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Abstract: Degenerative joint disease osteoarthritis (OA) is characterized by the degeneration of
cartilage, synovial inflammation and low-grade systemic inflammation in association with microbial
dysbiosis and intestinal barrier defects. Butyrate is known for its anti-inflammatory and barrier
protective effects and might benefit OA patients. In a double-blind placebo-controlled random-
ized trial, the effects of four to five weeks of oral treatment with sustained-release (SR) butyrate
tablets (600 mg/day) on systemic inflammation and immune function were studied in hand OA
patients. Serum markers for systemic inflammation and lipopolysaccharide (LPS) leakage were
measured and ex vivo stimulation of whole blood or peripheral blood mononuclear cells (PBMCs)
was performed at baseline and after treatment. Butyrate treatment did not affect the serum markers
nor the cytokine release of ex vivo LPS-stimulated whole blood or PBMCs nor the phenotype of
restimulated monocytes. By contrast, butyrate treatment reduced the percentage of activated T helper
(Th) cells and the Th17/Treg ratio in αCD3/CD28-activated PBMCs, though cytokine release upon
stimulation remained unaffected. Nevertheless, the percentage of CD4+IL9+ cells was reduced by
butyrate as compared to the placebo. In both groups, the frequency of Th1, Treg, Th17, activated Th17,
CD4+IFNγ+ and CD4+TNFα+ cells was reduced. This study shows a proof of principle of some
immunomodulatory effects using a SR butyrate treatment in hand OA patients. The inflammatory
phenotype of Th cells was reduced, as indicated by a reduced percentage of Th9 cells, activated Th
cells and improved Th17/Treg balance in ex vivo αCD3/CD28-activated PBMCs. Future studies are
warranted to further optimize the butyrate dose regime to ameliorate inflammation in OA patients.

Keywords: butyrate; short-chain fatty acid; osteoarthritis; non-communicable diseases; low-grade
inflammation; intestinal barrier

1. Introduction

Osteoarthritis (OA) is a degenerative joint disease with rising prevalence [1]. OA
can be classified as a non-communicable disease and is characterized by degeneration
of cartilage, synovial inflammation and low-grade systemic inflammation [2]. Clinical
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evidence shows that this inflammation is associated with microbial dysbiosis and intestinal
barrier defects [1,3–7]. It has been hypothesized that dysbiosis of the microbiome leads to
local inflammation in the gut and increased intestinal permeability, contributing to an influx
of bacterial components such as lipopolysaccharides (LPSs) into the bloodstream, resulting
in systemic low-grade inflammation [8,9]. This systemic inflammation might attribute to
the development of OA, resulting in joint pain [10–15]. Furthermore, the inflammation
might cause a positive feedback loop by maintaining the intestinal barrier defect, thereby
facilitating a continuous influx of LPSs and consequently sustaining inflammation and, in
this way, driving the pathology of OA. Markers for systemic LPS leakage are, amongst
others, LPS-IgG and LPS-binding protein (LBP). A rise in serum LBP is associated with
increased knee OA progression [9]. Additionally, the microbiome is known for its capacity
to produce biologically active immunomodulatory molecules such as short-chain fatty
acids (SCFAs) via the fermentation of fibers [1,4,10]. Dysbiosis of the microbiome might
lead to altered production of SCFAs, although the latter has not been confirmed in OA
patients yet [16–18].

In the joints of OA patients, activated cells of the innate and adaptive immune sys-
tem are found, and the synovial fluid contains increased concentrations of inflammatory
mediators which can affect homeostasis in the cartilage [19–21]. In particular, activated
monocytes/macrophages and T helper (Th)1, Th17 and Th9 cells play a role in the patho-
physiology of OA [22,23], with LPSs being a main driver of macrophage activation. In-
creased levels of IL-17a, IL-9, and Th17 and Th9 cells can be observed in the circulation of
OA patients and are associated with disease activity [23–26]. In addition, regulatory T-cell
(Treg) function and Treg/Th17 balance may be disturbed [25,27].

Currently, no disease-modifying treatment is available for OA patients and the current
standard therapy consists of patient education, exercise therapy and pain medication [28,29].
The SCFA butyrate is known for its anti-inflammatory and barrier-improving properties
and could therefore be a possible treatment for patients with OA [30–32], in particular
when considering intestinal dysbiosis, which might cause butyrate shortage in the intestine
of these patients [16–18].

The direct effects of butyrate on peripheral blood mononuclear cells (PBMCs) or innate
immune cells like monocytes, which are precursors for tissue-resident macrophages, have
previously been studied. In these studies, butyrate was shown to reduce the release of
various pro-inflammatory cytokines by activated PBMCs and to modulate immune cell
phenotypes [33–41]. In addition, butyrate can improve the intestinal epithelial barrier,
protect against inflammatory-mediated barrier disruption and suppress the activation of
epithelial cells in vitro [36,42–45]. It should be realized that in these models there was
direct and constant contact of butyrate with the cells. So far, it is unknown whether oral
pharmacotherapy with butyrate can establish an anti-inflammatory response in human
extraintestinal pathologies associated with intestinal barrier defects, such as that in patients
with OA.

The aim of this study was to investigate the anti-inflammatory properties of sustained-
release butyrate tablets in patients with hand OA within a double-blind placebo-controlled
randomized trial. The sustained-release butyrate tablet was developed to release sufficient
amounts of butyrate that, in theory, should be able to achieve pharmacologically active
concentrations along the small intestine [46]. We hypothesized that this dosage form
and dose of butyrate would have beneficial effects on the intestinal barrier and, via this
way, on the influx of LPSs (as indicated by serum LPS IgG and LBP levels) and systemic
inflammation, which would affect the inflammatory potential of monocytes and Th cells
and the Th17/Treg cell balance as well. In this manuscript, we outline the effect of the
sustained-release butyrate tablet on in vivo and ex vivo immune parameters.
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2. Materials and Methods
2.1. Participants

Thirty-three patients (27 females and 6 males, age 50 to 74 years) participated in this
study after giving their informed consent. The participants were randomly allocated to
either the placebo (n = 17; 13 females, 4 males; 13 with disease duration of ≥5 years) or
the sustained-release butyrate tablet group (n = 16; 14 females, 2 males; 8 with disease
duration of ≥5 years) (Table 1). This clinical study was approved by the Ethical Committee
of the Radboud University Medical Center (Nijmegen, The Netherlands, protocol number:
NL73382.091.21, approval date: 3 February 2022) and was conducted in full accordance with
the principles of the Declaration of Helsinki. The clinical trial was registered in the European
Union Clinical Trials Register with reference code 2020-001071-33 and conducted at the
Sint Maartenskliniek (Ubbergen, The Netherlands). To be eligible for inclusion in the study,
participants had to be ≥50 and ≤80 years of age, have a Body Mass Index (BMI) > 20 and
<30 kg/m2 and have hand OA, according to the 1990 American College of Rheumatology
(ACR) diagnostic criteria for hand OA, in both hands. Pain scored by the numeric pain
rating scale (NRS) during hand activity needed to be ≥4 and ≤8 (scale 0–10), during 15 of
the last 30 days. Exclusion criteria were the use of antibiotics within three months before
the start of the study, use of NSAIDs, use of immunosuppressants, previous surgery of one
of the hands, and a cerebro- or cardiovascular incident within 6 months before the start of
the study. Further exclusion criteria were diabetes or other chronic inflammatory diseases
or autoimmune diseases, cognitive deficits affecting the scoring process, fibromyalgia
or any other syndrome or condition that could interfere with the assessment of pain.
In addition, severe current psychiatric disorders assessed by a physician, self-reported
consumption of >2 units of alcohol per day, intramuscular or intraarticular corticosteroid
injections within four weeks before the start of the study, an estimated glomerular filtration
rate (eGFR) < 30 mL/min/1.73 m2 and alanine aminotransferase (ALAT) < 1.5 ULN were
exclusion criteria.

Table 1. Patient characteristics at baseline, if applicable values are given as the mean ± SD. K&L:
Kellgren and Lawrence.

Placebo
(n = 17)

Sustained-Release Butyrate
(n = 16)

Age (years) 63.3 ± 8.3 61.6 ± 5.0
BMI (kg/m2) 25.5 ± 2.7 26.0 ± 2.5

Female (n)
Male (n)

13
4

14
2

Disease duration < 5 years (n) 4 8
Disease duration ≥ 5 years (n)

Number of joints K&L ≥ 2
(0–30 joints)

13
8 ± 5

8
8 ± 4

2.2. Design of the Double-Blind Placebo-Controlled Randomized Clinical Trial

The patients participated in a double-blind randomized placebo-controlled study
and were randomly allocated to either 150 mg butyrate (as calcium) sustained-release
tablets (Tiofarma B.V., Oud-Beijerland, The Netherlands) or matching placebo tablets
(see for composition the description of the tablet core below) (Tiofarma B.V.). Twice
a day, two tablets (thus 600 mg butyrate/day in total) were taken for approximately
four weeks (26–35 days, based on the availability of the patient and investigators for
blood withdrawal and isolation of immune cells). Excipients used in the tablet core were
hydroxypropyl methylcellulose (74 mg), silicified microcrystalline cellulose (99 mg) and
magnesium stearate, and the tablets were coated with a taste-masking coating consisting
of talc, titanium dioxide, polyethylene glycol 6000, simethicone emulsion, Eudragit RL
30 D and triethyl citrate. The tablet was formulated to release >0.08 mmol of butyrate
per h within the time frame of 2 to 4 h post-ingestion, corresponding with the time frame
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the tablet is present in the small intestine [46]. Whole blood was collected in 4 × 10 mL
heparin tubes, 1 × 3 mL heparin gel tube and 1 × 10 mL clot tube at the beginning (visit
1) and at the end of the study (visit 2) (Figure 1A). The blood in the 3 mL heparin gel
tube was used to measure plasma levels of highly sensitive C-reactive protein (hsCRP).
The clot tubes were spun down and serum was stored in cryovials at −80 ◦C until further
basal serum measurements. The blood in the 10 mL heparin tubes was used for two
follow up experiments. First, the whole blood was stimulated with LPS for 24 h and
IL-10 and TNF-α were measured in the blood plasma. Second, PBMCs were isolated from
the whole heparin blood and used for experiments in which the PBMCs were stimulated
to measure cytokine release and to identify immune cell phenotypes (see experimental
scheme Figure 1B–D). The effects on clinical parameters and the intestinal microbiome will
be presented in another manuscript.
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Figure 1. Clinical study set-up (A) and set-up of the methods used to stimulate and analyze the
whole blood (B) and peripheral blood mononuclear cells (C,D). ELISA: enzyme-linked immunosor-
bent assay, hsCRP: highly sensitive C-reactive protein, IFN-γ: interferon-gamma, IL: interleukin,
LPS: lipopolysaccharides, LBP: LPS-binding protein, NO: nitric oxide, PBMC: peripheral blood
mononuclear cell, PMA: phorbol myristate acetate, Th: T helper cell, TNF-α: Tumor Necrosis Factor
alpha, TNFR: TNF receptor, Treg: regulatory T-cell.
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2.3. Basal Serum and Plasma hsCRP Measurements

Serum was collected at baseline (visit 1) and end of the study (visit 2) to measure LPS-
binding protein (LBP), LPS IgG, soluble TNF-receptor 1 (sTNFR1), soluble TNF-receptor
2 (sTNFR2), nitrite, nitrate, total nitric oxide (NO), IL-6 and IL-1β. LBP (Thermo Fisher
Scientific, Waltham, MA, USA), IgG LPS (Hycult Biotech, Uden, The Netherlands) and
sCD14 (R&D systems (Minneapolis, MN, USA) were measured using an enzyme-linked
immunosorbent assay (ELISA) according to the manufacturers instructions. Optical density
was measured using a CLARIOstar Microplate Reader (BMG Labtech, Ortenberg, Germany).
IL-6, IL-1β (Millipore, Milliplex human bone magnetic bead panel), sTNFR1 and sTNFR2
(Millipore, Milliplex human soluble cytokine receptor magnetic bead panel) were measured
using an Antibody-Immobilized Beads immunoassay according to the manufacturers
instruction and analyzed using a Bio-Plex 200 (Bio-Rad, Hercules, CA, USA). hsCRP was
determined using the chemical analyzer Olympus type AU400.

2.4. Whole Blood Stimulation

On the same day as the whole heparin blood samples were drawn from the patients,
whole blood samples were diluted 1:1 with plain RPMI-1640 (Sigma-Aldrich, St. Louis, MO,
USA) or 2 µg/mL LPS (#tlrl-3pelps, Invivogen, Toulouse, France) in RPMI-1640 in triplo
in an autoclaved screw cap micro tube (Sarstedt, Nümbrecht, Germany). Each tube was
closed and gently mixed; thereafter, the cap was unscrewed a quarter turn to make sure the
tubes were not completely closed. Tubes were incubated for 24 h in an incubator at 37 ◦C
and 5% CO2 (Figure 1B). After 24 h of stimulation, the tubes were centrifuged for 10 min at
150× g at 20 ◦C followed by 10 min at 700× g at 20 ◦C in an Eppendorf centrifuge 5424 R.
Blood plasma was transferred to a clean tube and stored at −80 ◦C until measurement of
IL-10 and TNF-α using ELISA.

2.5. PBMC Isolation

On the same day as the whole heparin blood samples were drawn from the patients,
PBMCs were isolated. First, the whole blood was diluted 1:1 with Phosphate-Buffered
Saline (PBS) (Lonza, Basel, Switserland) supplemented with 2% heat-inactivated Fetal Calf
Serum (FCS) (Biowest, Ennigerloh, Germany) at room temperature. Second, the diluted
blood was carefully dripped on the porous membrane of the leucosep tubes (Greiner Bio-
One, Kremsmünster, Austria), followed by 13 min centrifugation at 1000× g at 20 ◦C using
an Eppendorf centrifuge 5810 R with the acceleration and deceleration set at 4. Third,
the enriched cell fraction of PBMCs was washed twice using PBS+2%FCS. PBMCs were
resuspended in RPMI-1640+20%FCS and diluted with an equal volume of ice-cold RPMI-
1640+20%FCS+20%DMSO (Sigma-Aldrich) in a cryovial (maximum of 3 × 107 PBMCs/mL
per cryovial). Cryovials (Corning, New York, NY, USA) were frozen using a CoolCell® LX
(Corning) and stored at −80 ◦C until used in the PBMC stimulation experiments.

2.6. PBMC Stimulation

PBMCs were quickly thawed and washed with culture medium consisting of RPMI-
1640 supplemented with 2.5% FCS and 1% Penicillin/Streptomycin (stock 10,000 U/mL
and 10,000 µg/mL respectively) (Gibco, Invitrogen, Carlsbad, CA, USA). After washing,
cells were counted and diluted to a final concentration of 1 × 106 cells/mL and transferred
to a 12-well suspension plate (Greiner). Visit 1 and visit 2 of the same patient were kept in
the same well plate, and for each patient, two plates were prepared. Cells were left to rest
for 1 h in an incubator at 37 ◦C and 5% CO2 before stimulations. Cells were stimulated with
1 µg/mL LPS or αCD3 (150 ng/mL) combined with αCD28 (100 ng/mL) (BD Biosciences,
San Jose, CA, USA). After 19 h, one plate of each patient was spun down at 1200 rpm
for 5 min at 20 ◦C in an Eppendorf centrifuge 5810 R and the supernatant was carefully
discarded. Cells were restimulated with 5 ng/mL phorbol myristate acetate (PMA) (Sigma-
Aldrich) and 750 ng/mL ionomycin (Sigma-Aldrich) in the presence of 1 µg/mL golgiplug
(BD Biosciences) in culture medium, while plain culture medium was added to the control
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cells for an additional 5 h at 37 ◦C and 5% CO2. At 24 h, the experiments were ended
and both plates were spun down at 1200 rpm for 5 min at 20 ◦C. The supernatant of the
plates without restimulation was stored at −80 ◦C until measurement of IL-6, IL-10, IL-17a,
TNF-α, IFN-γ and IL-9 using ELISA. Cells were resuspended in cold PBS and transferred
to a U-bottom 96-well plate (Corning, Falcon) for FACS staining and analysis (Figure 1C,D).
Left-over cells were pooled and used for fluorochrome minus one (FMO) controls, which
included matched isotype controls to control for a specific signal; controls were set at the
maximum of 1%.

2.7. FACS Analysis

Four FACS panels were used. In panel 1, PBMCs were stained with CD4 PerCP-
Cyanine5.5, CD25 Alexa Fluor 488, CD127 PE-Cyanine7, FOXP3 eFluor 660 and RORγ (t)
PE (All Thermo Fisher Scientific, Waltham, MA, USA). In panel 2, PBMCs were stained with
CD4 PerCP-Cyanine5.5, CD69 PE and CD196 (CCR6) APC (All Thermo Fisher Scientific)
and CD183 (CXCR3) Alexa Fluor 488 (BD Biosciences). In panel 3, PBMCs were stained
with CD14 APC (Thermo Fisher Scientific), TLR4 PE (BD Biosciences), IL-10 Brilliant Violet
421 and TNF-α Brilliant Violet 510 (both BioLegend, San Diego, CA, USA). In panel 4,
PBMCs were stained with CD4 PerCP-Cyanine5.5 (Thermo Fisher Scientific), IL-17a Alexa
Fluor 488, IL-9 PE (both BD Biosciences), IFN-γ Alexa Fluor 647 (all three BioLegend), IL-10
Brilliant Violet 421 and TNF-α Brilliant Violet 510.

PBMCs in the U-bottom 96-well plate were first washed with PBS and incubated
for 30 min at 4 ◦C with Fixable Viability dye eFluorTM 780 (Thermo Fisher Scientific) in
PBS. This was followed by blocking the cells with Fc block (BD Biosciences) for 10 min
at 4 ◦C. After blocking, the cells were incubated for 45 min with an appropriate extracel-
lular antibody solution at 4 ◦C protected from light and washed with 1% bovine serum
albumin (Roche) in PBS. Panel 1 was fixed overnight at 4 ◦C protected from light with
FOXP3 fixation/permeabilization buffer (Thermo Fisher Scientific). Panel 2 was fixed with
1:4 diluted intracellular fixation buffer (Life Technologies, Themo Fisher Scientific) in PBS.
Panels 3 and 4 were fixed with undiluted intracellular fixation buffer. The next day, the
PBMCs were washed and blocked for 10 min at 4 ◦C protected from light. After blocking,
an appropriate intracellular antibody solution was added for 45 min at 4 ◦C protected from
light and washed. All panels were measured with a BD FACS Canto II flow cytometer
(Becton Dickinson, Franklin Lakes, NJ, USA) and the data were analyzed using Flowlogic
software Version 8 (Inivai Technologies, Mentone, Australia).

In addition, compensation beads (UltraComp eBeadsTM Plus, Life technologies) were
stained with 1 µL of each antibody for 45 min at 4 ◦C and washed twice with FACS
buffer. After washing, beads were measured with the flow cytometer to be used for
compensation in the analysis. The V1 and V2 samples of each individual patient were
analyzed together in the same FACS run. See Supplemental Table S1 for the titrated
dilutions of the antibodies used.

2.8. ELISA of Whole Blood Plasma and PBMC Supernatant

TNF-α, IL-10, IL-6, IL-9, IL-17a and IFN-γ ELISA (Thermo Fisher Scientific) was
performed according to the manufacturers instructions. In short, high-binding 96-well
plates (Corning Costar 9018) were coated with capture antibody and incubated overnight at
4 ◦C. The next day, the plates were washed and blocked and the samples and standard were
incubated for 2 h. After washing, a detection antibody was added to the wells and incubated
for 1 h, followed by (strept)avidin-HRP for 30 min protected from light. After another
round of washing, TMB solution was added and the color reaction was stopped with
2N H2SO4. Optical density was measured using a Glomax® Discover Microplate Reader
(Promega Corporation, Madison, WI, USA). The V1 and V2 samples of each individual
patient were analyzed together on the same ELISA plate.
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2.9. Statistical Analysis

Differences between visit 1 of the placebo group and visit 1 of the butyrate-treated
group (unpaired), and between visit 2 of the placebo group and visit 2 of the butyrate-
treated group, were assessed using an ordinary one-way ANOVA, with selected pairs
(placebo versus butyrate visit 1; placebo versus butyrate visit 2) using Bonferroni’s post
hoc test for normally distributed data or the non-parametric Kruskal–Wallis and Dunn’s
post hoc test with selected pairs when data were not normally distributed. Differences
within the treatment groups (paired), thus between visit 1 and visit 2 for the placebo
or butyrate-treated group, were assessed using a paired Student’s t-test if the data were
normally distributed. If not normally distributed, a Wilcoxon matched-pairs signed-rank
test was used.

In addition, for each parameter, the ∆visit 2–visit 1 was calculated. Differences between
∆visit 2–visit 1 of the placebo group and ∆visit 2–visit 1 of the butyrate-treated group were
assessed using an unpaired Student’s t-test for normally distributed data or the Mann–
Whitney test for not-normally distributed data.

Results are presented as means ± SEM. Statistical analysis was performed using
GraphPad Prism 8.4.3 (GraphPad Software, San Diego, CA, USA). Results were considered
statistically significant when p < 0.05. Significant differences are shown in the figures as
* p < 0.05, ** p < 0.01, *** p < 0.001 or **** p < 0.0001.

3. Results
3.1. Baseline Characteristics

Thirty-three patients (27 females and 6 males, age 50 to 74 years) participated in this
study, of which sixteen received sustained-release butyrate tablets and seventeen received
placebo tablets. Patient characteristics at baseline are described in Table 1. In the sustained-
release butyrate-treated group, half of the patients (8 out of 16) had hand OA for less
than five years, whereas this was the case for a quarter (4 out of 17) of the group given
the placebo.

3.2. Effect of Butyrate Supplementation on Systemic Inflammation and LPS Influx

It was hypothesized that butyrate treatment could improve the intestinal barrier, which
potentially might lead to a decreased influx of LPSs (as indicated by serum LPS IgG and LBP
levels) and, as a consequence, reduced systemic inflammation (biomarker hsCRP). To test
this hypothesis, systemic levels of hsCRP, LBP and LPS IgG were measured at visit 1 and
visit 2. No significant changes in hsCRP were observed during the study period in either
of the treatment groups (Figure 2A). Similar results were obtained for LBP and LPS-IgG,
measures for LPS leakage (Figure 2B). TNF receptor 1 (TNFR1), TNF receptor 2 (TNFR2),
nitrite and total nitric oxide (NO) are biomarkers shown to be elevated in association with
chronic systemic inflammation. These levels were not affected by treatment with butyrate
nor placebo tablets (Supplemental Figure S1), whereas nitrate also remained unaffected
and IL-6 and IL-1β were below the detection limit.

3.3. Effect of Butyrate Supplementation on LPS-Induced Activation of Whole Blood and PBMCs

The effect of four weeks of oral sustained-release butyrate supplementation on ex vivo
LPS stimulation of whole blood and PBMCs was evaluated. To monitor basal effects on
monocytes, intracellular IL-10 and TNF-α measurements were performed in the CD14+
monocytes within the ionomycin–PMA-restimulated PBMC.

LPS stimulation of the whole blood induced the release of IL-10 and TNF-α com-
pared to the negative control (Supplemental Table S2). IL-10 and TNF-α release were
both not affected by butyrate treatment for four weeks, as was the case for the placebo
(Supplemental Figure S2). To study intracellular IL-10 and TNF-α in monocytes, PBMCs
were restimulated with ionomycin and PMA in the presence of golgiplug. None of the used
stimulations and restimulations affected cell viability (Supplemental Figure S3). LPS stimu-
lation impacted the monocyte gating and was therefore not used; instead, medium-exposed
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PBMC were used to enable monocyte gating. Butyrate treatment did not affect intracellular
IL-10 and TNF-α expression in the ionomycin–PMA-restimulated CD14+ monocytes, and
neither did the placebo (Supplemental Figure S4A,B,E). In addition, the percentages of
TLR4+ monocytes and the mean fluorescence intensity of TLR4, which indicated the level
of TLR4 expression on monocytes, were not affected by the butyrate treatment nor the
placebo (Supplemental Figure S4C–E).
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Figure 2. (A) hsCRP levels in the plasma of patients, (B) LBP levels and (C) LPS IgG levels in the
serum of patients at baseline (V1) and the end of the study (V2). Orange bars indicate serum levels
from patients who received the placebo and blue bars indicate patients who received butyrate. Data
are presented as mean ± SEM (n = 17 placebo group, n = 13–16 butyrate group).

Sustained-release butyrate treatment additionally did not affect ex vivo IL-10, TNF-α,
IL-6 or IFN-γ release of LPS-stimulated PBMCs, and neither did the placebo
(Supplemental Figure S5).

3.4. Effect of Butyrate Supplementation on Th Cells

To study the effect of sustained-release butyrate supplementation on ex vivo T-cell
activation, PBMCs were activated with αCD3/CD28. Within the CD4+ Th cell subset,
only αCD3/CD28 stimulation of PBMCs induced a percentage of RORγ+ Th17 cells,
CD25+FoxP3+ Treg, and CD25+ and CD25+FoxP3—activated effector Th cells compared to
non-stimulated PBMCs (Supplemental Table S3). LPS stimulation of PBMCs did not induce
these T-cell phenotypes (Supplemental Table S3). The frequencies of RORγ+ Th17 cells
and CD25+FoxP3+ Treg were reduced at visit 2 compared to visit 1 after sustained-release
butyrate treatment and placebo use, whereas the frequencies of CD25+ and CD25+FoxP3-
activated Th cells were only reduced after the butyrate treatment and not after the placebo
(Figure 3). However, no significant difference was observed between the butyrate group and
the placebo group when comparing the ∆V2–V1 of both groups (Supplemental Table S3).
In addition, the Th17/Treg balance was only reduced in the patient group treated with
sustained-release butyrate, which was not observed after placebo use, although again no
significant difference was observed when comparing the ∆V2–V1 of the butyrate- and the
placebo-treated groups (Supplemental Table S3).

Furthermore, αCD3/CD28 stimulation of PBMCs enhanced the frequency of CD69+-
activated Th cells, CCR6+CXCR3- Th17 cells, CD69+CCR6+CXCR3-activated Th17 cells and
CD69+CXCR3+ Th1 cells within the CD4+ population compared to non-stimulated PBMCs
(Supplemental Table S3). LPS stimulation of PBMCs did not induce these T-cell phenotypes
(Supplemental Table S3). The percentage of CD69+-activated Th cells was reduced after use
of sustained-release butyrate tablets and not after use of the placebo (Figure 4A,E). However,
no significant effect was observed when comparing the ∆V2–V1 of CD69+-activated Th
cells between the placebo and the butyrate group (Supplemental Table S2). Similar to the
percentage of intracellular RORγ+-expressing Th cells, the frequency of Th17 cells was also
phenotyped via their surface marker expression. The percentages of CCR6+CXCR3- Th17
cells and CD69+CCR6+CXCR3-activated Th17 cells were reduced at visit 2 compared to visit
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1 in the ex vivo αCD3/CD28-activated PBMCs of OA patients receiving sustained-release
butyrate supplementation and after placebo use as well (Figure 4C,D). In addition, the
frequency of CD69+CXCR3+-activated Th1 cells was reduced both after use of sustained-
release butyrate as well as the placebo (Figure 4B).
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Figure 3. FACS analysis of αCD3/CD28-stimulated PBMCs. (A) Percentage of RORγ+ cells out
of CD4+ cells (Th17 cells), (B) percentage of CD25+FoxP3+ cells out of CD4+ cells (Treg cells),
(C) Th17/Treg balance, (D) percentage of CD25+ cells out of CD4+ cells (activated T-cells), (E) per-
centage of CD25+FoxP3- cells out of CD4+ cells (activated T-cells) and (F) the used gating strategy
with corresponding fluorescence minus one (FMO) controls for a representative sample. Orange bars
indicate whole blood samples from patients who received placebo and blue bars indicate patients
who received butyrate. Data are presented as mean ± SEM (n = 17 placebo group, n = 15 butyrate
group). Significant differences are shown as * p < 0.05, ** p < 0.01. V1: visit 1 (baseline), V2: visit 2
(end of study).

Even though some T-cell phenotypes were affected by the treatments, no effects of the
sustained-release butyrate nor placebo were observed on the release of regulatory cytokine
IL-10 and inflammatory cytokines TNF-α, IL-6, IFN-γ, IL-9 or IL-17a by αCD3/CD28-
stimulated PBMCs (Supplemental Table S3). However, when studying intracellular cytokine
expression in CD4+ T-cells within the αCD3/CD28-stimulated PBMCs, significant effects
were observed (Figure 5). These PBMCs were restimulated with ionomycin and PMA in the
presence of golgiplug, enabling the intracellular measurement of IL-10+, TNF-α+, IL-6+,
IFN-γ+, IL-9+ or IL-17a+ in Th cells compared to non-activated PBMCs (Supplemental
Table S3). Neither the sustained-release butyrate nor the placebo affected the percentage of
IL-10+ or IL-17a+ cells, but both reduced the percentage of IFN-γ+ and TNF-α+ Th cells. In
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addition, sustained-release butyrate, but not the placebo, reduced the percentage of IL-9+ Th
cells. However, no significant effect was observed comparing the ∆V2–V1 of the percentage
IL-9+ Th cells between the placebo and the butyrate group (Supplemental Table S2).
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Figure 4. FACS analysis of αCD3/CD28-stimulated PBMCs. (A) Percentage of CD69+ cells out of
CD4+ cells (Activated T-cells), (B) percentage of CD69+CXCR3+ cells out of CD4+ cells (activated
Th1 cells), (C) percentage of CD69+CCR6+ cells out of CD4+CXCR3- cells (activated Th17 cells),
(D) percentage of CCR6+ cells out of CD4+CXCR3- cells (Th17 cells) and (E) the used gating strategy
with corresponding fluorescence minus one (FMO) controls for a representative sample. Orange bars
indicate whole blood samples from patients who received placebo and blue bars indicate patients
who received butyrate. Data are presented as mean ± SEM (n = 17 placebo group, n = 15 butyrate
group). Significant differences are shown as * p < 0.05, ** p < 0.01. V1: visit 1 (baseline), V2: visit 2
(end of study).
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Figure 5. FACS analysis of αCD3/CD28-stimulated PBMCs which were restimulated with PMA,
ionomycin and golgiplug. (A) Percentage of IFN-γ+ cells out of CD4+ cells, (B) percentage of IL-10+
cells out of CD4+ cells, (C) percentage of IL-17a+ cells out of CD4+ cells, (D) percentage of TNF-α+
cells out of CD4+ cells, (E) percentage of IL-9+ cells out of CD4+ cells and (F) the used gating strategy
with corresponding fluorescence minus one (FMO) controls for a representative sample. Orange bars
indicate whole blood samples from patients who received placebo and blue bars indicate patients
who received butyrate. Data are presented as mean ± SEM (n = 17 placebo group, n = 15 butyrate
group). Significant differences are shown as * p < 0.05, *** p < 0.001. V1: visit 1 (baseline), V2: visit 2
(end of study).

4. Discussion

The purpose of this study was to investigate the effects of four to five weeks of
sustained-release butyrate treatment on systemic inflammation and immune function, as
studied using ex vivo stimulation of the whole blood and PBMCs of hand OA patients.

The pathophysiology of hand OA involves multiple factors. Increasing evidence
suggests a compromised intestinal barrier and low-grade systemic inflammation as con-
tributing factors [2,7]. In the current study, hand OA patients were provided with sustained-
release butyrate tablets and it was aimed to deliver a butyrate concentration in the intestinal
lumen high enough for a pharmacological effect leading to reduced systemic inflammation
via improvement of, among other factors, the intestinal barrier function. However, in
the present study, butyrate did not affect systemic inflammation marker hsCRP. Neither
serum LBP or IgG LPS concentrations, which both are indirect measures for intestinal LPS
leakage, were affected. LBP is a protein which is synthesized by the liver in response to
inflammatory stimuli, particularly LPSs, whereas IgG LPS is an antibody which is pro-
duced in response to LPSs. The effect of butyrate treatment on hsCRP, LBP or IgG LPS
has not been studied before in clinical trials. Among markers associated with low-grade
systemic inflammation such as IL-6, IL-1β and hsCRP, in this study only hsCRP was de-
tectable, although in low concentrations. Systemic low-grade inflammation, as determined
by hsCRP levels, becomes more pronounced in patients having more severe OA [10]. It
can be hypothesized that for this reason it was not possible to detect an effect of the in-
tervention on low-grade inflammation in this patient category. In addition, even though
hsCRP levels can be elevated in OA patients, the increase compared to healthy controls is
relatively small [10]. The same accounts for LBP [47–49]. Beyond these parameters, other
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OA-associated systemic inflammation markers like NO and TNFR also remained unaf-
fected. Therefore, the main objective to use a dose of butyrate high enough to suppress LPS
leakage and thus systemic inflammation may have failed in the current study group with
patients receiving 600 mg butyrate per day. Other clinical trials have used dosages up to 4 g
butyrate per day, indicating that it would be safe to increase the dosage of sustained-release
butyrate tablets in future studies, although it should be noted that the formulations used
in the other trials were completely different, namely being colon-targeted or immediate
release. We developed a sustained-release butyrate tablet which slowly releases steady
amounts of butyrate along the whole small intestine to reach a local pharmacologically
active concentration. Nonetheless, it remains to be revealed if indeed a pharmacologically
active concentration was present and whether the exposure time was sufficient to achieve
a pharmacological effect on systemic inflammation markers. The absence of an effect on
systemic inflammation markers and LPS leakage markers might suggest that the designed
formulation was ineffective, possibly due to one of the aforementioned reasons, although it
might also be that the four-week treatment duration was too short to achieve these effects.

The systemic immunomodulatory effect of butyrate treatment was also studied in
ex vivo stimulated whole blood or PBMCs. These stimulations were performed to give
more insight in the potential of butyrate as a treatment for patients with OA, because these
stimulations show the inflammatory potential of different immune cells, such as monocytes
and T-cells. Monocytes are key effector cells of the immune system and precursors of
macrophages such as those present in the inflamed synovia of OA patients. Furthermore,
emerging evidence shows that infiltration of monocytes into the synovial tissues of knee
OA patients is part of the pathogenesis [50], as well as elevated monocyte activation
systemically [51]. In different in vitro studies, it was observed that butyrate inhibits the
release of pro-inflammatory cytokines and induced the release of regulatory cytokines
by monocytes, which could be beneficial in OA patients [37,52]. Similar to macrophages,
monocytes are very sensitive to LPS activation. However, in the present study we did not
observe any effect of the butyrate treatment on ex vivo LPS stimulation of whole blood cells
nor PBMCs, indicating that the sustained-release tablets did not affect monocytes and LPS-
induced cytokine release. Contrary, another study showed that in vivo butyrate treatment
did decrease ex vivo oxLDL or β-glucan-induced trained immunity in the monocytes of
obese males [53]. Even though this study did not concern OA patients and the monocytes
were first trained before LPS or PAM3CSK4 activation, the main difference may be the
dose of butyrate given, since in the other study a twice-daily intake of 4 g butyrate for
four weeks was studied, which is approximately 13 times higher than the dosage used in
the present study. Further, the release characteristics of butyrate from the formulations
were different between both studies as well. From animal studies and in vitro studies,
it is known that short-chain fatty acids can affect the balance of pro-inflammatory M1-
and anti-inflammatory M2-type macrophages in favor of M2, which might ameliorate
inflammatory effects [54]. Additionally, eight weeks of treatment with 100 mM butyrate
enemas decreased nuclear translocation of NK-kappaB in the macrophages of patients with
ulcerative colitis [55]. We hypothesize that a higher dosage of sustained-release butyrate
might have anti-inflammatory effects on monocytes and macrophages, which needs to be
confirmed in future studies.

T-cells play a central role in the adaptive immune system. Similar to monocytes,
T-cell infiltration into the synovial tissues of OA patients contributes to the disease’s
pathogenesis, as well as T-cell subset imbalances and altered production of cytokines by
T-cells systemically. For example, it was observed that the percentage of Treg (IL7R-CD25+)
cells is decreased in peripheral blood of patients with inflammatory knee OA [56] and the
percentages of CD4+CD8-IL9+, CD4+CD8-IFNγ and CD4+CD8-IL17a+ cells and serum
levels of IL-9, IFN-γ, IL-17a and IL-6 are increased [24,57].

In the current study, serum levels of IL-6 remained below detection and the PBMCs
of this moderate hand OA patient group did not secrete any of the measured cytokines in
absence of stimulation. However, upon stimulation with αCD3/CD28, we were able to
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study the effect of four weeks of sustained-release butyrate treatment on ex vivo T-cell acti-
vation. Butyrate treatment reduced the percentage of activated CD69+CD4+, CD25+CD4+
and activated effector CD25+FoxP3- Th cells and produced a lowered Th17/Treg ratio,
shifting the balance in favor of Treg. However, no significant difference was observed
when comparing the ∆V2–V1 between the butyrate and placebo groups. Therefore, stud-
ies in bigger patient groups are required to fully exclude the involvement of a placebo
effect. Reduced generic T-cell activation and an improved Th17/Treg balance could be
beneficial for OA patients, in whom Th1, Th17 and Th9 activation is known to contribute
to disease pathology along with an increased Th17/Treg balance [23,25]. Even though
the activation status of the Th cells was suppressed in the butyrate group, the cytokine
release of the ex vivo activated PBMC remained unaffected. It may be that the effect on
activation was too small to also suppress cytokine secretion or that beyond Th cells, other
cells like natural killer cells and cytotoxic T-cells also contributed to the secretion of these
cytokines [58]. However, when studying intracellular cytokine expression within the Th
cells of αCD3/CD28-activated PBMCs, the percentage of IL9+ cells was also reduced by
the butyrate treatment. Intracellular IFN-γ and TNF-α expression were also reduced, but
this also applied for the placebo group, while the lowering of IL-9+ Th9 cells was selective
for the butyrate group, although a placebo effect cannot be excluded since the ∆V2–V1
between the butyrate and placebo group did not differ. Beyond pro-inflammatory cytokines
like IFN-γ, IL-17a and TNF-α, IL-9 is also an important player in OA disease progression.
IL-9 is being recognized as a systemic biomarker in knee OA severity. It was shown that
the number of Th9 cells in circulation was positively associated with elevated CRP levels
and that the number of Th9 cells and serum IL-9 concentrations in patients with OA were
positively related with a loss of daily functioning [24]. Therefore, these results imply that
our sustained-release butyrate treatment does have a beneficial effect, reducing the state of
inflammation in OA patients at least at the level of the T-cells.

The barrier protective and anti-inflammatory effects of butyrate are well studied, and
previously we have shown in in vitro mucosal immune models that butyrate can protect
against inflammatory-induced barrier disruption and silence immune cell activation within
24 h; both were linked to the HDAC inhibitory capacities of butyrate [33,42]. Future studies
are warranted to analyze the mechanism of action of butyrate sustained-release tablets on
T-cell function in OA patients.

In addition to the parameters mentioned above, the butyrate and placebo treatment
both lowered the frequency of Treg cells and activated Th1 cells, Th17 cells, IFNγ+CD4+
cells and TNFα+CD4+ cells. The patient inclusion of the butyrate and placebo group was
done on regular a basis during the year at one location, so the inclusion period and location
were similar between the groups. Additionally, the general patient characteristics did not
differ between groups. The excipients used in the formulation are not known to have
any pharmacological effects; however, interference of the excipients with the intestinal
microbiome can be possible. Indeed, nonfermentable fiber hydroxypropyl methylcel-
lulose may have beneficially affected the microbiome [59–61], which may have caused
immunomodulatory effects.

The present study has several limitations which should be taken into account. The
study was set up as a proof-of-concept study and the study groups may have been too small,
limiting the statistical power for these secondary parameters determining immune function.
In general, no placebo-controlled studies are available in this field and our study is one of
the first explorative studies measuring several inflammatory markers. Data collected in
the current study will help to enable power calculations of future clinical trials in this area.
Furthermore, OA patients were given two 150 mg butyrate (as calcium) sustained-release
tablets twice daily. This may have been too limited for full pharmacological effectiveness as
doses up to 4 g were used as treatment in inflammatory bowel disease [62–64]. Butyrate is
known to be readily absorbed via active transport in the intestine [31]. In addition, butyrate
is known to be a fuel source for IEC, although part of the butyrate could also be released into
the lamina propria, hence reaching underlying immune cells. As only a small percentage of
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the butyrate available in the lumen of the intestine will reach the portal vein and will be
further metabolized in the liver, butyrate availability in systemic circulation therefore is
very low [31,65]. The dose in the tablets is relatively low and only meant to act locally in the
gut mucosal tissue, mainly targeting the enterocytes [46]. The sustained-release butyrate
tablets used in this study should thus theoretically be able to release enough butyrate for a
pharmacological response in the small intestine, but local butyrate concentrations were not
measured. It could be that the butyrate dosage was too low to exert the optimal effect, that
the release characteristics of the tablet or the formulation itself were not optimal and/or it
could be that the exposure time of the butyrate was too low. However, since the current
study shows beneficial effects in the T-cells of hand OA patients, increasing the dosage
and/or extending the period of intervention may help to reduce severity and/or slow
down disease progression in this patient group. This should therefore be investigated
further in future studies, also including analyses of other inflammatory markers like IL-8,
oxidative stress markers and a broader panel of acute phase proteins.

5. Conclusions

This double-blind placebo-controlled randomized clinical trial showed that the sustained-
release butyrate treatment reduced the inflammatory potential of Th cells in hand OA patients,
as indicated by a reduced percentage of activated Th cells and IL-9-expressing Th9 cells and
an improved Th17/Treg balance within ex vivo αCD3/CD28-activated PBMCs. This could
contribute to restoring the immune balance in hand OA patients, which might benefit the
patient by reducing their inflammatory status.
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