investigated images of missing-name ingredients to regain two additional
ingredients originally named as “deprecated” in ingredients_metadata.csv. These ingredients,
watermelon and apples with peel (31 times recovered), were identified and manually
assigned to former missing-name ingredients. This allowed us to impute all of the eight
missing-name ingredients. In the end, 255 different types of ingredients were identified
over a total of 28,453 total ingredients.

3.2. Exact and Indirect Matching between Ingredients in Nutrition5k and Food Items in the
Italian FCDB

The Italian food composition data were matched to each of the 255 different in-
gredients available in Nutrition5k via exact or indirect food matching (details in the
Sections 2 and 2.2.1-2.2.5). Of them, 177 (~69%, corresponding to a total of 23,834 in-
gredients, ~84%) matched the corresponding Italian FCDB food items exactly, regardless of
the official name used across the two FCDBs.

Indirect matching involved 78 different ingredients (4619 total ingredients), as shown
in Figure 2 and discussed in the following paragraphs. Ingredients from each category are
shown in detail in Figures S52-55.

3.2.1. Indirect Matching: Similarity between Ingredients in Nutrition5k and Food Items in
the Italian FCDB

Twenty-seven dish ingredients in Nutrition5k were formally unavailable in the Italian
FCDB but could be replaced with their most similar food items (27/78~34% of total indirect
matching procedures) (Table S1). The ingredient “pepperoni” is a user-friendly example:
since it is not available in the Italian FCDB, we examined all the food items with a similar
aspect and composition, and we chose a salami made of both beef and pork meat as the
most similar ingredient.
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Figure 2. Indirect matching: imputation strategies and related frequencies.

3.2.2. Indirect Matching: Dish Ingredients Present in Nutrition5k Were Missing Food Items
in the Italian FCDB

Ten ingredients in Nutrition5k did not have any appropriate substitute among the
Italian FCDB food items; they were retrieved in the US FCDB (10/78~13% of total indirect
matching procedures) (Table S2). For instance, ketchup and barbecue sauce do not exist in
the Italian FCDB; in the absence of suitable alternatives, we used the related items “Catsup”
and “Sauce, barbecue” from the US FCDB.

3.2.3. Indirect Matching: Dish Ingredients Present in Nutrition5k Were Too Generic for
Matching: Mean Values of the Corresponding Nutrients

The nutritional values of six dish ingredients with generic names in Nutrition5k
(6/78~8% of the total indirect matching procedures) were imputed by averaging over the
same nutrients of the Italian-FCDB-specific related food items (Table S3).

3.2.4. Indirect Matching: Single Dish Ingredients in Nutrition5k Were Composite Recipes

Thirty-five recipes were created for the ingredients in Nutrition5k that were actually
composite recipes (35/78~45% of total indirect matching procedures) (Table S4). One
example is brownies: the recipe, the ingredients (i.e., chocolate, butter, sugar, flour, eggs,
cocoa powder, vanilla extract, and yeast), and their amounts were searched on the previ-
ously specified Italian cooking website(s), expressed as a 100 g standard portion, and later
adapted to the brownies portion indicated in the Nutrition5k dishes.

3.3. Ingredients Portion: Checks

Four ingredients (i.e., olives, lemon, asparagus, and white rice) were identified as outliers
from the summary statistics of the mass distribution across ingredients and dishes. From
visual inspection of food images, we discovered that the original portion of a few grams
was wrongly reported in the order of magnitude of kilograms (7974 g instead of 7.974 g for
olives and lemon; 3324 g instead of 3.324 for asparagus; 2991 g instead of 2.991 g for white
rice). We then modified the corresponding mass with the amount reflected in food images.

3.4. Handling of Missing Values

After linking each ingredient in Nutrition5k with the corresponding nutritional com-
position in the Italian FCDB, a total of 2621 missing values were retrieved and needed to
be imputed.

Percentages of missing values varied substantially across nutrients, ranging from 0%
t0 91.1% (vitamin K), with a median of 2.6% (IQR: 0-40.1%), and the second nutrient with
the highest percentage of missing values being at 54.7% (i.e., arachidic and beenic acids).
High rates of missing values were found in vitamins such as biotin (42.2%), pantothenic
acid, and vitamin B12 (both 40.1%). The minerals most affected by missing values were
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iodine (41.7%), chloride (40.6%), manganese, selenium, cupper, and magnesium (all 40.1%),
and sulphur (36.5%). Despite the low missing rate (0-0.5%) in carbohydrates (total, starch,
and soluble), minor fractions of carbohydrates showed moderate (galactose: 33.3%) to high
(glucose, fructose, lactose, maltose, and sucrose: 40.6%) percentages of missing values.
Other macronutrient fractions strongly affected by missing values were polyunsaturated
fatty acids (e.g., arachidonic acid: 41.1%, docosaesaenoic acid: 42.2%, and eicosapentenoic
acid: 42.7%), monounsaturated fatty acids (e.g., palmitoleic acid: 42.2% and myristoleic
acid: 51.0%), and saturated fatty acids (e.g., palmitic acid: 40.1%, and beenic and arachidic
acids: 54.7%).

Identified missing values were imputed with the following techniques: values from
similar food items (1771, 67.5%), values calculated by difference between nutrients (439,
16.9%), values calculated from recipes (183, 7.1%), presumed values (i.e., logical zero) (140,
5.3%), and values borrowed from other FCDBs (88, 3.4%). In detail, the “values from
similar food items” strategy originally allowed 65 values to be imputed, but these were
later integrated with 1706 values that had yet to be imputed, while waiting for a future
release of the Italian FCDB; this left us with 1771 values in total for this category.

After manual data curation of ingredients, food matching, linkage of nutritional
compositions, and imputation of missing values, the dataset was ready for the statistical
analyses, including descriptive and inferential statistics procedures.

3.5. Distribution of Dish Ingredients by Frequency of Use and Mass

Dish complexity in Nutrition5k ranged from a single ingredient to up to 34 ingredients,
with a median value of 3 ingredients per dish (IQR: 1-9). The most frequently used
ingredients were olive oil, salt, garlic, vinegar, pepper, onions, and lemon juice, with
a cumulative frequency of 25% (7127 out of 28,453); in addition to condiments, other
frequently used ingredients were broccoli, carrots, arugula, parsley, cherry tomatoes, raw
spinach, cucumbers, and shallots, with a cumulative frequency of ~14% (3296 out of 28,401)
(Figure 3). The first three condiments (olive oil, salt, and garlic) were used in 20-35% of the
5004 dishes.

1800 -
» 1600
‘E J
& 1400
"U P
& 1200
a0 J
5 1000 |
bows J
gwo-
s |
g 600
) |
T 400 |
v
@ |
0
= I SR TR R N PR I~ 0 mm,-t—p-mumq.)u,)mr-'m N U o
B H s EE8TCc S8 58 e B2 et
e P E P RS EgERE S ESSESbEPT ESagERES§
e : 2. o 225U g ¥ ;
Z2 ®ERECeSESEZEESE e gEES B0 8T &
° > [opta B & g 72 @0 g = o =2 < Q, u ]
g~ £g g fgE3% &5 8 I
=] ] < = — = =
(7] —‘.=G 3 o > W (=]
= £ 8 40§ L G
v 0 - b
v @
o

Figure 3. Top 30 ingredients by frequency of use in Nutrition5k after data curation.

To provide a more intuitive overview of the common ingredients used, Figure 4 shows
the top 30 ingredients by mass. Instead of condiments, top positions were covered by pro-
tein food sources including eggs, white and red meat, fish, and tofu (cumulative frequency
of 25%). Fruit (e.g., apple, pineapple, and watermelon) and starchy foods (e.g., potatoes, corn,
and pizza) were additionally present in the ranking, whereas vegetables like carrots and
broccoli still kept their positions. Compared to the original Nutrition5k dataset [15], olives,
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lemon, and white rice were downgraded in rank (i.e., olives: from 4th to 20th position,
lemon: from 7th to 62nd position, and white rice: from 25th to 28th position), because the
material errors on their mass values were corrected.
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Figure 4. Top 30 ingredients by total mass (kg) across dishes in Nutritiondk after data curation.

3.6. Distribution of Mass, Energy and Macronutrient Contents across Available Dishes in
Nutrition5k after Italian Nutritional Values Were Linked

Table 1 shows descriptive statistics for the mass, energy and macronutrient contents,
as derived by attributing Italian-FCDB-specific nutritional values to dishes from Nutri-
tion5k. The minimum value for energy content (1.1 kcal) was given by dish_1551381990
(1 ingredient: asparagus). The minimum value for protein content (0 g) was given by
dish_1575997210 (one ingredient: grapes, one unit), which also provided the minimum
value for mass (3.0 g). In addition to proteins, the minimum value was also equal to 0 g
for fats (99 dishes) and carbohydrates (201 dishes). Distributions of mass and nutrients
across dishes were all right-skewed. The median mass was 145 g (IQR: 73-257 g), with a
maximum of 1102.0 g (dish_1561739805, 10 ingredients, mostly fruit and vegetables, with
scrambled eggs). The median energy content was 162.7 kcal with a maximum of 1488.4 kcal
(dish_1567714934, six ingredients; see Table S6). The median total protein content was 8.0 g
(IQR: 1.9-21.7 g), with a maximum of 133.7 g (dish_1563305083, 29 ingredients, mostly
vegetables and dressings, in addition to animal and vegetable protein sources and cereals).
The median total fat content was 7.0 g (IQR: 0.56-17.1 g), with a maximum of 130.7 g (top-
energy dish dish_1567714934; see Table S6). The median available carbohydrate content
was 9.2 g (IQR: 2.73-20.3 g), with a maximum of 117.7 g (dish_1566329049, 20 ingredients;
see Table S9).

Table 1. Descriptive statistics for mass, energy and macronutrient contents of dishes after attributing
Italian-FCDB-specific nutritional values to dishes from Nutrition5k.

Mass Energy Proteins Fats Carbohydrates
(g) (kcal) 1 (g (g (g
Minimum 3.0 1.1 0.0 0.0 0.0
First quartile 73.0 62.5 1.9 0.6 2.7
Median 145.0 162.7 8.0 7.0 9.2
Third quartile 257.0 324.7 21.7 171 20.3
Maximun 1102.0 1488.4 133.7 130.7 117.7
Mean 182.7 220.8 14.5 11.5 14.2
SD 143.1 205.7 17.3 13.9 15.5

1 In the Italian FCDB, the energy content of each dish included fiber; therefore, for each dish, the sum of the
calories provided by total proteins, total fats, and available carbohydrates was not equal to the total energy.
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3.7. Nutrition5k Dataset with Italian versus US Nutritional Values: A Comparison

After having fixed issues described in the Section 2 (Sections 2.3 and 2.4), we compared
the nutrient content (energy, proteins, fats, and carbohydrates) between the Italian and US
FCDBs through measures of agreement and differences.

Figure 56 shows scatterplots of nutritional content obtained across the Italian and US
FCDBs, integrated with Pearson correlation coefficients and the corresponding p-values
from hypothesis testing. Correlation coefficients were equal to ~0.90 for fats and car-
bohydrates, 0.95 for energy, and 0.98 for proteins (all p-values < 0.001), indicating the
presence of a strong linear relationship between corresponding nutrients under the Italian
and US FCDBs. Table 2 shows percentages of agreement on the classification of dishes
into quantiles and corresponding measures of agreement, Cohen’s kappa. Percentages of
perfect agreement ranged from 68% (carbohydrates) to 84% (proteins); in the absence of
material switching between opposite quintiles, percentages of switching between adjacent
quintiles ranged from 16% (proteins) to 30% (carbohydrates). When chance was accounted
for, Cohen’s kappa coefficients still ranged from 0.60 (carbohydrates) to 0.80 (proteins),
indicating moderate or strong agreement between corresponding nutrients. Figure 5 shows
the Bland—-Altman plots for each nutrient, with corresponding 95% limits of agreement. The
mean difference (i.e., the bias) in nutrient content under the two FCDBs was 3.51 kcal (95%
limits of agreement: —123.91, 130.92) for energy, —0.51 g (95% limits of agreement: —8.38,
7.36) for proteins, —0.62 g (95% limits of agreement: —11.42, 12.65) for fats, and —2.55 g
(95% limits of agreement: —16.05, 10.96) for carbohydrates. In addition, the variability was
not consistent across the plots for all investigated nutrients: the scatter around the bias line
was larger as the mean on the x-axis became higher.

Table 2. Classification of dishes into quintiles and Cohen’s kappa coefficient under the Italian and the

US FCDBs.
Energy (kcal) Proteins (g)
US FCDB US FCDB
" Q1 Q2 Q3 Q4 Q5 - Q1 Q2 Q3 Q4 Q5
g QL 1817 18 00 0.0 0.0 8 QL 1835 144 00 0.22 0.0
L; Q2 1.56 15.61 2.84 0.0 0.0 L; Q2 1.66 16.15 222 0.02 0.0
A Q3 0.28 2.26 14.13 3.30 0.02 5 Q3 0.0 2.30 15.47 2.14 0.04
g Q4 0.0 0.26 2.80 13.63 3.32 g Q4 0.0 0.14 2.26 15.67 1.94
Q5 0.0 0.06 0.22 3.06 16.67 Q5 0.0 0.0 0.02 1.96 18.03
kappa: 0.73 kappa: 0.80
Fats (g) Carbohydrates (g)
US FCDB US FCDB
" Q1 Q2 Q3 Q4 Q5 - Q1 Q2 Q3 Q4 Q5
8 Q1 17.81 2.20 0.0 0.0 0.0 8 Q1 16.89 3.02 0.12 0.0 0.0
L; Q2 2.28 13.97 3.56 0.20 0.0 L; Q2 2.70 12.17 4.40 0.70 0.02
5 Q3 0.0 294 12.19 4.76 0.10 5 Q3 0.20 4.50 11.07 4.00 0.22
g Q4 0.0 0.64 3.76 11.15 4.46 g Q4 0.22 0.36 4.08 11.75 3.62
Q5 0.0 0.18 0.48 3.90 15.45 Q5 0.0 0.0 0.3 3.56 16.13
kappa: 0.63 kappa: 0.60

Abbreviations: FCDB, Food Composition Database.
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Figure 5. Bland—-Altman plots representing the raw absolute difference between Italian- and US-
specific content (x-axis) versus the mean of the Italian- and US-specific content for each nutrient
(y-axis), with corresponding 95% limits of agreement (green line for the mean difference and corre-
sponding red lines for the limits of agreement). The dotted red line indicates the reference value
of 0.

Figure S7 shows the kernel density estimation plots of the difference in nutritional
content obtained across the Italian and US FCDBs. A peak at around 0 (i.e., no difference
between nutrient content) was roughly identified for energy, proteins, and fats. Table 3
additionally shows the summary statistics of the dish-specific raw differences: the median
values were exactly equal to 0 g for proteins and fats and —0.73 kcal for energy, whereas
the median was equal to —2.10 g for carbohydrates (over a 9.2 g median carbohydrate
content per dish). Similarly, 75% of the dishes showed, at most, a difference of 15.59 kcal
(median energy content per dish: 162.7 kcal; see Table 1), 0.83 g of proteins (median content:
8.0 g), 1.80 g of fats (median content: 7.0 g), and —0.27 g of carbohydrates (median content:
9.2 g). The Kolmogorov-Smirnov test showed deviations from the Normality assumption
(all p-values < 0.001) for each difference. In the corresponding Wilcoxon signed-rank test,
the true location shift was not equal to 0, although the differences in medians were modest
(energy: 162.70 vs. 157.60 kcal; proteins: 8.00 vs. 8.39 g; fats: 7.00 vs. 6.72 g; carbohydrates:
9.23 vs. 12.58 g).

Information on the top 25 dishes showing the most extreme differences in absolute
value for each investigated nutrient were shown in Tables 56-59, together with the summary
statistics of the differences in absolute value (Table S5). In detail, the maximum values for
| AEnergy | and | Afats| both derived from the same dish (dish_1567714934, 6 ingredients),
which also showed >3rd quartile values for | Aproteins | and | Acarbohydrates|. These
consistent differences across all macronutrients were mainly due to a different nutritional
composition of Caesar dressing, a newly created recipe with a full-fat content in the Italian-
FCDB-specific nutritional composition for the mixed salad dish. The maximum value
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for | Aproteins | was provided by dish_1558115364 (four ingredients: potatoes, almonds,
bacon, and a whole apple); this dish also presented values for | Aenergy | > 80th percentile,
| Afats | > 70th percentile, and | Acarbohydrates| > 85th percentile. These consistent dif-
ferences across all macronutrients were mainly due to a different nutritional composition
of bacon, which is available in the Italian FCDB only as a raw food item. The maxi-
mum value for | Acarbohydrates | was given by dish_1561492228 (24 ingredients: mostly
vegetables, but with 2 protein sources and 3 cereals, (i.e., millet, fried rice, and wheat
berry)), which also provided | Aenergy | > 95th percentile and | Afats | > 80th percentile,
but | Aproteins| < 20th percentile. Identified differences were still due to the absence of
cooked millet in the Italian FCDB and the creation of the corresponding recipe for fried rice
with the raw cereal ingredients, instead of the cooked ones.

Table 3. Summary statistics of raw differences (i.e., nutrients in the Italian FCDB-nutrients in the
US FCDB) in the content of energy and macronutrients across Italian-FCDB-specific and US-FCDB-
specific values.

Energy Difference Proteins Difference Fats Difference Carbohydrates Difference
(kcal) (g (8 (g

Minimum —279.24 —25.82 —34.81 —52.00
First quartile —18.08 —1.46 -0.73 —5.08
Median —0.73 0.0 0.0 -2.10
Third quartile 15.59 0.83 1.80 —0.27
Maximun 754.0 2491 91.53 62.65
Mean 3.50 —0.51 0.62 —2.54

SD 65.01 4.02 6.14 6.89

Abbreviations: FCDB, Food Composition Database.

Table 4 shows results from the multiple robust regression models including each
nutrient’s difference as the dependent variable and independent variables given by: dish
mass, number of ingredients per dish, presence of recreated recipes in each dish, and
differential use of raw and cooked ingredients in each dish, as well as the interaction term
between differential use of raw and cooked ingredients and presence of recreated recipes
in each dish.

For energy content, as compared to “no difference in raw and cooked ingredients/no
recreated recipes”, the joint presence of recreated recipes and differences in raw and cooked
ingredients across the Italian and US FCDBs was related to an increased nutrient difference
(p-value from robust ANOVA < 0.001): the beta coefficients reached 18.99 (95% CI: 14.85,
23.14) for “one difference in raw and cooked ingredients/recreated recipes” and 16.73 (95%
CI: 12.67, 20.79) for “more than one difference/recreated recipes”. The main effects for total
mass and number of ingredients were, however, not materially related to the difference in
energy content.

For the carbohydrate content, each 25 g increment in total mass was related to a de-
creased difference in nutrients under the two FCDBs (beta coefficient: —0.37, 95% CI: —0.38,
—0.35); each additional ingredient was related to an increased difference in the nutrient
under the two FCDBs (beta coefficient: 0.11, 95% CI: 0.10, 0.12), and differences in raw and
cooked ingredients were related to an increased difference in the nutrient (beta coefficient,
1 ingredient difference: 0.51, 95% CI: 0.39, 0.62; beta coefficient, >1 ingredients difference:
1.54, 95% CI: 1.38, 1.69, p-value from robust ANOVA < 0.001); the main effects for recreated
recipes (no/yes) were materially unrelated to the difference in carbohydrate content.
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Table 4. Beta coefficients and corresponding 95% confidence intervals (95% CI) from the multiple robust regression models !.
Difference of Energy Difference of Proteins Difference of Fats Difference of Carbohydrates
Content (kcal) Content (g) Content (g) Content (g)
Characteristic N Beta 95% CI p-Value  Beta 95% CI p-Value  Beta 95% CI p-Value Beta 95% CI p-Value
Intercept 5004  —048 —1.15,0.19 05502 —0.16  —0.19,—0.12  <0.0012 0.03 —0.02, 0.09 0.600 2 —1.50 —1.59, —1.42 <0.001
Total mass (25 g increase) 5004 0.02 —0.06,0.10 0.8112 0.10 0.10, 0.11 <0.0012  0.10 0.10,0.11 <0.0012  —0.37 —0.38,-0.35  <0.0012
Number of ingredients 5004 0.00 —0.09, 0.08 09692  —0.15 —0.16,—0.15 <0.0012 —0.04 —0.04, —0.03  <0.0012 0.11 0.10,0.12 <0.0012
Differential use of raw/cooked ingredients <0.0013 <0.001 3 <0.0013 <0.0013
No difference in ingredients 1768 — — — — — — — —
One ingredient difference 1500 —2.87 —3.81, —1.93 0.0112 0.13 0.08, 0.18 0.036 2 —0.53 —0.61, —0.46 <0.001 2 0.51 0.39, 0.62 <0.001 2
More ingredients difference 1736 —10.87 —12.17,-9.57 <0.0012 —021  —028,-0.13  0.0202 —1.83 —1.94,—-173  <0.0012 1.54 1.38,1.69 <0.001 2
Recreated recipes in dish <0.0013 <0.001 3 <0.0013 0.3513
No 3661 — — — — — — — —
Yes 1343  —406 —7.89,-0.23 0.3752 0.66 0.46, 0.85 0.005 2 0.71 0.41,1.02 0.050 2 0.52 0.17,0.88 0.2172
Interactl(?n betvyeen differential use of 5004 <0.001 3 0. 0023 <0.0013 02523
raw/cooked ingredients and recreated recipes
One difference: Yes 399 18.99 14.85,23.14  <0.001%2  0.60 0.39, 0.81 0.0182  1.04 0.71,1.37 0.008 2 —0.49 —0.89, —0.09  0.3042
More differences: Yes 863 16.73 12.67,20.79 0.001 2 0.42 0.21,0.63 0.098 2 1.88 1.56,2.21 <0.001 2 —0.69 —1.07, —0.30 0.136 2

! Estimates were obtained by including each nutrient’s difference as the dependent variable and dish mass, number of ingredients per dish, presence of recreated recipes in each dish,
and differential use of raw and cooked ingredients in each dish, as well as the interaction term between differential use of raw and cooked ingredients and presence of recreated recipes
in each dish. p-values in bold typeface were those <0.05. 2 This p-value was derived from the robust tests for the single level of each variable. ® This p-value was derived from the robust
ANOVA tests for the single variable.
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As compared to carbohydrates, fats and proteins showed opposite effects for total
mass (proteins: beta coefficient = 0.10, 95% CI: 0.10, 0.11; fats: beta coefficient = 0.10, 95%
CI: 0.10, 0.11) and number of ingredients (proteins: beta coefficient = —0.15, 95% CI: —0.16,
—0.15; fats: beta coefficient = —0.04, 95% CI: —0.04, —0.03). In addition, as compared to
“no difference in raw and cooked ingredients/no recreated recipes”, the joint presence
of recreated recipes and differences in raw and cooked ingredients across the Italian and
US FCDBs was significantly related to the corresponding nutrient difference (proteins:
p-value from robust ANOVA = 0.002; fats: p-value from robust ANOVA < 0.001). The
beta coefficients for fats reached 1.04 (95% CI: 0.71, 1.37) for “one difference in raw and
cooked ingredients/recreated recipes” and 1.88 (95% CI: 1.56, 2.21) for “more than one
difference/recreated recipes”; while significant with “one difference/recreated recipes”
(beta coefficient = 0.60, 95% CI: 0.39, 0.81), the beta coefficient for the proteins content lost
significance in the extreme category.

4. Discussion

In order to develop and train a novel Italian machine-learning-oriented food-image-
based dietary assessment tool, a critical step is to link dish images available from other
countries with nutritional values of Italian foods and recipes.

To our knowledge, no study so far has provided this cross-country harmonization
process of FCDBs within an image-based machine learning framework. The harmonization
process involved several steps, including (1) manual data curation of dishes and dish
ingredients in Nutrition5k; (2) exact and indirect food matching between ingredients in
Nutrition5k and food items in the Italian FCDB; (3) creation of 35 recipes; (4) identifying
67 discrepancies, including 21 in recipes, in the use of raw and cooked ingredients across
FCDBs; and (5) handling of 2621 missing values. It finally allowed about 90 nutrients to
be “linked” to the original dishes, enabling further statistical analyses to be performed.
Overall, the 5004 selected dishes from Nutrition5k had a 145 g median mass and a median
number of 3 ingredients. Measures of agreement and differences [32] of energy, proteins,
fats, and carbohydrates—the only nutrients available from Nutrition5k—across the Italian
and US FCDBs generally support modest differences between corresponding nutrients
estimated under the two FCDBs. However, the four Bland—Altman plots additionally
showed that the variability was not consistent. This phenomenon was similarly observed in
a previous publication [32] comparing macro- and micro-nutrient intakes from the USDA
and the European Prospective Investigation into Cancer and Nutrition (EPIC).

Among the three macronutrients, carbohydrates showed the minimum values for
Pearson correlation coefficients, percentages of agreement, and Cohen’s kappa; in addi-
tion, the mean difference in the Bland—Altman plot was the highest in absolute value, as
compared to the distribution range (i.e., —2.55 over about 114 g). Similarly, descriptive
statistics suggested a median difference for carbohydrates of —2.10 g, compared to 0 for
proteins and fats. This means that the Italian FCDB generally provided smaller values
for the carbohydrate content, as compared to the US FCDB. This is explained in part by a
different definition of carbohydrates across the two FCDBs, which reflects more general
differences in definition and methods used (analytical or calculations) for carbohydrates
across FCDBs [2,32]. In detail, within the US FCDB, the total carbohydrate content is
calculated ‘by difference’ (i.e., the difference between 100 and the sum of the percentages
of water, proteins, total fats, ash and, when present, alcohol), and therefore includes total
dietary fiber [16]. By contrast, in the Italian FCDB, “available carbohydrates” is defined
as the sum of soluble carbohydrates and starch, and it thus does not include fiber [21].
It is, therefore, highly expected that the Italian FCDB underestimates in mean/median
carbohydrates, as compared to the US FCDB.

Other possible sources of discrepancies between corresponding nutrients under the
Italian and US FCDBs were suggested to us by a descriptive analysis of the top 25 dishes
showing the most extreme (i.e., >99.5%) differences in nutrient absolute values across the
two FCDBs. In detail, we identified recreated recipes (e.g., Caesar dressing/salad, cheese
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pizza, scrambles eggs, fried rice, and vinaigrette) for most of the top dishes. Across them, we
also identified bacon, salmon, tuna, millet, and beef, which suggested a discrepancy in the
use of raw and cooked food items across the two FCDBs. Finally, the top 25 dishes also
showed a consistently high median number of ingredients, potentially due to the presence
of recipes. Based on this exploration, we hypothesized that the role of the following
potential determinants should be formally investigated: (1) dish mass; (2) the number
of ingredients in each dish; (3) the presence of one or more recreated recipes per dish;
and (4) the differential use of raw and cooked ingredients in each dish. We analyzed
their impact on each nutrient’s difference using multiple regression models. Results from
the regression models were reassuring in that they confirmed that each of the previous
determinants had a role in explaining potential differences across the available FCDBs. In
addition, the statistical significance observed for the only interaction term inserted into the
models (presence of recipes and differential use of raw and cooked ingredients) further
supported a combined role of some of these determinants. Although expected, this aspect
should be better investigated in future projects with larger datasets to confirm the direction
and strength of the relationship for each investigated nutrient.

This work presents both strengths and limitations. In the absence of a recognized
gold standard or a validated procedure, we developed the entire harmonization process,
including food matching between the Nutrition5k dishes and the Italian FCDB, by fol-
lowing previous studies [2,17,32] and suggestions from EUROFIR [41] and the Food and
Agriculture Organization of the United Nations [26] evaluated on the basis of senior nu-
tritionists” experience. Within this general process, we dedicated special care to improve
on the automatic process followed in Nutrition5k (i.e., incremental weighing, scanning,
and logging of each item, while added to the plate in the Google cafeterias immediately
before consumption [15]). In detail, we exploited dish photos to: (1) check the presence
of “plate only” dishes; (2) regain missing-name ingredients, check their mass as originally
provided in Nutrition5k, and add their corresponding nutritional values; (3) correct outliers
in terms of mass; and (4) identify generic ingredients and recipes for some of the indirect
matching procedures. Overall, the comparison analysis revealed a good level of agreement
for energy and macronutrients, despite us introducing a certain level of “disagreement” in
the harmonization process (e.g., by creating new recipes). Third, compared to the existing
literature (e.g., [32]), we additionally built multiple regression models to investigate poten-
tial determinants of differences between Italian- and US-FCDB-specific nutritional values
for the few nutrients available in Nutrition5k.

A first limitation of this project is related to the country-specific nature of dishes from
Nutrition5k. For example, the Italian FCDB did not include some varieties of fruits and
vegetables from Asian or Central American countries. Although this issue impacted only
a modest proportion of ingredients, indirect matching led to the creation of new recipes,
which may have contributed to increased differences in nutritional values between the
two databases. Second, we recognized that some cooked ingredients in Nutrition5k could
only be matched with raw food items in the Italian FCDB. This issue may have particularly
affected the carbohydrate content of dishes; indeed, when cooked, dishes rich in starch
increase in weight, whereas those rich in proteins and fats lose weight (e.g., 100 g of raw
pasta = 188 g of boiled pasta, yield factor = 1.9; 100 g of raw steak = 74 g of roasted
steak, yield factor = 0.7 [42]). Third, we could not account for yield factors either in food
matching or in the creation of new recipes; indeed, most ingredients in the Italian FCDB
lack yield factors or, as in recipe creation, we lacked ancillary information (e.g., cooking
method and time) needed to apply the yield factors. Fourth, the comparison of the nutrient
content between the Italian and US FCDBs was limited to energy and macronutrients,
because Nutrition5k lacks information on micronutrients. However, as highlighted in
previous publications [2,32], micronutrients are less likely to be comparable due to intrinsic
compilation differences across FCDBs. Finally, the presence of missing values, although
reduced at the minimum by expert nutritionist manual imputation, is a limitation common
to all FCDBs in general.
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5. Conclusions

To the best of our knowledge, this article is the first to explore and provide solutions to
all of the methodological issues encountered when adapting the nutritional composition of
foods from one country to food images collected in another country. These food images will
be used as the input for a machine-learning application for dietary assessment. Compared
to the automatic process followed in Nutrition5k, our findings confirmed the importance
of manual data curation performed by expert nutritionists at any step of the harmonization
procedure. In the comparison between energy and macronutrient contents obtained from
the Italian and US FCDBs across dishes, the agreement was consistently moderate or even
satisfactory across the different statistical approaches followed. To our knowledge, we
are the first to further investigate potential determinants of differences in energy and
macronutrients, identifying a role for each determinant alone and/or in combination with
others. However, further efforts are needed to confirm the strength and direction of the
associations investigated in other image databases and spot other potential determinants
of differences. Further cross-country efforts in harmonization of standards are needed to
improve data quality, availability, and reliability in the era of machine-learning-oriented
dietary assessment. In the framework of precision medicine, the holistic integration of
dish images with omics profiles within the same data collection tool would allow more
comprehensive monitoring of health status [43] and putative risk factors [44].
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