Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Terrestrial Animal Source Foods Nutrient Composition
3.1. Poultry Eggs
3.2. Milk
3.3. Unprocessed Meat
3.4. Food from Hunting and Wildlife Farming
3.5. Insects
4. Differences in TASF Nutritional Quality, by Animal Characteristics and Livestock Production Systems Characteristics
4.1. Intrinsic Characteristics of Animals Impacting the Nutritional Quality
4.1.1. Impact of Genetic Traits
4.1.2. Impact of Non-Genetic Differences
4.2. Livestock Husbandry Practices and Other Characteristics of Production Systems Impacting the Nutritional Quality
4.2.1. Feed and Feeding Systems
4.2.2. Environmental Conditions and Climatic Zone
4.2.3. Housing Conditions and Other Husbandry Practices
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Beal, T.; Gardner, C.D.; Herrero, M.; Iannotti, L.L.; Merbold, L.; Nordhagen, S.; Mottet, A. Friend or Foe? The Role of Animal-Source Foods in Healthy and Environmentally Sustainable Diets. J. Nutr. 2023, 153, 409–425. [Google Scholar] [CrossRef] [PubMed]
- FAO. Contribution of Terrestrial Animal Source Food to Healthy Diets for Improved Nutrition and Health Outcomes: An Evidence and Policy Overview on the State of Knowledge and Gaps; FAO: Rome, Italy, 2023; ISBN 978-92-5-137536-5. [Google Scholar]
- Shapiro, M.J.; Downs, S.M.; Swartz, H.J.; Parker, M.; Quelhas, D.; Kreis, K.; Kraemer, K.; West, K.P.; Fanzo, J. A Systematic Review Investigating the Relation between Animal-Source Food Consumption and Stunting in Children Aged 6–60 Months in Low and Middle-Income Countries. Adv. Nutr. 2019, 10, 827–847. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Abraini, F.; Beal, T.; Dominguez-Salas, P.; Gregorini, P.; Manzano, P.; Rowntree, J.; van Vliet, S. Animal Board Invited Review: Animal Source Foods in Healthy, Sustainable, and Ethical Diets—An Argument against Drastic Limitation of Livestock in the Food System. Animal 2022, 16, 100457. [Google Scholar] [CrossRef] [PubMed]
- Dror, D.K.; Allen, L.H. The Importance of Milk and Other Animal-Source Foods for Children in Low-Income Countries. Food Nutr. Bull. 2011, 32, 227–243. [Google Scholar] [CrossRef]
- Pimpin, L.; Kranz, S.; Liu, E.; Shulkin, M.; Karageorgou, D.; Miller, V.; Fawzi, W.; Duggan, C.; Webb, P.; Mozaffarian, D. Effects of Animal Protein Supplementation of Mothers, Preterm Infants, and Term Infants on Growth Outcomes in Childhood: A Systematic Review and Meta-Analysis of Randomized Trials. Am. J. Clin. Nutr. 2019, 110, 410–429. [Google Scholar] [CrossRef]
- Stevens, G.A.; Beal, T.; Mbuya, M.N.N.; Luo, H.; Neufeld, L.M.; Addo, O.Y.; Adu-Afarwuah, S.; Alayón, S.; Bhutta, Z.; Brown, K.H.; et al. Micronutrient Deficiencies among Preschool-Aged Children and Women of Reproductive Age Worldwide: A Pooled Analysis of Individual-Level Data from Population-Representative Surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef]
- Miller, V.; Reedy, J.; Cudhea, F.; Zhang, J.; Shi, P.; Erndt-Marino, J.; Coates, J.; Micha, R.; Webb, P.; Mozaffarian, D.; et al. Global, Regional, and National Consumption of Animal-Source Foods between 1990 and 2018: Findings from the Global Dietary Database. Lancet Planet. Health 2022, 6, e243–e256. [Google Scholar] [CrossRef]
- Medhammar, E.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Nilsson, E.; Charrondiere, U.R.; Burlingame, B. Composition of Milk from Minor Dairy Animals and Buffalo Breeds: A Biodiversity Perspective. J. Sci. Food Agric. 2012, 92, 445–474. [Google Scholar] [CrossRef]
- Costa, H.; Mafra, I.; Oliveira, M.B.P.P.; Amaral, J.S. Game: Types and Composition. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 177–183. ISBN 978-0-12-384953-3. [Google Scholar]
- Iannotti, L.L.; Lutter, C.K.; Bunn, D.A.; Stewart, C.P. Eggs: The Uncracked Potential for Improving Maternal and Young Child Nutrition among the World’s Poor. Nutr. Rev. 2014, 72, 355–368. [Google Scholar] [CrossRef]
- Sharif, M.K.; Saleem, M.; Javed, K. Chapter 15—Food Materials Science in Egg Powder Industry. In Role of Materials Science in Food Bioengineering; Grumezescu, A.M., Holban, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 505–537. ISBN 978-0-12-811448-3. [Google Scholar]
- Sanlier, N.; Üstün, D. Egg Consumption and Health Effects: A Narrative Review. J. Food Sci. 2021, 86, 4250–4261. [Google Scholar] [CrossRef]
- Nys, Y.; Guyot, N. Egg Formation and Chemistry. In Improving the Safety and Quality of Eggs and Egg Products. Volume 1: Egg Chemistry, Production and Consumption; Woodhead Publishing Ltd.: Cambridge, UK, 2011; pp. 83–132. [Google Scholar]
- Layman, D.; Rodriguez, N. Egg Protein as a Source of Power, Strength, and Energy. Nutr. Today 2009, 44, 43–48. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Guha, S.; Majumder, K.; Mine, Y. Egg Proteins. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-08-100596-5. [Google Scholar]
- Yilmaz, B.; Ağagündüz, D. Bioactivities of Hen’s Egg Yolk Phosvitin and Its Functional Phosphopeptides in Food Industry and Health. J. Food Sci. 2020, 85, 2969–2976. [Google Scholar] [CrossRef]
- Kim, J.E.; Campbell, W.W. Dietary Cholesterol Contained in Whole Eggs Is Not Well Absorbed and Does Not Acutely Affect Plasma Total Cholesterol Concentration in Men and Women: Results from 2 Randomized Controlled Crossover Studies. Nutrients 2018, 10, 1272. [Google Scholar] [CrossRef]
- Wallace, T.C.; Blusztajn, J.K.; Caudill, M.A.; Klatt, K.C.; Natker, E.; Zeisel, S.H.; Zelman, K.M. Choline: The Underconsumed and Underappreciated Essential Nutrient. Nutr. Today 2018, 53, 240–253. [Google Scholar] [CrossRef]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, Structure, and Digestive Dynamics of Milk from Different Species—A Review. Front. Nutr. 2020, 7, 195. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Pereira, P.C. Milk Nutritional Composition and Its Role in Human Health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine Milk in Human Nutrition—A Review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef]
- Rahmeh, R.; Alomirah, H.; Akbar, A.; Sidhu, J. Composition and Properties of Camel Milk. In Milk Production, Processing and Marketing; IntechOpen: London, UK, 2019; ISBN 978-1-78985-730-6. [Google Scholar]
- Benmeziane-Derradji, F. Evaluation of Camel Milk: Gross Composition—A Scientific Overview. Trop. Anim. Health Prod. 2021, 53, 308. [Google Scholar] [CrossRef]
- Swelum, A.A.; El-Saadony, M.T.; Abdo, M.; Ombarak, R.A.; Hussein, E.O.S.; Suliman, G.; Alhimaidi, A.R.; Ammari, A.A.; Ba-Awadh, H.; Taha, A.E.; et al. Nutritional, Antimicrobial and Medicinal Properties of Camel’s Milk: A Review. Saudi J. Biol. Sci. 2021, 28, 3126–3136. [Google Scholar] [CrossRef]
- Gantner, V.; Mijić, P.; Baban, M.; Škrtić, Z.; Turalija, A. The Overall and Fat Composition of Milk of Various Species. Mljekarstvo Časopis Za Unaprjeđenje Proizv. Prerade Mlijeka 2015, 64, 223–231. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S. A Comprehensive Review on the Composition and Properties of Buffalo Milk. Dairy Sci. Technol. 2011, 91, 663. [Google Scholar] [CrossRef]
- Simões da Silva, T.M.; Piazentin, A.C.M.; Mendonça, C.M.N.; Converti, A.; Bogsan, C.S.B.; Mora, D.; de Souza Oliveira, R.P. Buffalo Milk Increases Viability and Resistance of Probiotic Bacteria in Dairy Beverages under in Vitro Simulated Gastrointestinal Conditions. J. Dairy Sci. 2020, 103, 7890–7897. [Google Scholar] [CrossRef]
- Pereira, P.M.D.C.C.; Vicente, A.F.D.R.B. Meat Nutritional Composition and Nutritive Role in the Human Diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Williams, P. Nutritional Composition of Red Meat. Nutr. Diet. 2007, 64, S113–S119. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of Poultry Meat in a Balanced Diet Aimed at Maintaining Health and Wellbeing: An Italian Consensus Document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef]
- Valsta, L.M.; Tapanainen, H.; Männistö, S. Meat Fats in Nutrition. Meat Sci. 2005, 70, 525–530. [Google Scholar] [CrossRef]
- De Smet, S.; Vossen, E. Meat: The Balance between Nutrition and Health. A Review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef]
- Mann, J.; Truswell, S. (Eds.) Essentials of Human Nutrition, 5th ed.; Oxford University Press: Oxford, UK, 2017; ISBN 978-0-19-875298-1. [Google Scholar]
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and Human Health—Current Knowledge and Research Gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and Health Effects of Ruminant Meat Lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.-F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in Beef Production Systems That Enhance the Nutritional and Health Value of Beef Lipids and Their Relationship with Meat Quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Richardson, R.I.; Whittington, F.M. Fatty Acids in Meat and Meat Products. In Fatty Acids in Foods and their Health Implications; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-429-12755-7. [Google Scholar]
- Purchas, R.W.; Wilkinson, B.H.P.; Carruthers, F.; Jackson, F. A Comparison of the Nutrient Content of Uncooked and Cooked Lean from New Zealand Beef and Lamb. J. Food Compos. Anal. 2014, 35, 75–82. [Google Scholar] [CrossRef]
- Riccio, F.; Mennella, C.; Fogliano, V. Effect of Cooking on the Concentration of Vitamins B in Fortified Meat Products. J. Pharm. Biomed. Anal. 2006, 41, 1592–1595. [Google Scholar] [CrossRef]
- D’evoli, L.; Salvatore, P.; Lucarini, M.; Nicoli, S.; Aguzzi, A.; Gabrielli, P.; Lombardi-Boccia, G. Nutritional Value of Traditional Italian Meat-Based Dishes: Influence of Cooking Methods and Recipe Formulation. Int. J. Food Sci. Nutr. 2009, 60, 38–49. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.G.; Hewett, B.; Fursey, G.A.J.; Wood, J.D.; Harrington, G. The Polyunsaturated Fatty Acid Composition of Beef and Lamb Liver. Meat Sci. 1998, 49, 321–327. [Google Scholar] [CrossRef]
- Williamson, C.S.; Foster, R.K.; Stanner, S.A.; Buttriss, J.L. Red Meat in the Diet. Nutr. Bull. 2005, 30, 323–355. [Google Scholar] [CrossRef]
- Gropper, S.S.; Smith, J.L.; Carr, T.P. Advanced Nutrition and Human Metabolism; Cengage Learning: Boston, MA, USA, 2021; ISBN 978-0-357-45010-9. [Google Scholar]
- Carpenter, C.E.; Mahoney, A.W. Contributions of Heme and Nonheme Iron to Human Nutrition. Crit. Rev. Food Sci. Nutr. 1992, 31, 333–367. [Google Scholar] [CrossRef]
- Hallberg, L. Iron Requirements and Bioavailability of Dietary Iron. Exp. Suppl. 1983, 44, 223–244. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron Bioavailability and Dietary Reference Values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Wu, G. Important Roles of Dietary Taurine, Creatine, Carnosine, Anserine and 4-Hydroxyproline in Human Nutrition and Health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef]
- Manta-Vogli, P.D.; Schulpis, K.H.; Dotsikas, Y.; Loukas, Y.L. The Significant Role of Carnitine and Fatty Acids during Pregnancy, Lactation and Perinatal Period. Nutritional Support in Specific Groups of Pregnant Women. Clin. Nutr. 2020, 39, 2337–2346. [Google Scholar] [CrossRef]
- Teixeira, A.; Silva, S.; Guedes, C.; Rodrigues, S. Sheep and Goat Meat Processed Products Quality: A Review. Foods 2020, 9, 960. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Cantalapiedra, J.; Munekata, P.E.S.; Barba, F.J.; Lorenzo, J.M.; Franco, D. Carcass Characteristics, Meat Quality and Nutritional Profile of Pheasant, Quail and Guinea Fowl. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F.J., Toldrá, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 269–311. ISBN 978-3-030-05484-7. [Google Scholar]
- Popova, T.; Tejeda, L.; Peñarrieta, J.M.; Smith, M.A.; Bush, R.D.; Hopkins, D.L. Meat of South American Camelids—Sensory Quality and Nutritional Composition. Meat Sci. 2021, 171, 108285. [Google Scholar] [CrossRef]
- Latoch, A.; Stasiak, D.M.; Siczek, P. Edible Offal as a Valuable Source of Nutrients in the Diet—A Review. Nutrients 2024, 16, 1609. [Google Scholar] [CrossRef]
- Biel, W.; Czerniawska-Piątkowska, E.; Kowalczyk, A. Offal Chemical Composition from Veal, Beef, and Lamb Maintained in Organic Production Systems. Animals 2019, 9, 489. [Google Scholar] [CrossRef]
- Sabbagh, M.; Gutierrez, L.; Lai, R.; Nocella, G. Consumer Intention towards Buying Edible Beef Offal and the Relevance of Food Neophobia. Foods 2023, 12, 2340. [Google Scholar] [CrossRef]
- Pretorius, B.; Schönfeldt, H.C. Cholesterol, Fatty Acids Profile and the Indices of Atherogenicity and Thrombogenicity of Raw Lamb and Mutton Offal. Food Chem. 2021, 345, 128868. [Google Scholar] [CrossRef]
- Babicz, M.; Kasprzyk, A.; Kropiwiec-Domańska, K. Influence of the Sex and Type of Tissue on the Basic Chemical Composition and the Content of Minerals in the Sirloin and Offal of Fattener Pigs. Can. J. Anim. Sci. 2019, 99, 343–348. [Google Scholar] [CrossRef]
- Pawlak, R.; Parrott, J.; Raj, S.; Cullum-Dugan, D.; Lucus, D. Understanding Vitamin B12. Am. J. Lifestyle Med. 2012, 7, 60–65. [Google Scholar] [CrossRef]
- FAO Wildlife and Protected Area Management. Available online: https://www.fao.org/forestry/wildlife/67287/en/ (accessed on 4 November 2021).
- Hoffman, L.C.; Cawthorn, D.-M. What Is the Role and Contribution of Meat from Wildlife in Providing High Quality Protein for Consumption? Anim. Front. 2012, 2, 40–53. [Google Scholar] [CrossRef]
- Booth, H.; Clark, M.; Milner-Gulland, E.J.; Amponsah-Mensah, K.; Antunes, A.P.; Brittain, S.; Castilho, L.C.; Campos-Silva, J.V.; Constantino, P.D.A.L.; Li, Y.; et al. Investigating the Risks of Removing Wild Meat from Global Food Systems. Curr. Biol. 2021, 31, 1788–1797. [Google Scholar] [CrossRef]
- Rushton, J.; Viscarra, R.; Viscarra, C.; Basset, F.; Baptista, R.; Brown, D. How Important Is Bushmeat Consumption in South America: Now and in the Future? ODI Wildl. Policy Brief. 2005, 11, 4. [Google Scholar]
- Zochowska, J.; Lachowicz, K.; Gajowiecki, L.; Sobczak, M.; Kotowicz, M.; Zych, A. Growth-Related Changes in Muscles Fibres, Characteristics and Rheological Properties of Wild Boars Meat. Med. Weter. 2006, 62, 47–50. [Google Scholar]
- Marchiori, A.F.; Felício, P.E.D. Quality of Wild Boar Meat and Commercial Pork. Sci. Agric. 2003, 60, 1–5. [Google Scholar] [CrossRef]
- Wach, J.; Komosa, M.; Serwańska-Leja, K.; Nowicki, W.; Babiński, B. Comparison of the nutritional value of meat from farm-raised and wild fallow deer (Dama dama). Anim. Sci. Genet. 2023, 19, 81–90. [Google Scholar] [CrossRef]
- Soriano, A.; Sánchez-García, C. Nutritional Composition of Game Meat from Wild Species Harvested in Europe. In Nutritional Composition of Game Meat from Wild Species Harvested in Europe; IntechOpen: London, UK, 2021; ISBN 978-1-83968-703-7. [Google Scholar]
- Bureš, D.; Bartoň, L.; Kotrba, R.; Hakl, J. Quality Attributes and Composition of Meat from Red Deer (Cervus elaphus), Fallow Deer (Dama dama) and Aberdeen Angus and Holstein Cattle (Bos taurus). J. Sci. Food Agric. 2015, 95, 2299–2306. [Google Scholar] [CrossRef]
- Cordain, L.; Watkins, B.; Florant, G.; Kelher, M.; Rogers, L.; Li, Y. Fatty Acid Analysis of Wild Ruminant Tissues: Evolutionary Implications for Reducing Diet-Related Chronic Disease. Eur. J. Clin. Nutr. 2002, 56, 181–191. [Google Scholar] [CrossRef]
- Cawthorn, D.-M.; Fitzhenry, L.B.; Kotrba, R.; Bureš, D.; Hoffman, L.C. Chemical Composition of Wild Fallow Deer (Dama dama) Meat from South Africa: A Preliminary Evaluation. Foods 2020, 9, 598. [Google Scholar] [CrossRef]
- Kelava Ugarković, N.; Konjačić, M.; Prpić, Z.; Tomljanović, K.; Ugarković, D. Effect of Sex and Age on Nutritional Content in Wild Axis Deer (Axis axis Erx.) Meat. Animals 2020, 10, 1560. [Google Scholar] [CrossRef]
- Russo, C.; Balloni, S.; Altomonte, I.; Martini, M.; Nuvoloni, R.; Cecchi, F.; Pedonese, F.; Salari, F.; Sant’ana Da Silva, A.M.; Torracca, B.; et al. Fatty Acid and Microbiological Profile of the Meat (Longissimus Dorsi Muscle) of Wild Boar (Sus scropha scropha) Hunted in Tuscany. Ital. J. Anim. Sci. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Di Bella, S.; Branciari, R.; Haouet, N.M.; Framboas, M.; Mercuri, M.L.; Codini, M.; Roila, R.; Malimpensa, A.; Ranucci, D. Does Hunted Wild Boar Meat Meet Modern Consumer Nutritional Expectations? Ital. J. Food Saf. 2024, 13, 11608. [Google Scholar] [CrossRef]
- Proust, F.; Johnson-Down, L.; Berthiaume, L.; Greffard, K.; Julien, P.; Robinson, E.; Lucas, M.; Dewailly, É. Fatty Acid Composition of Birds and Game Hunted by the Eastern James Bay Cree People of Québec. Int. J. Circumpolar Health 2016, 75, 30583. [Google Scholar] [CrossRef]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy N-6/n-3 Fatty Acid Composition from Five European Game Meat Species Remains after Cooking. BMC Res. Notes 2015, 8, 273. [Google Scholar] [CrossRef]
- Strazdiņa, V.; Jemeļjanovs, A.; Šterna, V.; Ikauniece, D. Nutritional Characteristics of Wild Boar Meat Hunted in Latvia. In Food Balt 2014, Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being”, Jelgava, Latvia, 8–9 May 2014; Jelgava, LLU: Jelgava, Latvia, 2014. [Google Scholar]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from Wild Ungulates: Ensuring Quality and Hygiene of an Increasing Resource. Ital. J. Anim. Sci. 2010, 9, e61. [Google Scholar] [CrossRef]
- Abulude, F. Determination of the Chemical Composition of Bush Meats Found in Nigeria. Am. J. Food Technol. 2007, 2, 153–160. [Google Scholar] [CrossRef]
- de Carvalho, N.M.; Madureira, A.R.; Pintado, M.E. The Potential of Insects as Food Sources—A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3642–3652. [Google Scholar] [CrossRef]
- Krongdang, S.; Phokasem, P.; Venkatachalam, K.; Charoenphun, N. Edible Insects in Thailand: An Overview of Status, Properties, Processing, and Utilization in the Food Industry. Foods 2023, 12, 2162. [Google Scholar] [CrossRef]
- Escalante-Aburto, A.; Rodríguez-Sifuentes, L.; Ozuna, C.; Mariscal-Moreno, R.M.; Mulík, S.; Guiné, R.; Chuck-Hernández, C. Consumer Perception of Insects as Food: Mexico as an Example of the Importance of Studying Socio-Economic and Geographical Differences for Decision-Making in Food Development. Int. J. Food Sci. Technol. 2022, 57, 6306–6316. [Google Scholar] [CrossRef]
- Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organiation of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Omuse, E.R.; Tonnang, H.E.Z.; Yusuf, A.A.; Machekano, H.; Egonyu, J.P.; Kimathi, E.; Mohamed, S.F.; Kassie, M.; Subramanian, S.; Onditi, J.; et al. The Global Atlas of Edible Insects: Analysis of Diversity and Commonality Contributing to Food Systems and Sustainability. Sci. Rep. 2024, 14, 5045. [Google Scholar] [CrossRef]
- Nowakowski, A.C.; Miller, A.C.; Miller, M.E.; Xiao, H.; Wu, X. Potential Health Benefits of Edible Insects. Crit. Rev. Food Sci. Nutr. 2021, 62, 3499–3508. [Google Scholar] [CrossRef] [PubMed]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef] [PubMed]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A Systematic Review on Consumer Acceptance of Alternative Proteins: Pulses, Algae, Insects, Plant-Based Meat Alternatives, and Cultured Meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.; Jaiswal, S.; Jaiswal, A.K. The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods 2024, 13, 387. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional Value of Insects and Ways to Manipulate Their Composition. J. Insects Food Feed. 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Weru, J.; Chege, P.; Kinyuru, J. Nutritional Potential of Edible Insects: A Systematic Review of Published Data. Int. J. Trop. Insect Sci. 2021, 41, 2015–2037. [Google Scholar] [CrossRef]
- Orkusz, A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Pinckaers, P.J.M.; van Loon, J.J.A.; van Loon, L.J.C. Consideration of Insects as a Source of Dietary Protein for Human Consumption. Nutr. Rev. 2017, 75, 1035–1045. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Nutritional Composition of Edible Insects Consumed in Africa: A Systematic Review. Nutrients 2020, 12, 2786. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, M.N.; Oonincx, D.G.A.B.; Stouten, T.; Veenenbos, M.; Melse-Boonstra, A.; Dicke, M.; Loon, J.J.A.V. Insects as Sources of Iron and Zinc in Human Nutrition. Nutr. Res. Rev. 2018, 31, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Estrada, M.D.L.L.; Aguirre-Becerra, H.; Feregrino-Pérez, A.A. Bioactive Compounds and Biological Activity in Edible Insects: A Review. Heliyon 2024, 10, e24045. [Google Scholar] [CrossRef] [PubMed]
- Kewuyemi, Y.O.; Kesa, H.; Chinma, C.E.; Adebo, O.A. Fermented Edible Insects for Promoting Food Security in Africa. Insects 2020, 11, E283. [Google Scholar] [CrossRef] [PubMed]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.-J.; Salinas-Castro, A. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef]
- Milczarek, A.; Janocha, A.; Niedziałek, G.; Zowczak-Romanowicz, M.; Horoszewicz, E.; Piotrowski, S. Health-Promoting Properties of the Wild-Harvested Meat of Roe Deer (Capreolus capreolus L.) and Red Deer (Cervus elaphus L.). Animals 2021, 11, 2108. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Gleeson, E.; Franco, D.; Cullere, M.; Lorenzo, J.M. Proximate Composition, Amino Acid Profile, and Oxidative Stability of Slow-Growing Indigenous Chickens Compared with Commercial Broiler Chickens. Foods 2020, 9, 546. [Google Scholar] [CrossRef]
- Petracci, M.; Sirri, F.; Mazzoni, M.; Meluzzi, A. Comparison of Breast Muscle Traits and Meat Quality Characteristics in 2 Commercial Chicken Hybrids. Poult. Sci. 2013, 92, 2438–2447. [Google Scholar] [CrossRef] [PubMed]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production Factors Affecting Poultry Carcass and Meat Quality Attributes. Animal 2021, 16, 100331. [Google Scholar] [CrossRef]
- Mahiza, M.I.N.; Lokman, H.I.; Ibitoye, E.B. Fatty Acid Profile in the Breast and Thigh Muscles of the Slow- and Fast-Growing Birds under the Same Management System. Trop. Anim. Health Prod. 2021, 53, 409. [Google Scholar] [CrossRef]
- Onk, K.; Yalcintan, H.; Sari, M.; Adiguzel Isik, S.; Yakan, A.; Ekiz, B. Effects of Genotype and Sex on Technological Properties and Fatty Acid Composition of Duck Meat. Poult. Sci. 2019, 98, 491–499. [Google Scholar] [CrossRef]
- Ali, M.; Baek, K.H.; Lee, S.-Y.; Kim, H.C.; Park, J.-Y.; Jo, C.; Jung, J.H.; Park, H.C.; Nam, K.-C. Comparative Meat Qualities of Boston Butt Muscles (M. subscapularis) from Different Pig Breeds Available in Korean Market. Food Sci. Anim. Resour. 2021, 41, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-W.; Kim, H.-Y. Physicochemical Properties of M. Longissimus Dorsi of Korean Native Pigs. J. Anim. Sci. Technol. 2018, 60, 6. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Wang, T.; Zhou, J.; Degen, A.A.; Gou, N.; Li, S.; Bai, Y.; Jing, X.; Wang, W.; Shang, Z. Carcass Parameters and Meat Quality of Tibetan Sheep and Small-Tailed Han Sheep Consuming Diets of Low-Protein Content and Different Energy Yields. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- Harten, S.V.; Kilminster, T.; Scanlon, T.; Milton, J.; Oldham, C.; Greeff, J.; Almeida, A.M. Fatty Acid Composition of the Ovine Longissimus Dorsi Muscle: Effect of Feed Restriction in Three Breeds of Different Origin. J. Sci. Food Agric. 2016, 96, 1777–1782. [Google Scholar] [CrossRef]
- Prache, S.; Santé-Lhoutellier, V.; Adamiec, C.; Astruc, T.; Baéza-Campone, E.; Bouillot, P.E.; Bugeon, J.; Cardinal, M.; Cassar-Malex, I.; Clinquart, A.; et al. La Qualité Des Aliments D’Origine Animale Selon Les Conditions de Production et de Transformation, Rapport de L’Expertise Scientifique Collective. Ph.D. Thesis, Université Paris Cité, Paris, France, 2020; p. 1023. [Google Scholar]
- Samková, E.; Spicka, J.; Pesek, M.; Pelikánová, T.; Hanus, O. Animal Factors Affecting Fatty Acid Composition of Cow Milk Fat: A Review. South Afr. J. Anim. Sci. 2011, 42, 83–100. [Google Scholar] [CrossRef]
- Burger, P.A.; Ciani, E.; Faye, B. Old World Camels in a Modern World—A Balancing Act between Conservation and Genetic Improvement. Anim. Genet. 2019, 50, 598–612. [Google Scholar] [CrossRef]
- Franco, D.; Rois, D.; Arias, A.; Justo, J.R.; Marti-Quijal, F.J.; Khubber, S.; Barba, F.J.; López-Pedrouso, M.; Manuel Lorenzo, J. Effect of Breed and Diet Type on the Freshness and Quality of the Eggs: A Comparison between Mos (Indigenous Galician Breed) and Isa Brown Hens. Foods 2020, 9, E342. [Google Scholar] [CrossRef]
- Mori, H.; Takaya, M.; Nishimura, K.; Goto, T. Breed and Feed Affect Amino Acid Contents of Egg Yolk and Eggshell Color in Chickens. Poult. Sci. 2020, 99, 172–178. [Google Scholar] [CrossRef]
- Ianni, A.; Bartolini, D.; Bennato, F.; Martino, G. Egg Quality from Nera Atriana, a Local Poultry Breed of the Abruzzo Region (Italy), and ISA Brown Hens Reared under Free Range Conditions. Animals 2021, 11, 257. [Google Scholar] [CrossRef]
- Lordelo, M.; Cid, J.; Cordovil, C.M.D.S.; Alves, S.P.; Bessa, R.J.B.; Carolino, I. A Comparison between the Quality of Eggs from Indigenous Chicken Breeds and That from Commercial Layers. Poult. Sci. 2020, 99, 1768–1776. [Google Scholar] [CrossRef]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Bordonaro, S.; Formaggioni, P.; Marletta, D.; Summer, A. New Insights into Chemical and Mineral Composition of Donkey Milk throughout Nine Months of Lactation. Animals 2019, 9, 1161. [Google Scholar] [CrossRef]
- Leheska, J.M.; Thompson, L.D.; Howe, J.C.; Hentges, E.; Boyce, J.; Brooks, J.C.; Shriver, B.; Hoover, L.; Miller, M.F. Effects of Conventional and Grass-Feeding Systems on the Nutrient Composition of Beef. J. Anim. Sci. 2008, 86, 3575–3585. [Google Scholar] [CrossRef]
- Ferrinho, A.M.; Peripolli, E.; Banchero, G.; Pereira, A.S.C.; Brito, G.; Manna, A.L.; Fernandez, E.; Montossi, F.; Kluska, S.; Mueller, L.F.; et al. Effect of Growth Path on Carcass and Meat-Quality Traits of Hereford Steers Finished on Pasture or in Feedlot. Anim. Prod. Sci. 2019, 60, 323–332. [Google Scholar] [CrossRef]
- Hu, C.; Ding, L.; Jiang, C.; Ma, C.; Liu, B.; Li, D.; Degen, A.A. Effects of Management, Dietary Intake, and Genotype on Rumen Morphology, Fermentation, and Microbiota, and on Meat Quality in Yaks and Cattle. Front. Nutr. 2021, 8, 755255. [Google Scholar] [CrossRef]
- Hampel, V.S.; Poli, C.H.E.C.; Joy, M.; Tontini, J.F.; Devincenzi, T.; Pardos, J.R.B.; Macedo, R.E.F.; Nalério, E.N.; Saccol, A.G.F.; Rodrigues, E.; et al. Tropical Grass and Legume Pastures May Alter Lamb Meat Physical and Chemical Characteristics. Trop. Anim. Health Prod. 2021, 53, 427. [Google Scholar] [CrossRef]
- MacKintosh, S.B.; Richardson, I.; Kim, E.J.; Dannenberger, D.; Coulmier, D.; Scollan, N.D. Addition of an Extract of Lucerne (Medicago sativa L.) to Cattle Diets—Effects on Fatty Acid Profile, Meat Quality and Eating Quality of the M. longissimus Muscle. Meat Sci. 2017, 130, 69–80. [Google Scholar] [CrossRef]
- Mamani-Linares, L.W.; Gallo, C.B. Meat Quality, Proximate Composition and Muscle Fatty Acid Profile of Young Llamas (Lama glama) Supplemented with Hay or Concentrate during the Dry Season. Meat Sci. 2014, 96, 394–399. [Google Scholar] [CrossRef]
- Rodríguez, R.; Alomar, D.; Morales, R. Milk and Meat Fatty Acids from Sheep Fed a Plantain–Chicory Mixture or a Grass-Based Permanent Sward. Animal 2020, 14, 1102–1109. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M. Chapter 20—Manipulating the Fatty Acid Composition of Meat to Improve Nutritional Value and Meat Quality. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2017; pp. 501–535. ISBN 978-0-08-100593-4. [Google Scholar]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Composition Differences between Organic and Conventional Meat: A Systematic Literature Review and Meta-Analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Higher PUFA and N-3 PUFA, Conjugated Linoleic Acid, α-Tocopherol and Iron, but Lower Iodine and Selenium Concentrations in Organic Milk: A Systematic Literature Review and Meta- and Redundancy Analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Weng, K.; Gu, T.; Luo, X.; Zhang, Y.; Zhang, Y.; Xu, Q.; Chen, G. Effects of Integrated Rice-Duck Farming System on Duck Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Composition. Poult. Sci. 2021, 100, 101107. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M.; Bianchi, M.; Cavani, C. Development of Rabbit Meat Products Fortified with N-3 Polyunsaturated Fatty Acids. Nutrients 2009, 1, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Lebas, F. Acides Gras En Oméga 3 Dans La Viande de Lapin. Effets de l’alimentation. Cunicult. Mag. 2007, 34, 15–20. [Google Scholar]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of Feeding Plant By-Products: A Review of the Implications for Ruminant Meat Production. Anim. Feed. Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Ghedini, C.P.; Paschoaloto, J.R.; da Silva, D.A.V.; Coelho, L.M.; Almeida Junior, G.A.; Ezequiel, J.M.B.; Machado Neto, O.R.; Almeida, M.T.C. Effects of Tannins Supplementation to Sheep Diets on Their Performance, Carcass Parameters and Meat Fatty Acid Profile: A Meta-Analysis Study. Small Rumin. Res. 2022, 206, 106585. [Google Scholar] [CrossRef]
- Cabrera, M.C.; Saadoun, A. An Overview of the Nutritional Value of Beef and Lamb Meat from South America. Meat Sci. 2014, 98, 435–444. [Google Scholar] [CrossRef]
- Duckett, S.; Neel, J.; Fontenot, J.; Clapham, W. Effects of Winter Stocker Growth Rate and Finishing System on: III. Tissue Proximate, Fatty Acid, Vitamin, and Cholesterol Content. J. Anim. Sci. 2009, 87, 2961–2970. [Google Scholar] [CrossRef]
- FAO. Pastoralism—Making Variability Work; FAO: Rome, Italy, 2021; ISBN 978-92-5-134753-9. [Google Scholar]
- Neto, J.V.E.; Difante, G.S.; Medeiros, H.R.; Aguiar, E.M.; Fernandes, L.S.; Trindade, T.F.M.; Bezerra, M.G.S.; Oliveira, H.C.B.; Galvão, R.C.P. Cultivated Pastures Affect Nutrient Intake and Feeding Behavior of Sheep. Trop. Anim. Sci. J. 2020, 43, 117–124. [Google Scholar] [CrossRef]
- Sant’Ana, A.M.S.; Bessa, R.J.B.; Alves, S.P.; Medeiros, A.N.; Costa, R.G.; de Sousa, Y.R.F.; Bezerril, F.F.; Malveira Batista, A.S.; Madruga, M.S.; Queiroga, R.C.R.E. Fatty Acid, Volatile and Sensory Profiles of Milk and Cheese from Goats Raised on Native Semiarid Pasture or in Confinement. Int. Dairy J. 2019, 91, 147–154. [Google Scholar] [CrossRef]
- Martin, B.; Fedele, V.; Ferlay, A.; Grolier, P.; Rock, E.; Gruffat, D.; Chilliard, Y. Effects of Grass-Based Diets on the Content of Micronutrients and Fatty Acids in Bovine and Caprine Dairy Products. In Land Use Systems in Grassland Dominated Regions, Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004; vdf Hochschulverlag AG an der ETH Zurich: Zürich, Switzerland, 2004; pp. 876–886. [Google Scholar]
- Hammershøj, M.; Johansen, N.F. Review: The Effect of Grass and Herbs in Organic Egg Production on Egg Fatty Acid Composition, Egg Yolk Colour and Sensory Properties. Livest. Sci. 2016, 194, 37–43. [Google Scholar] [CrossRef]
- Yalcin, H.; Konca, Y.; Durmuscelebi, F. Effect of Dietary Supplementation of Hemp Seed (Cannabis sativa L.) on Meat Quality and Egg Fatty Acid Composition of Japanese Quail (Coturnix coturnix japonica). J. Anim. Physiol. Anim. Nutr. 2018, 102, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Schönfeldt, H.C.; Naudé, R.T.; Boshoff, E. Effect of Age and Cut on the Nutritional Content of South African Beef. Meat Sci. 2010, 86, 674–683. [Google Scholar] [CrossRef]
- Van Vliet, S.; Provenza, F.D.; Kronberg, S.L. Health-Promoting Phytonutrients Are Higher in Grass-Fed Meat and Milk. Front. Sustain. Food Syst. 2021, 4, 299. [Google Scholar] [CrossRef]
- Bautista, Y.; Hernández-Mendo, O.; Crosby-Galván, M.; Joaquín Cancino, S.; Ruiz-Albarrán, M.; Salinas-Chavira, J.; Granados-Rivera, L.D. Physicochemical Characteristics and Fatty Acid Profile of Beef in Northeastern Mexico: Grazing vs Feedlot Systems. CyTA—J. Food 2020, 18, 147–152. [Google Scholar] [CrossRef]
- Liu, J.; Greenfield, H.; Strobel, N.; Fraser, D.R. The Influence of Latitude on the Concentration of Vitamin D3 and 25-Hydroxy-Vitamin D3 in Australian Red Meat. Food Chem. 2013, 140, 432–435. [Google Scholar] [CrossRef]
- Han, G.; Zhang, L.; Li, Q.; Wang, Y.; Chen, Q.; Kong, B. Impacts of Different Altitudes and Natural Drying Times on Lipolysis, Lipid Oxidation and Flavour Profile of Traditional Tibetan Yak Jerky. Meat Sci. 2020, 162, 108030. [Google Scholar] [CrossRef]
- Bartl, K.; Gomez, C.A.; García, M.; Aufdermauer, T.; Kreuzer, M.; Hess, H.D.; Wettstein, H.-R. Milk Fatty Acid Profile of Peruvian Criollo and Brown Swiss Cows in Response to Different Diet Qualities Fed at Low and High Altitude. Arch. Anim. Nutr. 2008, 62, 468–484. [Google Scholar] [CrossRef] [PubMed]
- Cividini, A.; Simčič, M.; Stibilj, V.; Vidrih, M.; Potočnik, K. Changes in Fatty Acid Profile of Bovec Sheep Milk Due to Different Pasture Altitude. Animal 2019, 13, 1111–1118. [Google Scholar] [CrossRef]
- Falchero, L.; Lombardi, G.; Gorlier, A.; Lonati, M.; Odoardi, M.; Cavallero, A. Variation in Fatty Acid Composition of Milk and Cheese from Cows Grazed on Two Alpine Pastures. Dairy Sci. Technol. 2010, 90, 657–672. [Google Scholar] [CrossRef]
- Yang, L.; Yang, C.; Chi, F.; Gu, X.; Zhu, Y. A Survey of the Vitamin and Mineral Content in Milk from Yaks Raised at Different Altitudes. Int. J. Food Sci. 2021, 2021, 1855149. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Pei, J.; Kalwar, Q.; Wu, X.; Yan, P.; Guo, X. Fat Deposition in Yak during Different Phenological Seasons. Livest. Sci. 2021, 251, 104671. [Google Scholar] [CrossRef]
- Altomonte, I.; Conte, G.; Serra, A.; Mele, M.; Cannizzo, L.; Salari, F.; Martini, M. Nutritional Characteristics and Volatile Components of Sheep Milk Products during Two Grazing Seasons. Small Rumin. Res. 2019, 180, 41–49. [Google Scholar] [CrossRef]
- Martini, M.; Salari, F.; Altomonte, I. The Macrostructure of Milk Lipids: The Fat Globules. Crit. Rev. Food Sci. Nutr. 2016, 56, 1209–1221. [Google Scholar] [CrossRef]
- Rutkowska, J.; Adamska, A.; Bialek, M. Fatty Acid Profile of the Milk of Cows Reared in the Mountain Region of Poland. J. Dairy Res. 2012, 79, 469–476. [Google Scholar] [CrossRef]
- Weir, R.R.; Strain, J.J.; Johnston, M.; Lowis, C.; Fearon, A.M.; Stewart, S.; Pourshahidi, L.K. Environmental and Genetic Factors Influence the Vitamin D Content of Cows’ Milk. Proc. Nutr. Soc. 2017, 76, 76–82. [Google Scholar] [CrossRef]
- Barnes, K.; Collins, T.; Dion, S.; Reynolds, H.; Riess, S.; Stanzyk, A.; Wolfe, A.; Lonergan, S.; Boettcher, P.; Charrondiere, U.R.; et al. Importance of Cattle Biodiversity and Its Influence on the Nutrient Composition of Beef. Anim. Front. 2012, 2, 54–60. [Google Scholar] [CrossRef]
- Belhaj, K.; Mansouri, F.; Benmoumen, A.; Sindic, M.; Fauconnier, M.-L.; Boukharta, M.; Serghini, C.H.; Elamrani, A. Fatty Acids, Health Lipid Indices, and Cholesterol Content of Sheep Meat of Three Breeds from Moroccan Pastures. Arch. Anim. Breed 2020, 63, 471–482. [Google Scholar] [CrossRef]
- Allais, S.; Levéziel, H.; Payet-Duprat, N.; Hocquette, J.F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C.; Journaux, L.; Bonnot, A.; et al. The Two Mutations, Q204X and Nt821, of the Myostatin Gene Affect Carcass and Meat Quality in Young Heterozygous Bulls of French Beef Breeds. J. Anim. Sci. 2010, 88, 446–454. [Google Scholar] [CrossRef]
- De Smet, S.; Raes, K.; Demeyer, D. Meat Fatty Acid Composition as Affected by Fatness and Genetic Factors: A Review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Węglarz, A.; Balakowska, A.; Kułaj, D.; Makulska, J. Associations of CAST, CAPN1 and MSTN Genes Polymorphism with Slaughter Value and Beef Quality—A Review. Ann. Anim. Sci. 2020, 20, 757–774. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Sinclair, A.J.; Holman, B.W.B. The Sources, Synthesis and Biological Actions of Omega-3 and Omega-6 Fatty Acids in Red Meat: An Overview. Foods 2021, 10, 1358. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, M.; Van Ranst, G.; De Smet, S.; Raes, K.; Fievez, V. Effect of Grazing Pastures with Different Botanical Composition by Lambs on Rumen Fatty Acid Metabolism and Fatty Acid Pattern of Longissimus Muscle and Subcutaneous Fat. Animal 2007, 1, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Albenzio, M.; Santillo, A.; Avondo, M.; Nudda, A.; Chessa, S.; Pirisi, A.; Banni, S. Nutritional Properties of Small Ruminant Food Products and Their Role on Human Health. Small Rumin. Res. 2016, 135, 3–12. [Google Scholar] [CrossRef]
- Prache, S.; Adamiec, C.; Astruc, T.; Baéza-Campone, E.; Bouillot, P.E.; Clinquart, A.; Feidt, C.; Fourat, E.; Gautron, J.; Girard, A.; et al. Review: Quality of Animal-Source Foods. Animal 2022, 16, 100376. [Google Scholar] [CrossRef]
- Warren, H.E.; Scollan, N.D.; Enser, M.; Hughes, S.I.; Richardson, R.I.; Wood, J.D. Effects of Breed and a Concentrate or Grass Silage Diet on Beef Quality in Cattle of 3 Ages. I: Animal Performance, Carcass Quality and Muscle Fatty Acid Composition. Meat Sci. 2008, 78, 256–269. [Google Scholar] [CrossRef]
- Sogari, G.; Bellezza Oddon, S.; Gasco, L.; van Huis, A.; Spranghers, T.; Mancini, S. Review: Recent Advances in Insect-Based Feeds: From Animal Farming to the Acceptance of Consumers and Stakeholders. Animal 2023, 17, 100904. [Google Scholar] [CrossRef]
- O’Callaghan, T.; Hennessy, D.; Mcauliffe, S.; Sheehan, J.; Kilcawley, K.; Dillon, P.; Ross, R.P.; Stanton, C. The Effect of Cow Feeding System on the Composition and Quality of Milk and Dairy Products. Sustain. Meat Milk Prod. Grassl. 2018, 762, 7–10. [Google Scholar]
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.R.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods 2021, 10, 872. [Google Scholar] [CrossRef]
- García, T.P.; Pordomingo, A.J.; Pérez, C.D.; Rios, M.D.; Sancho, A.M.; Volpi Lagreca, G.; Casal, J.J. Influence of Cultivar and Cutting Date on the Fatty Acid Composition of Forage Crops for Grazing Beef Production in Argentina. Grass Forage Sci. 2015, 71, 235–244. [Google Scholar] [CrossRef]
- Prache, S.; Martin, B.; Coppa, M. Review: Authentication of Grass-Fed Meat and Dairy Products from Cattle and Sheep. Anim. Int. J. Anim. Biosci. 2020, 14, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M.; Butler, G.; Latif, M.A.; Leifert, C.; Davis, D.R. Organic Production Enhances Milk Nutritional Quality by Shifting Fatty Acid Composition: A United States-Wide, 18-Month Study. PLoS ONE 2013, 8, e82429. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, R.; Watanabe, D.; Ito, K.; Ueda, K.; Nakayama, K.; Sanbongi, C.; Miyachi, M. Dose–Response Relationship between Protein Intake and Muscle Mass Increase: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2021, 79, 66–75. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Rasmussen, B.B. Dietary Protein Recommendations and the Prevention of Sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 86–90. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Miller, S.L.; Miller, K.B. Optimal Protein Intake in the Elderly. Clin. Nutr. 2008, 27, 675–684. [Google Scholar] [CrossRef]
- Semba, R.D.; Shardell, M.; Sakr Ashour, F.A.; Moaddel, R.; Trehan, I.; Maleta, K.M.; Ordiz, M.I.; Kraemer, K.; Khadeer, M.A.; Ferrucci, L.; et al. Child Stunting Is Associated with Low Circulating Essential Amino Acids. EBioMedicine 2016, 6, 246–252. [Google Scholar] [CrossRef]
- Ghosh, S.; Suri, D.; Uauy, R. Assessment of Protein Adequacy in Developing Countries: Quality Matters. Br. J. Nutr. 2012, 108 (Suppl. S2), S77–S87. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.-L.; Farzi, A.; Zhu, W.-Y. Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Klimova, B.; Novotny, M.; Valis, M. The Impact of Nutrition and Intestinal Microbiome on Elderly Depression-A Systematic Review. Nutrients 2020, 12, E710. [Google Scholar] [CrossRef]
- Trujillo, J.; Vieira, M.C.; Lepsch, J.; Rebelo, F.; Poston, L.; Pasupathy, D.; Kac, G. A Systematic Review of the Associations between Maternal Nutritional Biomarkers and Depression and/or Anxiety during Pregnancy and Postpartum. J. Affect. Disord. 2018, 232, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Cunha, N.; Andrade, V.; Ruivo, P.; Pinto, P. Effects of Insect Consumption on Human Health: A Systematic Review of Human Studies. Nutrients 2023, 15, 3076. [Google Scholar] [CrossRef] [PubMed]
- Ros-Baró, M.; Casas-Agustench, P.; Díaz-Rizzolo, D.A.; Batlle-Bayer, L.; Adrià-Acosta, F.; Aguilar-Martínez, A.; Medina, F.-X.; Pujolà, M.; Bach-Faig, A. Edible Insect Consumption for Human and Planetary Health: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 11653. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W.B. Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals 2024, 14, 840. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, D.; Zhou, S.; Duan, H.; Guo, J.; Yan, W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022, 11, 3961. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Ohara, A.; dos Santos Aguilar, J.; Domingues, M.A. Nutritional, Functional and Biological Properties of Insect Proteins: Processes for Obtaining, Consumption and Future Challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Bernard, J.Y.; De Agostini, M.; Forhan, A.; de Lauzon-Guillain, B.; Charles, M.-A.; Heude, B. EDEN Mother-Child Cohort Study Group The Dietary N6:N3 Fatty Acid Ratio during Pregnancy Is Inversely Associated with Child Neurodevelopment in the EDEN Mother-Child Cohort. J. Nutr. 2013, 143, 1481–1488. [Google Scholar] [CrossRef]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Norris, G.H.; Milard, M.; Michalski, M.-C.; Blesso, C.N. Protective Properties of Milk Sphingomyelin against Dysfunctional Lipid Metabolism, Gut Dysbiosis, and Inflammation. J. Nutr. Biochem. 2019, 73, 108224. [Google Scholar] [CrossRef]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red Meat Consumption: An Overview of the Risks and Benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. Pediatr. Allergy Immunol. 2010, 21, 1–125. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and Zeaxanthin-Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. Nutrients 2017, 9, E120. [Google Scholar] [CrossRef]
- Wallace, T.C. A Comprehensive Review of Eggs, Choline, and Lutein on Cognition Across the Life-Span. J. Am. Coll. Nutr. 2018, 37, 269–285. [Google Scholar] [CrossRef]
- WHO; FAO (Eds.) Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland; FAO: Rome, Italy, 2004; ISBN 978-92-4-154612-6. [Google Scholar]
- Leermakers, E.T.M.; Moreira, E.M.; Kiefte-de Jong, J.C.; Darweesh, S.K.L.; Visser, T.; Voortman, T.; Bautista, P.K.; Chowdhury, R.; Gorman, D.; Bramer, W.M.; et al. Effects of Choline on Health across the Life Course: A Systematic Review. Nutr. Rev. 2015, 73, 500–522. [Google Scholar] [CrossRef]
- Smallwood, T.; Allayee, H.; Bennett, B.J. Choline Metabolites: Gene by Diet Interactions. Curr. Opin. Lipidol. 2016, 27, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Caudill, M.A. Pre- and Postnatal Health: Evidence of Increased Choline Needs. J. Am. Diet Assoc. 2010, 110, 1198–1206. [Google Scholar] [CrossRef]
- Zeisel, S.H.; da Costa, K.-A. Choline: An Essential Nutrient for Public Health. Nutr. Rev. 2009, 67, 615–623. [Google Scholar] [CrossRef]
- Bragg, M.G.; Prado, E.L.; Stewart, C.P. Choline and Docosahexaenoic Acid during the First 1000 Days and Children’s Health and Development in Low- and Middle-Income Countries. Nutr. Rev. 2022, 80, 656–676. [Google Scholar] [CrossRef]
- Derbyshire, E.; Obeid, R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020, 12, E1731. [Google Scholar] [CrossRef]
- Heras-Sola, J.; Gallo-Vallejo, J.L. Importancia de La Colina Durante El Embarazo y Lactancia. Una Revisión Sistemática. Med. Familia. Semer. 2024, 50, 102089. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, L.L.; Lutter, C.K.; Waters, W.F.; Gallegos Riofrío, C.A.; Malo, C.; Reinhart, G.; Palacios, A.; Karp, C.; Chapnick, M.; Cox, K.; et al. Eggs Early in Complementary Feeding Increase Choline Pathway Biomarkers and DHA: A Randomized Controlled Trial in Ecuador. Am. J. Clin. Nutr. 2017, 106, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Yabuta, Y.; Tanioka, Y.; Bito, T. Biologically Active Vitamin B12 Compounds in Foods for Preventing Deficiency among Vegetarians and Elderly Subjects. J. Agric. Food Chem. 2013, 61, 6769–6775. [Google Scholar] [CrossRef] [PubMed]
- Zugravu, C.-A.; Macri, A.; Belc, N.; Bohiltea, R. Efficacy of Supplementation with Methylcobalamin and Cyancobalamin in Maintaining the Level of Serum Holotranscobalamin in a Group of Plant-Based Diet (Vegan) Adults. Exp. Ther. Med. 2021, 22, 993. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.-L.; Brito, A.; Guéant, J.-L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.-H.; et al. Vitamin B12 Deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef]
- Wirthensohn, M.; Wehrli, S.; Ljungblad, U.W.; Huemer, M. Biochemical, Nutritional, and Clinical Parameters of Vitamin B12 Deficiency in Infants: A Systematic Review and Analysis of 292 Cases Published between 1962 and 2022. Nutrients 2023, 15, 4960. [Google Scholar] [CrossRef]
- McCann, S.; Perapoch Amadó, M.; Moore, S.E. The Role of Iron in Brain Development: A Systematic Review. Nutrients 2020, 12, E2001. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and Child Undernutrition and Overweight in Low-Income and Middle-Income Countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Miller, G.D.; Ragalie-Carr, J.; Torres-Gonzalez, M. Perspective: Seeing the Forest Through the Trees: The Importance of Food Matrix in Diet Quality and Human Health. Adv. Nutr. 2023, 14, 363–365. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Drago, S.R. Chapter 1—Introduction. In Nutraceutical and Functional Food Components, 2nd ed.; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–18. ISBN 978-0-323-85052-0. [Google Scholar]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-Analysis of Observational Studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef]
- Te Morenga, L.; Montez, J.M. Health Effects of Saturated and Trans-Fatty Acid Intake in Children and Adolescents: Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0186672. [Google Scholar] [CrossRef] [PubMed]
- WHO; FAO; UNICEF. Guidance for Monitoring Healthy Diets Globally; WHO: Geneva, Switzerland; FAO: Rome, Italy; UNICEF: New York, NY, USA, 2024; ISBN 978-92-5-138836-5. [Google Scholar]
- Nielsen, M.R.; Pouliot, M.; Meilby, H.; Smith-Hall, C.; Angelsen, A. Global Patterns and Determinants of the Economic Importance of Bushmeat. Biol. Conserv. 2017, 215, 277–287. [Google Scholar] [CrossRef]
- Brown, M.J.; Ameer, M.A.; Beier, K. Vitamin B6 Deficiency. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Jarvis, A.; Gallo-Franco, J.; Portilla, J.; German, B.; Debouck, D.; Rajasekharan, M.; Khoury, C.; Herforth, A.; Ahmed, S.; Tohme, J.; et al. Periodic Table of Food Initiative for Generating Biomolecular Knowledge of Edible Biodiversity. Nat. Food 2024, 5, 189–193. [Google Scholar] [CrossRef] [PubMed]
Nutrient 1,2 | Energy (kcal) | Energy (kJ) | Protein (g) | Fat (g) | Carbohydrate (g) | Vitamin A (µg) RAE 3 | Riboflavin (mg) | Vitamin B12 (µg) | Calcium (mg) | Iron (mg) | Zinc (mg) |
---|---|---|---|---|---|---|---|---|---|---|---|
Chicken (b, c, d) | 140 | 586 | 13.1 | 9.6 | 0.4 | 137 | 0.47 | 1.2 | 53 | 2 | 1.3 |
Duck (a, c, d) | 182 | 764 | 12.4 | 13.7 | 2.1 | 235 | 0.28 | 5.4 | 57 | 3.2 | 1.3 |
Goose (c) | 185 | 775 | 13.9 | 13.3 | 1.4 | 187 | 0.38 | 5.1 | 60 | 3.6 | 1.3 |
Quail (c, d) | 169 | 707 | 14.3 | 11.5 | 1.6 | 99 | 0.43 | 1.8 | 73 | 4.5 | 1.8 |
Turkey (c, d) | 178 | 740 | 11.5 | 12.5 | 3.1 | 80 | 0.26 | 2.2 | 99 | 5.2 | 2.1 |
Nutrient 1,2 | Energy (kcal) | Energy (kJ) | Protein (g) | Fat (g) | Carbohydrate (g) | Vitamin A (µg) RAE 3 | Riboflavin (mg) | Vitamin B12 (µg) | Calcium (mg) | Iron (mg) | Zinc (mg) |
---|---|---|---|---|---|---|---|---|---|---|---|
Human (b, c, d, e, f) | 71 | 294 | 1.2 | 4.1 | 7.3 | 62 | 0.04 | 0.05 | 31 | 0.07 | 0.2 |
Buffalo (g) | 99 | 412 | 4.0 | 7.5 | nd | 69 | 0.11 | 0.45 | 191 | 0.17 | 0.5 |
Cattle (a, b, c, d, e, f,) | 65 | 273 | 3.4 | 3.5 | 4.9 | 41 | 0.20 | 0.49 | 116 | 0.11 | 0.5 |
Mithan (g) | 122 | 510 | 6.5 | 8.9 | nd | nd | nd | nd | 88 | nd | nd |
Yak (g) | 100 | 417 | 5.2 | 6.8 | nd | nd | nd | nd | 129 | 0.57 | 0.9 |
Goat (a, c, d, e, f) | 73 | 305 | 3.7 | 4.4 | 4.6 | 38 | 0.13 | 0.08 | 137 | 0.14 | 0.3 |
Sheep (c, e) | 104 | 434 | 5.9 | 6.7 | 5.0 | 45 | 0.27 | 0.50 | 179 | 0.10 | 0.6 |
Alpaca (g) | 71 | 299 | 5.8 | 3.2 | 5.1 | nd | nd | nd | nd | nd | nd |
Bactrian camel (g) | 76 | 319 | 3.9 | 5.0 | 4.2 | 97 | 0.12 | nd | 154 | nd | 0.7 |
Dromedary (g) | 56 | 234 | 3.1 | 3.2 | nd | nd | 0.06 | nd | 114 | 0.21 | 0.1 |
Llama (g) | 78 | 326 | 4.1 | 4.2 | nd | nd | nd | nd | 195 | nd | 1.1 |
Reindeer (g) | 196 | 819 | 10.4 | 16.1 | nd | nd | nd | nd | 320 | nd | 1.1 |
Donkey (g) | 37 | 156 | 1.6 | 0.7 | nd | nd | 0.03 | nd | 91 | nd | nd |
Horse (g) | 48 | 199 | 2.0 | 1.6 | nd | nd | 0.02 | nd | 95 | 0.10 | 0.2 |
Nutrient 1,2 | Energy (kcal) | Energy (kJ) | Protein (g) | Fat (g) | Carbohydrate (g) | Vitamin A (µg) RAE 3 | Riboflavin (mg) | Vitamin B12 (µg) | Calcium (mg) | Iron (mg) | Zinc (mg) |
---|---|---|---|---|---|---|---|---|---|---|---|
Cattle (b, c, d) | 333 | 1388 | 16.5 | 34.0 | 0 | 0 | 0.08 | 2.73 | 246 | 3.48 | 2.3 |
Buffalo (c) | 99 | 414 | 20.4 | 1.4 | 0 | 0 | 0.20 | 1.66 | 12 | 1.61 | 1.9 |
Sheep (a, b, d) | 360 | 1807 | 14.7 | 34.0 | 0 | 32 | 0.11 | 1.99 | 8 | 1.22 | 1.3 |
Goat (b, c, d) | 222 | 932 | 17.3 | 17.1 | 0 | 24 | 0.38 | 2.30 | 24 | 3.75 | 3.8 |
Pig (c, d) | 392 | 1637 | 13.9 | 37.2 | 0 | 14 | 0.02 | 0.49 | 23 | 0.18 | 0.4 |
Horse (c) | 133 | 556 | 21.4 | 4.6 | 0 | 0 | 0.10 | 3.00 | 6 | 3.82 | 2.9 |
Rabbit (a, b, c, d) | 129 | 541 | 21.6 | 4.5 | 0 | 12 | 0.08 | 6.23 | 17 | 1.40 | 1.6 |
Deer (c) | 120 | 502 | 23.0 | 2.4 | 0 | 0 | 0.48 | 6.31 | 5 | 3.40 | 2.1 |
Chicken (c, d) | 180 | 756 | 18.9 | 11.4 | 0 | 27 | 0.11 | 0.25 | 101 | 1.16 | 1.3 |
Turkey (c) | 115 | 479 | 22.6 | 19.3 | 0 | 9 | 0.19 | 1.24 | 11 | 0.86 | 1.8 |
Quail (b, c) | 153 | 642 | 20.2 | 7.8 | 0 | 19 | 0.39 | 0.84 | 10 | 2.91 | 1.7 |
Pheasant (c) | 133 | 556 | 23.6 | 3.6 | 0 | 50 | 0.15 | 0.84 | 13 | 1.15 | 1.0 |
Duck (a, b, c) | 163 | 682 | 17.0 | 10.2 | 0 | 18 | 0.33 | 0.55 | 11 | 2.00 | 2.0 |
Goose (c) | 161 | 674 | 22.8 | 7.1 | 0 | 12 | 0.38 | 0.49 | 13 | 2.57 | 2.3 |
Pigeon (b, c) | 216.5 | 907 | 16.9 | 16.7 | 0 | 51 | 0.25 | 0.44 | 13 | 3.45 | 2.5 |
Guinea Fowl (c, d) | 108 | 456 | 21.1 | 2.3 | 0 | 12 | 1.16 | 0.37 | 18 | 0.99 | 1.3 |
TASF Product | Nutrients | Impact | Sources |
---|---|---|---|
Chicken meat | Protein and amino acids | A high breast–yield strain has a significantly lower protein content (3–4%) in comparison with a standard breast–yield hybrid and higher protein content in indigenous chickens. | [101,102] |
Genetic selection for growth has led to quality defects such as “white striping” or “wooden breast”, which are linked with a decrease in muscle content (7% to 18%) and an increase in collagen content (up to 11%). | [103] | ||
Chicken meat | Fat and fatty acids content | Commercial hybrids with slower growth rates are generally fatter compared to cross-bred genotypes. Their meat generally has higher total omega-6 polyunsaturated fats (PUFA). | [103,104] |
Duck meat | Native ducks had higher levels of PUFA, greater proportions of omega-6, enhanced nutritional value, an increase in the ratio of PUFA to saturated fatty acids (SFA) and lower content of SFA, atherogenic and thrombogenic indices compared to Peking ducks. | [105] | |
Pig meat | Meat from Ibérico pigs contained higher fat content (twice as much), a better fatty acid profile, with a 20% increase in oleic acid (monounsaturated fats (MUFA)), a 7% higher level of palmitic acid (saturated fatty acid) and nearly a 50% lower omega-6 to omega-3 fatty acids ratio, compared to meat from Landrace, Yorkshire and Duroc pigs, which had higher levels of saturated stearic acid. | [106] | |
Native Korean pigs were found to have a 57% higher PUFA content compared to cross-bred pigs (Landrace x Yorkshire x Duroc). | [107] | ||
Sheep meat | Tibetan sheep (an indigenous breed from high-altitude dryland) had a superior fatty acid profile compared to Small-tailed Han sheep (from northern China). Tibetan sheep had higher omega-3 PUFA, at least three-times lower omega-6/omega-3 PUFA ratio and higher concentrations of essential omega-3 fatty acids (alpha-linolenic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)). | [108] | |
Damara meat had greater levels of omega-3 fatty acids, including EPA, DPA and DHA. | [109] | ||
Cattle, Goat, Sheep milk | Protein and fats content | Milk of Alpine goats’ fat and protein content is higher than in milk of Saanen goats and in the milk of Norman and Jersey cattle than in the milk of Prim’Holstein cattle. | [110,111] |
Dromedary milk | The individual variability in milk composition (fat and protein) among animals of the same breed and physiological status, and when fed the same diet, is greater than the variation observed between different breeds. | [112] | |
Cattle milk | Vitamin | The beta-carotene content in milk was up to twice as high in Jersey cattle compared to Prim’Holsteins. | [110] |
Chicken eggs | Protein and amino acids | When kept in the same environment and fed with the same diet, eggs from an indigenous breed had higher protein and higher yolk cysteine content than eggs from a hybrid population. | [113,114] |
Fat and fatty acids | When reared in the same environment with the same feeding program, SFA (14% more) and MUFA (50% more) are higher in eggs from a local Italian breed than in a hybrid breed. | [115] | |
Eggs from a local Galician breed (Spanish breed) contained 26% more fat compared to eggs from the hybrid Isa Brown. | [113] | ||
There was no variation in the fatty acid profile between four local Portuguese breeds and a hybrid population. | [116] |
TASF Product | Characteristics of Production Systems and Agro-Ecological Conditions | Nutrients | Impact | |
---|---|---|---|---|
Cattle milk | Stage of lactation | Protein and fats content | Inverse relationship between milk quantity and the fat and protein content. | [110] |
Donkey milk | Protein and casein content were higher in milk at the beginning of lactation. | [117] | ||
Cattle meat | Feed and feeding systems | Fat and fatty acids content | A diet with a higher proportion of concentrates compared to forage is linked to a 20% increase in MUFA, a 13% decrease in SFA, a 73% reduction in omega-3 levels, and a fourfold increase in the omega-6/omega-3 ratio. | [118] |
In Uruguay, beef from animals finished on pastures was found to have approximately twice as much conjugated linoleic acid compared to beef from animals finished in feedlots, regardless of whether the animals were raised in a feedlot or on pasture. | [119] | |||
Yak meat | A lower omega-6/omega-3 ratio was observed in meat from grazing yaks compared to meat from yaks feedlot-fattened after grazing pasture. | [120] | ||
Cattle, Goat, Lama, Sheep meat | Feeding grass or forages that include omega-3 PUFA-rich plants increases the omega-3 content (including alpha-linolenic acid and EPA) by approximately in cattle and sheep and reduces the omega-6/omega-3 PUFA ratio by a factor of three to four. | [39,118,121,122,123,124,125] | ||
Cattle, Sheep, Pig meat | Certain organic meats (beef, lamb and pork) and cow milk have healthier fatty-acid profiles compared to their non-organic counterparts. | [126,127] | ||
Duck meat | Ducks raised in irrigated rice fields in China have been found to have higher carcass weight, with higher intramuscular fat, lower protein content and higher concentrations of some essential amino acids and PUFAs (omega-6 and omega-3), compared to ducks raised in floor pens. | [128] | ||
Rabbit meat | The omega-3 PUFA content in rabbit meat doubled when the animals were fed a diet that included linseed. | [129] | ||
Caecotrophia in rabbits (reingestion of soft feces issued from bacterial fermentation in caecum) has been found to enhance PUFA content in the meat. | [130] | |||
Sheep meat | Incorporation of citrus pulp in the diet of lambs had no impact on their performance, carcass or meat quality while limiting rumen biohydrogenation of PUFAs and reducing lipid and protein oxidation. | [131] | ||
Feeding tannins to sheep resulted in an increase in beneficial fatty acids in their meat, with omega-3 levels rising by 14%. | [132] | |||
Cattle, Goat, Sheep meat | Vitamin | Grass-feeding results in a sevenfold in vitamin A levels, a 60% increase in vitamin C levels, and a twofold increase in vitamin E levels (or their precursors). | [133] | |
Cattle, Goat, Sheep meat | Grass-finished beef contains three times more vitamin B1, twice as much vitamin B2, and over three times the amount of vitamin E compared to grain-finished beef. | [134] | ||
Cattle, Sheep, Pig meat; Cattle milk | Fat and fatty acids content | Certain organic meats, including beef, lamb and pork, as well as cow milk, have healthier fatty-acid profiles compared to their non-organic equivalents. | [126,127] | |
Goat milk | Milk from dairy goats raised on semi-arid native pastures demonstrated a better fatty-acid profile compared to that of goats kept in a confined system. | [135,136,137] | ||
Cattle milk | Vitamin | Diets based on concentrate or maize silage lead to a 40% reduction in carotenoids and a 30% reduction in vitamin E content compared to grass-feeding. | [138] | |
Chicken egg | Fats and fatty acids content | When hens have access to pasture, there is a three- to fivefold increase in PUFA and a 50% reduction in the omega-6/omega-3 ratio, bringing it to around 5). | [139] | |
Quail egg | Seeds like hemp seeds increase omega-3 content in egg yolk, leading to a sevenfold increase in alpha-linolenic acid. | [140] | ||
Chicken, Duck, Turkey egg | Protein and amino acid content | No variation. | [110,134,141,142,143] | |
Cattle meat | Environmental conditions and climatic zones | Vitamin | Latitude does not affect the vitamin D3 content in lean beef in Australia; however, fat from cattle raised at low latitudes had higher concentrations of vitamin D3 compared to fat from cattle raised at high latitudes. | [144] |
Yak meat | Fat and fatty acids content | High altitude is associated with up to a 25% increase in the percentages of PUFA. | [145] | |
Cattle, Sheep milk | Plant composition of pasture | Protein and fat content | Grazing at higher elevations results in a more beneficial fatty-acid profile, with up to an 87% increase in PUFA concentrations, up to a 68% increase in omega-3 fatty acids (such as alpha-linolenic acid) and higher milk fat content. | [146,147,148] |
Yak milk | Vitamin | Higher altitudes (ranging from 3 215 m to 5 410 m) are associated with a 60% increase in vitamin A content and a 28% increase in vitamin E content. | [149] | |
Yak meat | Season | Fat and fatty acids content | When pasture is abundant, there is an increase in fat content. | [150] |
Cattle, Sheep milk | Vitamin | Spring and summer milk contains more vitamin D and calcium, less saturated fatty acids and more PUFA and omega-3 than winter milk. | [151,152,153,154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rueda García, A.M.; Fracassi, P.; Scherf, B.D.; Hamon, M.; Iannotti, L. Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems. Nutrients 2024, 16, 3346. https://doi.org/10.3390/nu16193346
Rueda García AM, Fracassi P, Scherf BD, Hamon M, Iannotti L. Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems. Nutrients. 2024; 16(19):3346. https://doi.org/10.3390/nu16193346
Chicago/Turabian StyleRueda García, Ana María, Patrizia Fracassi, Beate D. Scherf, Manon Hamon, and Lora Iannotti. 2024. "Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems" Nutrients 16, no. 19: 3346. https://doi.org/10.3390/nu16193346
APA StyleRueda García, A. M., Fracassi, P., Scherf, B. D., Hamon, M., & Iannotti, L. (2024). Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems. Nutrients, 16(19), 3346. https://doi.org/10.3390/nu16193346