A Structural Equation Modelling Approach to Examine the Mediating Effect of Stress on Diet in Culturally Diverse Women of Childbearing Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Do not have chronic disease (e.g., cancers, diabetes, cardiovascular diseases, HIV/AIDS, multiple sclerosis, pulmonary diseases, or mental disorders);
- Do not suffer from food intolerance/allergy;
- Are not pregnant or breastfeeding;
- Are not on medications that impact appetite;
- Have not previously had a bariatric surgery.
2.2. Variables
2.3. Building the SEM Model
2.4. Statistical Analysis
3. Results
3.1. A-Priori Diet Quality and General Characteristics of Participants across the Diet Quality Categories
3.2. A-Posteriori Dietary Patterns
3.3. Structural Equation Modelling (SEM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, J.; Moran, L.; Teede, H.; Ranasinha, S.; Lombard, C.; Harrison, C. Exploring Diet Quality between Urban and Rural Dwelling Women of Reproductive Age. Nutrients 2017, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Rural Poverty and Health Systems in the WHO European Region; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2010. [Google Scholar]
- Maternal Obesity in the UK: Findings from a National Project Centre for Maternal and Child Enquiries Improving the Health of Mothers, Babies and Children. 2010. Available online: https://www.publichealth.hscni.net/sites/default/files/Maternal%20Obesity%20in%20the%20UK.pdf (accessed on 1 August 2024).
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalán, C.; Uauy, R.; Herring, S.; Gillman, M.W. Preconceptional and Maternal Obesity: Epidemiology and Health Consequences. Lancet Diabetes Endocrinol. 2016, 4, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.M.; Allan, K.M.; Raja, E.A.; Bhattacharya, S.; McNeill, G.; Hannaford, P.C.; Sarwar, N.; Lee, A.J.; Bhattacharya, S.; Norman, J.E. Maternal Obesity during Pregnancy and Premature Mortality from Cardiovascular Event in Adult Offspring: Follow-up of 1 323 275 Person Years. BMJ 2013, 347, f4539. [Google Scholar] [CrossRef] [PubMed]
- Kanguru, L.; McCaw-Binns, A.; Bell, J.; Yonger-Coleman, N.; Wilks, R.; Hussein, J. The Burden of Obesity in Women of Reproductive Age and in Pregnancy in a Middle-Income Setting: A Population Based Study from Jamaica. PLoS ONE 2017, 12, e0188677. [Google Scholar] [CrossRef]
- Thangaratinam, S.; Rogozińska, E.; Jolly, K.; Glinkowski, S.; Roseboom, T.; Tomlinson, J.W.; Kunz, R.; Mol, B.W.; Coomarasamy, A.; Khan, K.S. Effects of Interventions in Pregnancy on Maternal Weight and Obstetric Outcomes. Obstet. Gynecol. Surv. 2012, 67, 603–604. [Google Scholar] [CrossRef]
- Jomaa, L.; Hwalla, N.; Itani, L.; Chamieh, M.C.; Mehio-Sibai, A.; Naja, F. A Lebanese Dietary Pattern Promotes Better Diet Quality among Older Adults: Findings from a National Cross-Sectional Study. BMC Geriatr. 2016, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.; Pitsavos, C.; Stefanadis, C. α-Priori and α-Posterior Dietary Pattern Analyses Have Similar Estimating an Discriminating Ability in Predicting 5-Y Incidence of Cardiovascular Disease: Methodological Issues in Nutrition Assessment. J. Food Sci. 2009, 74, H218–H224. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- De Coster, J. Overview of Factor Analysis. Available online: http://www.stat-help.com/factor.pdf (accessed on 26 August 2024).
- Quatromoni, P. The internal validity of a dietary pattern analysis. The Framingham Nutrition Studies. J. Epidemiol. Commun. Health 2002, 56, 381–388. [Google Scholar] [CrossRef]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D. Dietary Quality among Men and Women in 187 Countries in 1990 and 2010: A Systematic Assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. Systematic Review and Meta-Analysis of Energy and Macronutrient Intakes during Pregnancy in Developed Countries. Nutr. Rev. 2012, 70, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Bayram, N.; Bilgel, N. The Prevalence and Socio-Demographic Correlations of Depression, Anxiety and Stress among a Group of University Students. Soc. Psychiatry Psychiatr. Epidemiol. 2008, 43, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Wichianson, J.R.; Bughi, S.A.; Unger, J.B.; Spruijt-Metz, D.; Nguyen-Rodriguez, S.T. Perceived Stress, Coping and Night-Eating in College Students. Stress Health 2009, 25, 235–240. [Google Scholar] [CrossRef]
- Habhab, S.; Sheldon, J.P.; Loeb, R.C. The Relationship between Stress, Dietary Restraint, and Food Preferences in Women. Appetite 2009, 52, 437–444. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Jones, F.; Conner, M.; McMillan, B.; Ferguson, E. Effects of Daily Hassles and Eating Style on Eating Behavior. Health Psychol. 2008, 27 (Suppl. S1), S20–S31. [Google Scholar] [CrossRef] [PubMed]
- El Ansari, W.; Adetunji, H.; Oskrochi, R. Food and Mental Health: Relationship between Food and Perceived Stress and Depressive Symptoms among University Students in the United Kingdom. Cent. Eur. J. Public Health 2014, 22, 90–97. [Google Scholar] [CrossRef]
- Papier, K.; Ahmed, F.; Lee, P.; Wiseman, J. Stress and Dietary Behaviour among First-Year University Students in Australia: Sex Differences. Nutrition 2015, 31, 324–330. [Google Scholar] [CrossRef]
- Hinote, B.P.; Cockerham, W.C.; Abbott, P. Psychological Distress and Dietary Patterns in Eight Post-Soviet Republics. Appetite 2009, 53, 24–33. [Google Scholar] [CrossRef]
- Mikolajczyk, R.T.; El Ansari, W.; Maxwell, A.E. Food Consumption Frequency and Perceived Stress and Depressive Symptoms among Students in Three European Countries. Nutr. J. 2009, 8, 31. [Google Scholar] [CrossRef]
- Roohafza, H.; Sarrafzadegan, N.; Sadeghi, M.; Rafieian-Kopaei, M.; Sajjadi, F.; Khosravi-Boroujeni, H. The Association between Stress Levels and Food Consumption among Iranian Population. Arch. Iran. Med. 2013, 16, 145–148. [Google Scholar]
- Tseng, M.; Fang, C.Y. Stress Is Associated with Unfavorable Patterns of Dietary Intake among Female Chinese Immigrants. Ann. Behav. Med. A Publ. Soc. Behav. Med. 2011, 41, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Barrington, W.E.; Ceballos, R.M.; Bishop, S.K.; McGregor, B.A.; Beresford, S.A.A. Perceived Stress, Behavior, and Body Mass Index among Adults Participating in a Worksite Obesity Prevention Program, Seattle, 2005–2007. Prev. Chronic Dis. 2012, 9, 120001. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Talaei, M.; Parvaresh Rizi, E.; Dianatkhah, M.; Oveisgharan, S.; Sarrafzadegan, N. Determinants of Incident Prediabetes and Type 2 Diabetes in a 7-Year Cohort in a Developing Country: The Isfahan Cohort Study. J. Diabetes 2014, 7, 633–641. [Google Scholar] [CrossRef]
- Hadaegh, F.; Derakhshan, A.; Zafari, N.; Khalili, D.; Mirbolouk, M.; Saadat, N.; Azizi, F. Pre-Diabetes Tsunami: Incidence Rates and Risk Factors of Pre-Diabetes and Its Different Phenotypes over 9 Years of Follow-Up. Diabet. Med. 2015, 34, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Gunn, J.M.; Ayton, D.R.; Densley, K.; Pallant, J.F.; Chondros, P.; Herrman, H.E.; Dowrick, C.F. The Association between Chronic Illness, Multimorbidity and Depressive Symptoms in an Australian Primary Care Cohort. Soc. Psychiatry Psychiatr. Epidemiol. 2010, 47, 175–184. [Google Scholar] [CrossRef]
- Wardle, J.; Chida, Y.; Gibson, E.L.; Whitaker, K.L.; Steptoe, A. Stress and Adiposity: A Meta-Analysis of Longitudinal Studies. Obesity 2010, 19, 771–778. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Khaled, K.; Tsofliou, F.; Hundley, V.; Helmreich, R.; Almilaji, O. Perceived Stress and Diet Quality in Women of Reproductive Age: A Systematic Review and Meta-Analysis. Nutr. J. 2020, 19, 92. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xie, B.; Chou, C.-P.; Koprowski, C.; Zhou, D.; Palmer, P.; Sun, P.; Guo, Q.; Duan, L.; Sun, X.; et al. Perceived Stress, Depression and Food Consumption Frequency in the College Students of China Seven Cities. Physiol. Behav. 2007, 92, 748–754. [Google Scholar] [CrossRef]
- Khaled, K.; Hundley, V.; Tsofliou, F. Poor Dietary Quality and Patterns Are Associated with Higher Perceived Stress among Women of Reproductive Age in the UK. Nutrients 2021, 13, 2588. [Google Scholar] [CrossRef]
- Khaled, K.; Hundley, V.; Bassil, M.; Bazzi, M.; Tsofliou, F. The association between psychological stress and dietary quality and patterns among women of childbearing age in Lebanon. ACTA Sci. Nutr. Health 2024, 8, 8–20. [Google Scholar]
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Verkasalo, P.K.; Appleby, P.N.; Allen, N.E.; Davey, G.; Adlercreutz, H.; Key, T.J. Soya Intake and Plasma Concentrations of Daidzein and Genistein: Validity of Dietary Assessment among Eighty British Women (Oxford Arm of the European Prospective Investigation into Cancer and Nutrition). Br. J. Nutr. 2001, 86, 415. [Google Scholar] [CrossRef] [PubMed]
- Khaled, K.; Hundley, V.; Bassil, M.; Bazzi, M.; Tsofliou, F. Validation of the European Prospective Investigation into Cancer (EPIC) FFQ for Use among Adults in Lebanon. Public Health Nutr. 2021, 24, 4007–4016. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.-T. A New Tool for Converting Food Frequency Questionnaire Data into Nutrient and Food Group Values: FETA Research Methods and Availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Tomiyama, A.J. Stress and Obesity. Annu. Rev. Psychol. 2019, 70, 703–718. [Google Scholar] [CrossRef]
- Almadi, T.; Cathers, I.; Hamdan Mansour, A.M.; Chow, C.M. An Arabic Version of the Perceived Stress Scale: Translation and Validation Study. Int. J. Nurs. Stud. 2012, 49, 84–89. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Helou, K.; El Helou, N.; Mahfouz, M.; Mahfouz, Y.; Salameh, P.; Harmouche-Karaki, M. Validity and Reliability of an Adapted Arabic Version of the Long International Physical Activity Questionnaire. BMC Public Health 2017, 18, 49. [Google Scholar] [CrossRef]
- Robinson, A.M.; Benzies, K.M.; Cairns, S.L.; Fung, T.; Tough, S.C. Who Is Distressed? A Comparison of Psychosocial Stress in Pregnancy across Seven Ethnicities. BMC Pregnancy Childbirth 2016, 16, 215. [Google Scholar] [CrossRef]
- Dhote, S. Impact of Marital Adjustment on Mental Health of Working Women. Indian J. Ment. Health (IJMH) 2018, 5, 68. [Google Scholar] [CrossRef]
- Algren, M.H.; Ekholm, O.; Nielsen, L.; Ersbøll, A.K.; Bak, C.K.; Andersen, P.T. Associations between Perceived Stress, Socioeconomic Status, and Health-Risk Behaviour in Deprived Neighbourhoods in Denmark: A Cross-Sectional Study. BMC Public Health 2018, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Aldwin, C.M. Culture, Coping and Resilience to Stress; Centre for Bhutan Studies: Thimphu, Bhutan, 2004. [Google Scholar] [CrossRef]
- Koo, K.-M.; Kim, C.-J. The Effect of the Type of Physical Activity on the Perceived Stress Level in People with Activity Limitations. J. Exerc. Rehabil. 2018, 14, 361–366. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, E.S.; Savas, M.; van Rossum, E.F.C. Stress and Obesity: Are There More Susceptible Individuals? Curr. Obes. Rep. 2018, 7, 193–203. [Google Scholar] [CrossRef]
- Isasi, C.R.; Parrinello, C.M.; Jung, M.M.; Carnethon, M.R.; Birnbaum-Weitzman, O.; Espinoza, R.A.; Penedo, F.J.; Perreira, K.M.; Schneiderman, N.; Sotres-Alvarez, D.; et al. Psychosocial Stress Is Associated with Obesity and Diet Quality in Hispanic/Latino Adults. Ann. Epidemiol. 2015, 25, 84–89. [Google Scholar] [CrossRef]
- Fowles, E.R.; Bryant, M.; Kim, S.; Walker, L.O.; Ruiz, R.J.; Timmerman, G.M.; Brown, A. Predictors of Dietary Quality in Low-Income Pregnant Women: A Path Analysis. Nurs. Res. 2011, 60, 286–294. [Google Scholar] [CrossRef]
- Fowles, E.R.; Stang, J.; Bryant, M.; Kim, S. Stress, Depression, Social Support, and Eating Habits Reduce Diet Quality in the First Trimester in Low-Income Women: A Pilot Study. J. Acad. Nutr. Diet. 2012, 112, 1619–1625. [Google Scholar] [CrossRef]
- Khaled, K.; Hundley, V.; Almilaji, O.; Koeppen, M.; Tsofliou, F. A Priori and a Posteriori Dietary Patterns in Women of Childbearing Age in the UK. Nutrients 2020, 12, 2921. [Google Scholar] [CrossRef]
- Si Hassen, W.; Castetbon, K.; Cardon, P.; Enaux, C.; Nicolaou, M.; Lien, N.; Terragni, L.; Holdsworth, M.; Stronks, K.; Hercberg, S.; et al. Socioeconomic Indicators Are Independently Associated with Nutrient Intake in French Adults: A DEDIPAC Study. Nutrients 2016, 8, 158. [Google Scholar] [CrossRef]
- Lee, S. Effects of Marital Transitions on Changes in Dietary and Other Health Behaviours in US Women. Int. J. Epidemiol. 2004, 34, 69–78. [Google Scholar] [CrossRef]
- Elder, S.J.; Roberts, S.B. The Effects of Exercise on Food Intake and Body Fatness: A Summary of Published Studies. Nutr. Rev. 2008, 65, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.M.; Nunnery, D.L.; Ammerman, A.; Dharod, J.M. Racial/Ethnic Differences in Diet Quality and Eating Habits among WIC Pregnant Women: Implications for Policy and Practice. Am. J. Health Promot. 2019, 34, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, Eating Behavior and Physical Activity during COVID-19 Lockdown: A Study of UK Adults. Appetite 2020, 156, 104853. [Google Scholar] [CrossRef] [PubMed]
- Beran, T.N.; Violato, C. Structural Equation Modeling in Medical Research: A Primer. BMC Res. Notes 2010, 3, 267. [Google Scholar] [CrossRef]
- Das, K.R.; Imon, A.H.M.R. A Brief Review of Tests for Normality. Am. J. Theor. Appl. Stat. 2016, 5, 5–12. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling, 4th ed.; Taylor and Francis: London, UK, 2015. [Google Scholar]
- Browne, M.W.; Cudeck, R. Alternative Ways of Assessing Model Fit. Sociol. Methods Res. 1993, 21, 230–258. [Google Scholar] [CrossRef]
- Meyers, L.S.; Gamst, G.; Guarino, A.J. Applied Multivariate Research; SAGE Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Taverner, D.; Paredes, S.; Ferré, R.; Masana, L.; Castro, A.; Vallvé, J.-C. Assessment of Arterial Stiffness Variables in Patients with Rheumatoid Arthritis: A Mediation Analysis. Sci. Rep. 2019, 9, 4543. [Google Scholar] [CrossRef]
- Ferranti, E.P.; Dunbar, S.B.; Higgins, M.; Dai, J.; Ziegler, T.R.; Frediani, J.K.; Reilly, C.; Brigham, K.L. Psychosocial Factors Associated with Diet Quality in a Working Adult Population. Res. Nurs. Health 2013, 36, 242–256. [Google Scholar] [CrossRef]
- El Ansari, W.; Berg-Beckhoff, G. Nutritional Correlates of Perceived Stress among University Students in Egypt. Int. J. Environ. Res. Public Health 2015, 12, 14164–14176. [Google Scholar] [CrossRef]
- Farran, N. Mental Health in Lebanon: Tomorrow’s Silent Epidemic. Ment. Health Prev. 2021, 24, 200218. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Gangat, S.A.; Mohanan, P.; Rahmat, Z.S.; Chbib, D.; Marfani, W.B.; Essar, M.Y. Mental Health Impacts of Lebanon’s Economic Crisis on Healthcare Workers amidst COVID-19. Int. J. Health Plan. Manag. 2021, 37, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- No Closure for Beirut Blast Trauma Survivors without Justice-Embrace. Available online: https://www.embracelebanon.org/News/Details/5 (accessed on 1 August 2024).
- Cheikh Ismail, L.; Hashim, M.; Mohamad, M.N.; Hassan, H.; Ajab, A.; Stojanovska, L.; Jarrar, A.H.; Hasan, H.; Abu Jamous, D.O.; Saleh, S.T.; et al. Dietary Habits and Lifestyle during Coronavirus Pandemic Lockdown: Experience from Lebanon. Front. Nutr. 2021, 8, 730425. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.H.-C.; Foster, V.; Yi, S.S. Are Recommended Dietary Patterns Equitable? Public Health Nutr. 2022, 25, 464–470. [Google Scholar] [CrossRef]
Variables | Country | ||
---|---|---|---|
UK (Europe) | Lebanon (Mediterranean Region) | p-Value | |
Age (years) * | 24.0 (21.0–32.0) | 19 (18–21) | 0.016 |
Stress score * | 29 (22.0–33.0) | 31.6 (17.1–36.2) | 0.285 |
BMI (kg/m2) * | 23.7 (20.9–27.9) | 22.5 (20.1–25.6) | 0.579 |
Physical activity (METs-h/wk) * | 1429 (464.3–2824.5) | 990 (346.5–2170.5) | <0.01 |
Income per year (N (%)) | - | ||
Below average | 119 (49) | 160 (64.3) | |
Average | 99 (40) | 52 (20.9) | |
Above average | 26 (11) | 37 (14.9) | |
Marital status (N (%)) | - | ||
Married | 43 (18) | 6 (2.4) | |
Unmarried | 201 (82) | 243 (97.6) | |
Smoking (N (%)) | - | ||
Smoker | 56 (23) | 64 (25.7) | |
Non-smoker | 188 (77) | 183 (73.5) | |
Ethnicity (N (%)) | - | ||
White | 177 (73) | 0 (0) | |
Black | 15 (6) | 0 (0) | |
Asian | 35 (14) | 0 (0) | |
Arab or other ethnic group | 17 (7) | 249 (100) |
Variables | Low Adherence (MD Score: 0–3) | Medium Adherence (MD Score: 4–6) | High Adherence (MD Score: 7–9) | Total | |
---|---|---|---|---|---|
Total * | 143 (29.0) | 288 (58.4) | 62 (12.6) | 493 (100.0) | |
N (%) | |||||
Ethnicity * | Arab | 36 (14.5) | 167 (67.1) | 46 (18.4) | 249 (50.5) |
Asian | 18 (54.5) | 14 (42.5) | 1 (3.0) | 33 (6.7) | |
Black | 8 (53.3) | 6 (40.0) | 1 (6.7) | 15 (3.0) | |
White | 81 (41.3) | 101 (51.5) | 14 (7.2) | 196 (39.8) | |
Marital status * | Married | 16 (32.7) | 27 (55.1) | 6 (12.2) | 49 (9.9) |
Unmarried | 127 (28.6) | 261 (58.8) | 56 (12.6) | 444 (90.1) | |
Smoking * | Non-smokers | 107 (28.4) | 226 (59.9) | 44 (11.7) | 377 (76.5) |
Smokers | 36 (31.0) | 62 (53.4) | 18 (15.6) | 116 (23.5) | |
Income * | Average Income | 65 (42.5) | 75 (49.0) | 13 (8.5) | 153 (31.0) |
High Income | 13 (20.6) | 43 (68.3) | 7 (11.1) | 63 (12.8) | |
Low Income | 65 (23.5) | 170 (61.4) | 42 (15.1) | 277 (56.2) | |
Median (interquartile range) | |||||
Age ^ | 21 (19–27) | 21 (18–25) | 19 (18–24) | 21 (19–25) | |
Stress score ^ | 31 (26.5–34) | 30 (24–35) | 31 (27–34) | 30 (25.535) | |
Physical activity METs ^ | 1039 (470–1269.7) | 1200 (396–2717.2) | 1293 (280.5–2772) | 1217 (381–2579) | |
BMI ^ | 24.34 (20.9–28.7) | 22.5 (20.3–26) | 22.94 (20.4–25.7) | 22.84 (20.4–26.7) |
Factors (Dietary Patterns) | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Alcohol (grams per day) | 0.150 | |||
Cereals (grams per day) | 0.812 | |||
Eggs (grams per day) | 0.469 | |||
Fats and Oils (grams per day) | 0.840 | |||
Fish and Sea food (grams per day) | 0.676 | |||
Fruits (grams per day) | 0.621 | |||
Meats (grams per day) | 0.887 | |||
Milk and dairy products (grams per day) | 0.349 | |||
Non-alcohol beverages (grams per day) | 0.309 | |||
Nuts and seeds (grams per day) | 0.424 | |||
Potatoes (grams per day) | 0.379 | |||
Soups and sauces (grams per day) | 0.584 | |||
Sugar and snacks (grams per day) | 0.627 | |||
Vegetables (grams per day) | 0.615 | |||
Legumes (grams per day) | 0.919 |
Model Path | Standardised Estimate | SE | p |
---|---|---|---|
Direct Effects | |||
Direct Impact on MD score | |||
Stress → MD score | −0.115 | 0.01 | 0.007 |
Income → MD score | −0.084 | 0.108 | 0.04 |
Country → MD score | 0.475 | 0.193 | <0.001 |
Age → MD score | 0.120 | 0.14 | 0.031 |
Ethnicity → MD score | −0.103 | 0.133 | 0.029 |
Country → stress | 0.151 | 0.859 | 0.007 |
Direct Impact on DP 2 (DP 2 food groups: vegetables, legumes, soups, and sauces) | |||
Income → DP 2 | 0.133 | 0.06 | 0.003 |
Country → DP 2 | 0.225 | 0.107 | <0.001 |
Direct Impact on DP 3 (DP 3 food groups: eggs, fish and seafood, meats, and potatoes) | |||
Country → DP 3 | −0.141 | 0.108 | 0.013 |
Ethnicity → DP 3 | 0.168 | 0.075 | 0.029 |
Marital status → DP 3 | 0.114 | 0.163 | 0.026 |
BMI → DP 3 | 0.172 | 0.0 | <0.001 |
Direct Impact on DP 4 (DP 4 food groups: fruits, nuts and seeds, dairy products, and non-alcoholic beverages) | |||
Country → DP 4 | 0.245 | 0.093 | <0.001 |
Age → DP 4 | 0.183 | 0.007 | 0.001 |
Ethnicity → DP 4 | −0.111 | 0.064 | 0.022 |
BMI → DP 4 | 0.266 | 0.0 | <0.001 |
Indirect Effects via Stress | |||
Country → MD score | −0.017 | 0.010 | 0.005 |
Country → DP 1 | 0.01 | 0.006 | 0.011 |
Country → DP 3 | 0.01 | 0.006 | 0.016 |
Country → DP 4 | −0.013 | 0.008 | 0.031 |
Residual Covariance | |||
Ethnicity and Age | −1.026 | 0.204 | <0.001 |
Ethnicity and Country | 0.152 | 0.016 | <0.001 |
Age and Country | −1.799 | 0.176 | <0.001 |
Country and Marital | 0.038 | 0.007 | <0.001 |
Marital and Income | −0.025 | 0.01 | 0.01 |
Age and Marital | −1.083 | 0.105 | <0.001 |
Age and Income | 1.013 | 0.226 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaled, K.; Tsofliou, F.; Hundley, V.A. A Structural Equation Modelling Approach to Examine the Mediating Effect of Stress on Diet in Culturally Diverse Women of Childbearing Age. Nutrients 2024, 16, 3354. https://doi.org/10.3390/nu16193354
Khaled K, Tsofliou F, Hundley VA. A Structural Equation Modelling Approach to Examine the Mediating Effect of Stress on Diet in Culturally Diverse Women of Childbearing Age. Nutrients. 2024; 16(19):3354. https://doi.org/10.3390/nu16193354
Chicago/Turabian StyleKhaled, Karim, Fotini Tsofliou, and Vanora A. Hundley. 2024. "A Structural Equation Modelling Approach to Examine the Mediating Effect of Stress on Diet in Culturally Diverse Women of Childbearing Age" Nutrients 16, no. 19: 3354. https://doi.org/10.3390/nu16193354
APA StyleKhaled, K., Tsofliou, F., & Hundley, V. A. (2024). A Structural Equation Modelling Approach to Examine the Mediating Effect of Stress on Diet in Culturally Diverse Women of Childbearing Age. Nutrients, 16(19), 3354. https://doi.org/10.3390/nu16193354