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Abstract: Background: Anemia significantly contributes to the global disease burden, with its
incidence potentially influenced by the trace metal content within the body. Objective: This study
aims to examine the associations between trace metals and anemia risk, with a particular focus on
investigating the potential mediating roles of iron status and inflammation in these associations.
Methods: Five trace metals (Ni, Co, Mn, Se, and Mo) were examined in 1274 US adults, utilizing data
from the National Health and Nutrition Examination Survey (NHANES) 2017–2020. The individual
and combined effects of these metals on anemia were assessed using logistic regression, quantile
g-computation (QGC), and Bayesian kernel machine regression (BKMR). A sex-stratified analysis
was conducted to discern any gender-specific susceptibilities. Additionally, mediation analysis was
employed to explore the potential mediating roles of iron status and inflammation in the associations
between these metals and anemia. Results: Increased risks of anemia were positively associated
with Co and Ni levels but negatively correlated with Se and Mn levels (all with p < 0.05). The trace
metal mixture was negatively associated with anemia, with the highest weights of Co and Se in
different directions in both the QGC and BKMR models. In the sex-specific analysis, we observed less
pronounced protective effects from trace metals in females. Moreover, the mediating proportion of the
iron status and inflammation in these relationships ranged from 10.29% to 58.18%. Conclusion: Our
findings suggest that the trace element mixture was associated with decreased anemia risk, among
which Se was a protective factor while Co was a risk factor, and females were more susceptible. The
effects of these trace metals on anemia may be mediated by the iron status and inflammation.

Keywords: anemia; trace metals; iron status; inflammation; NHANES

1. Introduction

Anemia is a significant global public health concern particularly affecting women
and children, with its prevalence increasing among individuals over the age of 29 [1].
Anemia and its complications contribute to significant morbidity and mortality, further
exacerbating the global burden of disease [2,3]. The etiology of anemia is multifactorial,
with micronutrient deficiency, inherited hemoglobin disorders, as well as chronic and
infectious diseases identified as the main risk factors [4,5]. Despite various interventions,
such as dietary iron supplementation and public health initiatives, the prevalence of anemia
remained alarmingly high in 2019, affecting approximately 1.8 billion people worldwide [6].
Therefore, it is imperative to identify novel risk factors for developing more effective
anemia prevention strategies.

Emerging evidence suggests that imbalances in trace metals may also contribute to the
increased prevalence of anemia. The health effects of these trace metals are complex and
depend on maintaining optimal concentrations. Trace metals act as cofactors for numerous
enzymes, playing crucial roles in antioxidant defense, metabolism, and immunological
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and neurological function [7,8]. However, excessive exposure to these metals—often
caused by environmental pollution from sources such as industrial waste and mining
activities [9,10]—can lead to adverse health effects. Additionally, insufficient dietary intake
of these metals can contribute to or worsen health problems [7,11]. Emerging evidence
has reported the associations between improper trace metal exposure and an increased
risk of anemia [12–14]. Therefore, further investigation into the appropriate levels of these
metals is necessary, particularly regarding the exposure–response relationships between
trace metals and anemia. Research on this topic remains limited and presents inconsistent
findings. A study on sub-Saharan immigrants indicated that the blood levels of trace metals,
including Se, Mn, and Mo, were significantly lower in the anemic population, suggesting
potential protective effects from these trace metals [15]. However, Qiao et al. found that
several trace metals, including Mn, Se, and Co, were associated with increased risk of
anemia, though no significance was found for Mo [13]. In contrast, Pan et al. reported a
positive association between serum Se and hemoglobin levels, but a negative association
with Mn [16]. Thus, further studies on the associations of trace metals with anemia are
warranted.

Iron deficiency and inflammation are the predominant factors contributing to the
development of anemia [17]. Iron deficiency occurs when there is insufficient dietary iron
intake, malabsorption, or chronic blood loss, impairing the normal process of hemoglobin
synthesis and ultimately leading to anemia [18]. Anemia of inflammation results from three
major pathophysiological pathways: iron restriction, suppression of erythropoietic activity,
and decreased erythrocyte survival [17]. Moreover, trace metals have been reported to be
associated with both iron metabolism and inflammation. Gunshin et al. found that Mn,
Ni, and Co can inhibit iron absorption by competitively binding to DMT1 [19]. Several
epidemiological studies have demonstrated negative associations between these metals
and the iron status [20–23]. Additionally, imbalances in trace metals can disrupt immune
homeostasis and promote inflammatory responses [24,25]. Based on this evidence, we
hypothesize that the iron status and inflammation may mediate the relationship between
trace metals and the risk of anemia.

In conclusion, the current evidence on the association between trace metals and anemia
is still limited and inconclusive, and the underlying mechanisms remain unclear. Therefore,
we conducted this study to evaluate the association between trace metal exposure and the
risk of anemia and to further assess the mediating role of the iron status and inflammation
in these associations using data from the National Health and Nutrition Examination
Survey (NHANES) 2017–2020.

2. Materials and Methods
2.1. Population

The NHANES is a series of nationally representative cross-sectional surveys conducted
by the US Centers for Disease Control and Prevention (CDC). The survey protocol was
approved by the Institutional Review Board of the National Center for Health Statistics.
Data for this study were obtained from NHANES 2017–2020 (n = 15,560), which are publicly
available on the CDC’s official website. In this survey cycle, 1793 participants had complete
data on trace metals, hemoglobin, serum ferritin, albumin, and high-sensitivity C-reactive
protein (hsCRP). We further excluded 519 individuals with missing covariates, including
demographic information, body mass index (BMI), alcohol consumption, or measured
blood pressure. A total of 1274 participants were included in the final analysis. The
participant selection process is shown in Figure S1.

2.2. Assessment of Trace Metals and Mediators

Biological specimens, including blood, urine, and other samples, were collected at
a mobile examination center and processed according to standardized protocols. The
concentrations of the metals were measured using inductively coupled plasma dynamic
reaction cell mass spectrometry (ICP-DRC-MS). A total of 7 metals in serum and 11 metals
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in urine were detected during the NHANES 2017–2020 cycle (Table S1). The reference
values for these metals were obtained from the biomonitoring data reported by the US CDC
and the previous literature [26–28]. Among these metals, six trace metals were identified:
serum manganese (Mn), serum cobalt (Co), serum selenium (Se), serum chromium (Cr),
urinary nickel (Ni), and urinary molybdenum (Mo). Since the other elements did not
deviate from their reference values, we assumed they were not risk factors. Additionally,
serum Cr was excluded to guarantee the reliability and stability of the results due to the
low detection rate, and only Ni, Co, Mn, Se, and Mo were included in the final analyses
for this study. For values below the limit of detection (LOD), the data were imputed as
the LOD divided by the square root of 2. To account for dilution-dependent variation in
urinary metals, the concentrations of Ni and Mo were adjusted based on the corresponding
urinary creatinine levels.

Serum ferritin was measured using the Roche Cobas®® e601(Roche Diagnostics, In-
dianapolis, IN, USA), employing a sandwich immunoassay with chemiluminescence de-
tection. The serum albumin concentration was determined using the LX20 method, in
which the dye bromocresol purple (BCP) selectively binds to albumin, causing a color
change. High-sensitivity C-reactive protein (hsCRP) levels were determined using latex-
enhanced nephelometry with particle-enhanced assays performed on a Behring Neph-
elometer for accurate measurement. Rigorous quality control procedures were imple-
mented to ensure the accuracy and reliability of all measurements. Detailed labora-
tory procedures and quality control protocols are available on the NHANES website
(https://www.cdc.gov/nchs/nhanes/index.htm, accessed on 15 May 2024).

2.3. Definition of Anemia

Anemia was defined based on the diagnostic guidelines proposed by the World Health
Organization (WHO) [29]. Participants were classified as anemic if their hemoglobin (Hb)
levels were below 110 g/L for pregnant women, 120 g/L for non-pregnant women, or
130 g/L for men.

2.4. Covariates

Covariates were selected based on the previous literature related to trace metal expo-
sure or the risk of anemia [30,31]. These covariates included age, sex, race or ethnicity, body
mass index (BMI, kg/m2), family poverty income ratio (PIR), physical activity, alcohol
consumption, smoking status, diabetes mellitus, and hypertension. A PIR of less than 1
indicates that the family’s income is below the poverty level. Self-reported physical activity
was categorized as “inactive” (<10 min per week) or “active” (≥10 min per week). Based on
the self-reported drinking frequency, alcohol consumption was classified as “non-drinker”,
“moderate drinker” (<1 time per week), or “heavy drinker” (≥1 time per week). According
to the serum cotinine and self-reported smoking frequency [32], participants were clas-
sified as (1) “active smoker” if they had a serum cotinine level >10 ng/mL or reported
smoking within the past 5 days; (2) “passive smoker” if they had a serum cotinine level of
0.05–10 ng/mL or reported the presence of smokers indoors without smoking themselves
in the past 5 days; or (3) “non-smoker” if they had a serum cotinine level < 0.05 ng/mL or
reported no indoor smokers and had not smoked in the past 5 days. In this study, subjects
with fasting glucose levels ≥ 126 mg/dL, HbA1c levels ≥ 6.5%, or a self-reported diagnosis
were defined as having diabetes. Hypertension was determined by a systolic blood pressure
(SBP) ≥ 140 mmHg, diastolic blood pressure (DBP) ≥ 90 mmHg, or self-reported treatment
for hypertension [33,34].

2.5. Statistical Analyses

A frequency (n) and percentage (%) were used to describe categorical variables, with
chi-squared tests employed for group comparisons. Continuous variables are presented
as means with standard deviations (mean ± SD) or medians with interquartile ranges (M,
IQR), and Mann–Whitney U tests were used for comparisons. The normal distributions of
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all continuous variables were assessed using the Kolmogorov–Smirnov (KS) test. Due to the
skewed distribution, concentrations of trace metals, serum ferritin, and hsCRP were natural
logarithm (ln) transformed to improve normality when treated as continuous variables in
statistical models. Spearman rank correlation was used to assess the correlations among
the five trace metals.

2.5.1. Logistic Regression Model

Logistic regression models were employed to assess the association between individual
trace metals and anemia. The concentrations of these metals were categorized into four
quartiles (Q1, Q2, Q3, and Q4) based on their distribution. Three logistic regression models
were established to adjust to different covariates. In model I, we adjusted for all covariates,
including age, race, BMI, physical activity, family income, smoking status, drinking status,
hypertension, and diabetes mellitus. Additionally, model II was further adjusted for all
other trace metals. Effect estimates were presented as odds ratios (ORs) along with their
95% confidence intervals (CIs) for anemia across the quartiles of trace metals (Q2, Q3, and
Q4), with Q1 serving as the reference group.

2.5.2. Quantile G-Computation (QGC) Regression Model

A QGC model was employed to evaluate both the combined and individual effects of
trace metals on the risk of anemia. This method constructs a weighted index and assigns the
corresponding weights of individual components in different directions, overcoming the
orientational homogeneity limitation of weighted quantile sum (WQS) regression [35]. The
model estimated the OR and its 95%CI for anemia associated with each quartile increase
in the trace metal mixture using 1000 bootstrap samples. Metals with estimated weights
greater than 0.05 were considered to contribute substantially to the QGC score.

2.5.3. Bayesian Kernel Machine Regression (BKMR) Model

In considering possible nonlinear and nonadditive associations among trace metals, as
well as additional supplementation for the QGC model, we employed the BKMR model [36].
Trace metal concentrations were ln-transformed and scaled to mitigate the impact of
extreme values and differences in metrics before model fitting. In our study, BKMR was
fitted using a probit regression model with component-wise variable selection. This model
involved 10,000 iterations using the Markov chain Monte Carlo algorithm after adjusting
for all covariates. BKMR was primarily utilized to explore and visualize three types of
exposure–response functions: (1) the cumulative effects of mixtures on the risk of anemia,
with simultaneous changes in all components of the mixture from their median levels;
(2) univariate exposure–response curves of individual metals with all other metals fixed
at their respective median levels; and (3) the single effect of individual metals for an
interquartile range (IQR) increase while holding all other metals at their 25th, 50th, or 75th
percentiles. BKMR also enabled estimation of the impact of individual metals on the risk of
anemia through calculation of the posterior inclusion probability (PIP), using a significance
threshold of 0.5 for determination.

2.5.4. Sex-Stratified Analysis

Previous epidemiological evidence suggested that females exhibit higher susceptibility
to anemia [37,38]. Given the potential sex-specific associations between trace metals and
anemia, we further fitted the aforementioned models by sex to assess potential effect of sex.

2.5.5. Mediation Analysis

A linear regression model was utilized to explore the associations between ln-
transformed trace metals and iron status and inflammatory biomarkers, with coefficient
β and its 95%CI representing the effect estimate. We then employed causal mediation
analysis to investigate the potential mediating roles of serum ferritin, albumin, and hsCRP
in the relationship between trace metals and anemia while utilizing nonparametric boot-
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strapping (n = 1000). This approach allowed us to derive several key indicators, including
the average causal mediation effect (ACME), average direct effect (ADE), total effect (TE),
and mediation proportion (%).

All statistical analyses in this study were conducted using R software (version 4.0.3)
with the following packages: “stats” for logistic and linear regression, “qgcomp” for QGC
analysis, “bkmr” for Bayesian kernel machine regression, and “mediation” for mediation
analysis. All statistical tests were two-sided, and significance was determined with p < 0.05.

3. Results
3.1. Population Characteristics

Table 1 presents the characteristics and trace metal concentrations of the study partici-
pants. Among them, a total of 155 participants (12.17%) exhibited anemia, which was more
frequently observed in individuals with hypertension, diabetes, and older ages (all p < 0.05).
Significant differences in race, alcohol consumption, and smoking status were observed
between anemic and non-anemic individuals (all p < 0.05). Compared with the non-anemic
participants, those with anemia had lower levels of Se and Mn but higher levels of Co and
Ni (all p < 0.05). Additionally, participants with anemia had significantly lower concen-
trations of serum ferritin and albumin, while their hsCRP levels were significantly higher
compared with those for the participants without anemia (all p < 0.05). The correlations
between the five trace metals were weak, with all Spearman correlation coefficients being
below 0.3, indicating the absence of multicollinearity (Figure S2).

Table 1. Characteristics of participants in US adults (NHANES 2017–2020).

Characteristics
Total Anemic Non-Anemic

p Value
(N = 1274) (N = 155) (N = 1119)

Age (year), mean ± SD 59.87 ± 11.45 62.54 ± 12.87 59.50 ± 11.19 0.006

Gender, n (%) 0.078
Male 672 (52.74) 71 (45.81) 601 (53.71)
Female 602 (47.25) 84 (54.19) 518 (46.29)

Race, n (%) <0.001
Mexican American 123 (9.65%) 14 (9.03%) 109 (9.74%)
Other Hispanic 118 (9.26%) 6 (3.87%) 112 (10.01%)
Non-Hispanic White 535 (41.99%) 48 (30.97%) 487 (43.52%)
Non-Hispanic Black 328 (25.75%) 78 (50.32%) 250 (22.34%)
Other Race 170 (13.34%) 9 (5.81%) 161 (14.39%)

BMI (kg/m2), mean ± SD 30.57 ± 7.16 31.58 ± 8.56 30.43 ± 6.93 0.109

Smoking, n (%) 0.007
Non-smoker 697 (54.71%) 90 (58.06%) 607 (54.24%)
Passive smoker 276 (21.66%) 43 (27.74%) 233 (20.82%)
Active smoker 301 (23.63%) 22 (14.19%) 279 (24.93%)

Drinking, n (%) 0.008
Non-drinker 329 (25.82%) 51 (32.90%) 278 (24.84%)
Moderate drinker 584 (45.84%) 75 (48.39%) 509 (45.48%)
Heavy drinker 361 (28.34%) 29 (18.71%) 332 (29.67%)

PIR, n (%) 0.548
<1 189 (14.84%) 20 (12.90%) 169 (15.10%)
≥1 1085 (85.16%) 135 (87.10%) 950 (84.90%

Hypertension, n (%) <0.001
Yes 770 (60.44%) 116 (74.84%) 654 (58.44%)
No 504 (39.56%) 39 (25.16%) 465 (41.55%)

Diabetes, n (%) <0.001
Yes 354 (27.79%) 66 (42.58%) 288 (25.73%)
No 920 (72.21%) 89 (57.42%) 831 (74.26%)
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Table 1. Cont.

Characteristics
Total Anemic Non-Anemic

p Value
(N = 1274) (N = 155) (N = 1119)

Physical activity n (%) 0.497
Active 579 (45.45%) 66 (42.58%) 513 (45.84%)
Inactive 695 (54.55%) 89 (57.42%) 606 (45.84%)

Ferritin (µg/L), median (IQR) 124.00 (64.03, 225.00) 81.60 (19.25, 173.00) 131.00 (69.95, 229.50) <0.001

Albumin (g/L), median (IQR) 40.32 ± 3.16 38.26 ± 2.98 40.60 ± 3.07 <0.001

hsCRP(mg/L), median (IQR) 2.17 (0.98, 4.64) 2.94 (1.14, 6.35) 2.14 (0.97, 4.37) 0.002

Trace metal concentrations, median (IQR)
Se (µg/L) 184.69 (169.08, 201.55) 171.66 (168.16, 189.95) 185.92 (171.00, 202.65) <0.001
Mn (µg/L) 8.98 (7.10, 11.02) 8.43 (6.61, 10.89) 9.04 (7.20, 11.02) 0.015
Co (µg/L) 0.14 (0.11, 0.18) 0.16 (0.12, 0.27) 0.14 (0.10, 0.17) <0.001
Ni (µg/g cre) 1.15 (0.76, 1.83) 1.33 (0.86, 2.25) 1.12 (0.74, 1.79) 0.004
Mo (µg/g cre) 33.87 (21.70, 50.14) 30.80 (21.42, 49.47) 33.93 (21.83, 50.36) 0.405

Differences in continuous variables between anemic and non-anemic individuals were assessed using Student’s
t-test or Mann–Whitney U test. Differences in categorical variables were assessed by chi-squared tests. Abbrevia-
tions: BMI = body mass index; PIR = family poverty income ratio; Se = selenium; Mn = manganese; Co = cobalt;
Ni = nickel; Mo = molybdenum.

3.2. Trace Metals with Risk of Anemia in Logistic Regression Model

To evaluate the potential relationship between the quartiles of trace metals and the
risk of anemia, we employed both univariate and multivariate logistic models. The results
in Table 2 demonstrate a high degree of consistency across the three logistic models. Given
that model II accounted for more confounders, it was selected as the primary model for
subsequent analyses. We observed an increased risk of anemia in the highest quartile of
Ni and Co, while a decreased risk of anemia was observed for higher Se and Mn levels.
Specifically, compared with the corresponding Q1, the risk of anemia increased 1.72 fold
(95%CI: 1.14, 3.12) for Ni and 3.34 fold (95%CI: 1.96, 5.81) for Co in the highest quartiles
(all p < 0.05). Mn showed a protective effect in Q3 with an OR of 0.54 (95%CI: 0.30, 0.96)
(p < 0.05). For Se, the ORs of anemia were 0.55 (95%CI: 0.34, 0.88) in Q2, 0.31 (95%CI 0.18,
0.52) in Q3, and 0.25 (95%CI 0.14, 0.43) in Q4 compared with Q1 (all p < 0.05).

Table 2. Multivariate logistic regression analysis for risk of anemia in overall population associated
with quartiles of trace metals.

Metals
Crude Model

p Value
Model I

p Value
Model II

p Value
Crude OR (95%CI) Adjusted OR (95%CI) Adjusted OR (95%CI)

Ni Q1 Ref Ref Ref
Q2 1.11 (0.66, 1.88) 0.691 1.14 (0.65, 1.99) 0.634 1.11 (0.62, 1.97) 0.742
Q3 1.27 (0.77, 2.12) 0.352 1.46 (0.84, 2.57) 0.183 1.18 (0.65, 2.14) 0.595
Q4 2.01 (1.26, 3.26) 0.004 2.34 (1.37, 4.06) 0.002 1.72 (1.14, 3.12) 0.006

Co Q1 Ref Ref Ref
Q2 1.12 (0.68, 1.84) 0.658 1.23 (0.73, 2.09) 0.435 1.55 (0.90, 2.69) 0.112
Q3 0.94 (0.54, 1.60) 0.814 1.06 (0.59, 1.86) 0.848 1.40 (0.76, 2.55) 0.272
Q4 2.49 (1.59, 3.86) <0.001 2.97 (1.82, 4.92) <0.001 3.34 (1.96, 5.81) <0.001

Mn Q1 Ref Ref Ref
Q2 0.93 (0.59, 1.44) 0.734 1.01 (0.63, 1.63) 0.953 1.01 (0.61, 1.68) 0.970
Q3 0.52 (0.31, 0.85) 0.011 0.62 (0.36, 1.06) 0.083 0.54 (0.30, 0.96) 0.036
Q4 0.78 (0.49, 1.24) 0.295 1.18 (0.70, 2.00) 0.537 0.93 (0.52, 1.64) 0.798
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Table 2. Cont.

Metals
Crude Model

p Value
Model I

p Value
Model II

p Value
Crude OR (95%CI) Adjusted OR (95%CI) Adjusted OR (95%CI)

Se Q1 Ref Ref Ref
Q2 0.51 (0.33, 0.77) 0.002 0.53 (0.34, 0.84) 0.007 0.55 (0.34, 0.88) 0.013
Q3 0.31 (0.19, 0.50) <0.001 0.31 (0.18, 0.51) <0.001 0.31 (0.18, 0.52) <0.001
Q4 0.27 (0.16, 0.44) <0.001 0.27 (0.15, 0.45) <0.001 0.25 (0.14, 0.43) <0.001

Mo Q1 Ref Ref Ref
Q2 0.98 (0.61, 1.56) 0.917 1.22 (0.74, 2.00) 0.440 1.07 (0.64, 1.81) 0.772
Q3 0.87 (0.54, 1.39) 0.553 1.01 (0.60, 1.68) 0.978 0.87 (0.51, 1.50) 0.630
Q4 0.92 (0.57, 1.47) 0.718 1.06 (0.63, 1.77) 0.835 1.01 (0.58, 1.75) 0.987

The crude model did not adjust for any covariates. Model I adjusted for all covariates, including age, sex, race,
BMI, physical activity, family income, smoking status, drinking status, hypertension, and diabetes mellitus.
Model II further adjusted for all other trace metals. Abbreviations: Se = selenium; Mn = manganese; Co = cobalt;
Ni = nickel; Mo = molybdenum; 95%CI = 95% confidence interval.

In sex-stratified analysis, the association between the Ni level and an increased
risk of anemia was more pronounced in females (OR = 3.22, 95%CI: 1.31, 8.56) but was
not significant in males. Similarly, higher OR values for Co were observed in females
(OR = 4.12, 95%CI: 1.88, 9.54) compared with males (OR = 2.68, 95%CI: 1.16, 6.28) (all
p < 0.05). The association between Se and anemia was consistent across sex-stratified
subgroups. Conversely, the protective effect of Mn was more significant in males, with
the risk of anemia reduced 0.12 fold (95%CI: 0.03, 0.36) in Q3 and 0.38 fold (95%CI: 0.14,
0.94) in Q4 compared with Q1 (all p < 0.05), while the effects were not significant in females
(Tables S2 and S3). The differences in the associations between the sex-specified subgroups
suggest potential sex-specific susceptibility.

3.3. Trace Metals with Risk of Anemia in QGC Model

We utilized the QGC model to assess the combined effects of the five trace metals on
anemia. The individual weights of each metal were used to present the importance of these
metals (Table S4). As illustrated in Figure 1, no significant association was found between
the trace metal mixture and the risk of anemia in the overall population. However, the
stratified analysis by sex revealed a marginal association between the trace metals and an
increased risk of anemia in females (OR = 1.44, 95%CI 0.96, 2.21) and a significantly associa-
tion between the trace metals and a decreased risk of anemia in males (OR = 0.49, 95%CI
0.37, 0.92). Additionally, Co consistently presented the highest positive weight, whereas Se
had the highest negative weight across the overall, male, and female populations.
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Figure 1. The QGC model weights of the trace metals for anemia in the overall population (A),
females (B), and males (C). The model was adjusted for age, sex, race, BMI, physical activity, family
income, smoking status, drinking status, hypertension, and diabetes mellitus. In the stratified analysis
by sex, the full model was adjusted all the covariates without sex. Abbreviations: Se = selenium;
Mn = manganese; Co = cobalt; Ni = nickel; Mo = molybdenum.
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3.4. Trace Metal Exposure with Risk of Anemia in BKMR Model

We used the BKMR model to further assess both the combined and individual effects
of trace metals on anemia, with the PIP value used to estimate the importance of individual
metals. Figure 2A illustrated the combined effects of these metals on anemia relative to
their 50th percentile, as determined by the BKMR model. The results indicate that higher
levels of trace metals were significantly associated with a decreased risk of anemia in
the overall population. Among these metals, Se (PIP = 1.000), Mn (PIP = 0.957), and Co
(PIP = 1.000) exhibited the highest PIPs, suggesting these metals may be the most signifi-
cant contributors to anemia (Table S5). In sex-stratified analysis (Figures S3 and S4), we
found significant associations between the trace metals and a decreased risk of anemia
in both females and males. However, the combined effect of a trace metal mixture was
more pronounced in males (β = −0.43, 95%CI −0.78, −0.10) than in females (β = −0.06,
95%CI −0.21, 0.07), according to the estimate effect value of the 75th percentile compared
with the corresponding medians.
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Figure 2. The associations between trace metals and anemia identified by the BKMR model in
the overall population. (A) Overall associations of the trace metal mixture with risk of anemia at
increasing percentiles compared to medians. (B) Univariate exposure-response function between
individual metal with the risk of anemia with other metals fixed at the corresponding 50th percentiles.
(C) Single-exposure effect of individual metals for an IQR increase on the risk of anemia when other
metals are fixed at their 25th, 50th, or 75th percentiles. The model was adjusted for age, sex, race, BMI,
physical activity, family income, smoking status, drinking status, hypertension, and diabetes mellitus.
Abbreviations: Se = selenium; Mn = manganese; Co = cobalt; Ni = nickel; Mo = molybdenum.

The univariate exposure–response curve for individual metals is shown in Figure 2B,
with other metals fixed at their median levels. The individual effect of single metals for an
IQR increase is demonstrated in Figure 2C, where other metals were fixed to the 25th, 50th,
and 75th percentiles. The analysis revealed that the Mn and Se levels were associated with
a decreased risk of anemia, while the Co levels were associated with an increased risk of
anemia. Additionally, we identified a “U-shaped” exposure–response curve for Se. In the
sex-stratified analysis, the protective effect of Se was consistent in both females and males.
However, the effect of Mn was not significant in females, and the association between Co
and anemia was not significant in the male population (Figures S3 and S4).

3.5. The Mediating Effect of Iron Status and Inflammation

As shown in Table S6, each unit increase in Ni, Co, and Mn was significantly associated
with a decrease in the ln-transformed serum ferritin levels of −0.19 (95%CI: −0.26, −0.11),
−0.45 (95%CI: −0.52, −0.37), and −0.57 (95%CI: −0.72, −0.45), respectively. Conversely,
each unit increase in Se was associated with an increase in the ln-transformed ferritin levels
by 0.88 (95%CI: 0.55, 1.22). Additionally, an association between Co and decreased serum
albumin was observed (β = −0.83, 95%CI: −1.10, −0.57, p < 0.05), while Se demonstrated
a positive association with albumin (β = 4.28, 95%CI: 3.14, 5.43). Furthermore, Ni was
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associated with increased ln-transformed hsCRP levels (β = 0.10, 95%CI: 0.01, 0.19), whereas
Se showed a negative association (β = −0.59, 95%CI: −0.99, −0.18).

As shown in Table S7, the ln-transformed serum ferritin and albumin levels were
associated with a decreased risk of anemia, with ORs of 0.94 (95%CI: 0.92, 0.96) and 0.98
(95%CI: 0.98, 0.99), respectively. In contrast, the ln-hsCRP levels were associated with an
increased risk of anemia, with an OR of 1.03 (95%CI: 1.01, 1.04).

We further conducted causal mediation analysis to investigate the potential mediating
effects of serum ferritin, albumin, and hsCRP on the associations between trace metals
and anemia. As presented in Table 3, we found that serum ferritin significantly mediated
the associations of Ni, Co, and Se with anemia, with the mediation proportions being
58.18%, 46.46%, and 14.72%, respectively (all p for mediation < 0.05). Furthermore, albumin
mediated the associations between Ni, Co, and Se and anemia, accounting for 15.83%,
20.75%, and 23.26% of the effects, respectively (all p for mediation < 0.05). Similarly, hsCRP
also played mediating roles in the association between Ni and Se and anemia, accounting
for 10.19% and 13.30% of the effects, respectively.

Table 3. The mediation effect of the iron status and inflammation on the association of trace metals
and the risk of anemia.

Mediators Metals TE ACME Mediated
Proportion (%) p Value

Ln-ferritin Ni 3.81 × 10−2 (1.15 × 10−2, 0.06) 2.22 × 10−2 (1.45 × 10−2, 0.03) 58.18% 0.004
Co 7.54 × 10−2 (4.85 × 10−2, 0.11) 3.55 × 10−2 (2.49 × 10−2, 0.05) 46.46% <0.001
Mn 1.85 × 10−2 (−3.44 × 10−2, 0.07) 6.30 × 10−2 (4.57 × 10−2, 0.08)
Se −3.59 × 10−1 (−4.92 × 10−1, −0.23) −5.32 × 10−2 (−8.64 × 10−2, −0.03) 14.72% <0.001
Mo −2.31 × 10−3 (−3.81 × 10−3, 0.01) 7.99 × 10−4 (−2.80 × 10−2, 0.03)

Albumin Ni 3.69 × 10−2 (9.19 × 10−3, 0.06) 6.21 × 10−3 (1.40 × 10−4, 0.01) 15.83% 0.042
Co 7.60 × 10−2 (4.78 × 10−2, 0.10) 1.58 × 10−2 (9.73 × 10−3, 0.02) 20.75% <0.001
Mn 1.96 × 10−2 (−4.05 × 10−2, 0.08) −6.29 × 10−3 (−4.47 × 10−2, 0.08)
Se −3.61 × 10−1 (−0.48, −0.23) −8.42 × 10−2 (−1.24 × 10−1, −0.05) 23.26% <0.001
Mo −2.61 × 10−5 (−2.62 × 10−2, 0.03) 2.18 × 10−3 (−3.26 × 10−3, 0.01)

Ln-hsCRP Ni 3.66 × 10−2 (8.87 × 10−3, 0.06) 3.87 × 10−3 (0.00, 7.99 × 10−3) 10.19% 0.004
Co 7.67 × 10−2 (4.80 × 10−2, 0.11) −1.11 × 10−3 (−3.96 × 10−3, 0.01)
Mn 1.83 × 10−2 (−3.94 × 10−2, 0.07) −4.33 × 10−3 (−1.08 × 10−2, 0.01)
Se −3.62 × 10−1 (−0.48, −0.25) −4.87 × 10−2 (−7.67 × 10−2, −0.02) 13.30% <0.001
Mo −3.62 × 10−4 (−2.66 × 10−2, 0.03) −5.32 × 10−3 (9.80 × 10−3, 0.01)

Trace metals were ln-transformed and individually included in generalized linear regression models, with
adjustments for age, sex, race, BMI, physical activity, family income, smoking status, drinking status, hypertension,
and diabetes mellitus. Abbreviations: ACME = average causal mediation effects; TE = total effect; Se = selenium;
Mn = manganese; Co = cobalt; Ni = nickel; Mo = molybdenum.

4. Discussion

Using the NHANES 2017–2020 data from the US adult population, we investigated
the individual and combined effects of trace metals (Ni, Co, Mn, Se, and Mo) on anemia
and further assessed the mediating role of the iron status and inflammation. Our results
indicate that the trace metal mixture was associated with a decreased risk of anemia, and
the association was primarily driven by Se and Co. Further sex-stratified analysis revealed
that the protective effect of the trace metal mixture on anemia was more pronounced in
males. Finally, mediation analysis showed that the iron status and inflammation played
significant roles in these associations.

When analyzing the combined effect of the trace metal mixture, we observed that
a simultaneous increase in all components of the mixture was associated with a lower
risk of anemia. To our knowledge, the association between the trace metal mixture and
anemia has been rarely explored. Schildroth et al. investigated associations between metal
mixtures of Pb, Cd, Mn, and Se and various anemia-related parameters in adolescents
from the NHANES, and they found that the metal mixture was positively associated with
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hemoglobin and mean cellular hemoglobin levels, which are indicators of anemia [23]. Con-
sistent with our findings, the protective effect of the metal mixture was primarily driven by
Se, which may be attributed to its antioxidant properties [39]. Given the high dietary intake,
the average level of blood Se in the US general population is higher than those in other
countries [40–42]. Consistent with previous biomonitoring data reported by the CDC [26],
the median of blood Se was 184.69 µg/L in our study, significantly below the established toxic
threshold of 1000 µg/L [43]. Similarly, several other studies reported individual Se exposure
and decreased risk of anemia in various populations [44–46]. Additionally, the association
between Mn exposure and a decreased risk of anemia was also reported. This finding may
be attributed to Mn’s role in enzyme activation and its involvement in the formation of
antioxidants, which help protect red blood cells from oxidative stress [22,47].

Qiao et al. investigated the relationship between a mixture of 11 urinary metals and
anemia in an elderly population [13]. Although their study included trace metals like Co
and Se, it mainly focused on toxic metals such as Te, As, and Pb, reporting the association
between the metal mixture and increased anemia risk. Consistent with our findings, Co
was identified as a primary component contributing to adverse effects in Qiao’s study.
Similarly, Fort et al. reported an association between individual Co exposure and lower
hemoglobin levels in pregnant women [21]. Despite its role as a component of vitamin
B12, Co can be acutely cytotoxic at high concentrations, increasing pro-inflammatory
cytokine secretion and oxidative stress, which may explain the adverse effect of Co on
anemia [48,49]. Although different biological samples were used to measure Ni and Mo, the
internal consistency in comparing each metal between anemic and non-anemic populations
ensured the reliability of the estimations regarding their associations with anemia risk.
While no previous study assessed the effect of Ni on anemia within metal mixtures, several
studies observed significantly higher concentrations of Ni in anemic populations than
non-anemic populations, suggesting its potential adverse effects [50,51]. The underlying
mechanisms may involve not only the competitive inhibition of iron absorption via DMT1
but also Ni-induced inflammation and oxidative stress [19,52]. No significant association
was found between Mo and anemia. However, a previous animal experiment showed
the relationships between Mo exposure and reduced hematological parameters, including
the RBC count and hemoglobin concentration [53]. Thus, further investigation into Mo’s
association with anemia is warranted.

Iron deficiency and inflammation are key mechanisms contributing to the development
of anemia. Iron is essential for hemoglobin synthesis, with most of the body’s iron recycled
for erythropoiesis. Only 1 mg of iron is lost daily, which is replenished through absorption
from duodenal enterocytes [18]. Disruptions in iron metabolism due to inadequate intake,
poor absorption, or chronic blood loss overwhelm the body’s compensatory mechanisms,
resulting in anemia [54,55]. Serum ferritin serves as a marker of long-term iron stores and
has been widely utilized to evaluate one’s iron status [56–58]. As expected, significant
associations between anemia risk and serum ferritin were observed, confirming the crucial
roles of the iron status in anemia development.

Inflammation can induce anemia through various pathways. Pro-inflammatory cy-
tokines, such as interleukin-6 (IL-6), upregulate hepcidin transcription via the transcription
3 (STAT3) pathway [59–61]. Elevated hepcidin levels decrease intestinal iron absorption and
sequester iron in macrophages, reducing its availability for erythropoiesis [62]. Addition-
ally, inflammation can directly inhibit erythropoiesis and increase phagocytosis [17,63,64].
In this study, serum albumin and hsCRP were used as inflammatory biomarkers. CRP is
a well-established marker of acute inflammation [65,66], while albumin reflects chronic
inflammation levels due to its longer half-life and lower variability [67–72]. Previous
studies linked hypoalbuminemia with anemia across various populations, suggesting that
decreased albumin levels may be associated with inflammatory processes, contributing to
anemia [73–75]. Our study similarly observed relationships between low albumin levels
and higher hsCRP levels with an increased risk of anemia, further supporting the significant
role of inflammation in anemia development.
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Accumulating evidence supports associations between trace metals and both iron
status and inflammation. For instance, Zhou et al. reported elevated serum iron levels in
relation to higher Se exposure [46]. This relationship is likely due to Se’s ability to modulate
hepcidin levels, promoting efficient iron uptake and utilization [76]. As a key component
of antioxidant selenoproteins, Se regulates inflammation by suppressing oxidative stress
and reducing pro-inflammatory cytokines such as IL-6 and TNF-α [77,78]. Consistent with
our findings, Junqué et al. reported a negative relationship between urinary Co levels and
serum ferritin, with a similar adverse effect observed for Ni in pregnant women [51,79].
The detrimental impact of Ni and Co on iron status largely due to their competition with
iron for absorption in enterocytes, particularly via the divalent metal transporter-1 (DMT1)
pathway [19,80].

Furthermore, Co and Ni can exacerbate inflammatory responses at higher concentra-
tions. It has been demonstrated that Co can increase pro-inflammatory cytokine secretion,
such as IL-8 and IL-6, through Toll-like receptor 4 activation [48]. Co also inhibits mito-
chondrial function, leading to oxidative stress [49]. Similarly, Ni enhances inflammatory
responses by promoting oxidative stress [52]. Given the shared pathogenesis, it is reason-
able to investigate whether the iron status and inflammation participate in the relationships
between trace metals and anemia risk. In this study, we found that serum ferritin, albumin,
and hsCRP were involved in the association between Ni, Co, and Se and anemia, accounting
for the proportions ranging from 10.29% to 58.18% when using mediation analysis. Further
studies are warranted to confirm these underlying mechanisms.

In the sex-stratified analysis, females exhibited a higher susceptibility to anemia,
consistent with previous studies [23,81]. This disparity may be attributed to hormonal
differences, with testosterone promoting erythropoiesis by stimulating erythropoietin
production and suppressing hepcidin, thus enhancing iron utilization [82]. Conversely,
elevated estrogen levels in females can increase hepcidin expression, leading to reduced
iron absorption and utilization [83,84]. Trace metals such as Ni, Co, and Mn are involved in
hormone regulation and have been linked to variations in serum testosterone and estrogen
levels [85–87]. Luo et al. also reported that testosterone mediated the relationships between
metal exposure and hemoglobin levels [88]. Additionally, other factors, including metal
accumulation, genetic predispositions, and metabolic conditions, may contribute to these
observed differences [89]. However, further research is needed to better understand the
sex-specific impacts of these trace metals on anemia risk.

As the most recent study exploring the associations between trace metal exposure
and anemia risk, our study presents several notable strengths. Firstly, our study utilized a
nationally representative sample of the US population, enhancing the generalizability of
our findings. Secondly, we employed various statistical methods and adjusted for potential
confounding variables to bolster the robustness and reliability of our results. Additionally,
we examined possible mechanisms underlying the relationships between trace metal expo-
sure and anemia risk, finding that the iron status and inflammation significantly mediated
these associations, providing a valuable foundation for future mechanistic research.

Despite these strengths, our study has limitations. Firstly, the cross-sectional design
precludes the establishment of causal relationships between trace metal exposure, iron
status, inflammation, and anemia risk. Secondly, comparing metal content across different
biological matrices may introduce bias in result interpretation. Furthermore, our analysis
was limited to five trace metals due to undetectable or below-detection-limit levels of other
metals in the NHANES dataset for most participants. Lastly, we did not fully investigate
the potential interaction effects among metal mixtures, highlighting the need for further
research in this area.

5. Conclusions

In conclusion, our study found that trace metal mixtures were significantly associated
with a lower risk of anemia, with Se and Co identified as the main contributors. The protec-
tive effects were less pronounced in females, indicating a higher susceptibility. Moreover,
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the iron status and inflammation acted as mediators linking trace metal exposure to anemia
risk. These findings highlight the critical role of trace metals in anemia development. More
prospective cohort and mechanism studies are warranted to validate the potential role and
biological mechanism of trace metals in anemia regulation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nu16193424/s1. Table S1: Detection rates of six trace metals in
NHANES 2017–2020. Table S2: Multivariate logistic regression analysis for risk of anemia in females
according to quartiles of trace metals. Table S3: Multivariate logistic regression analysis for risk of
anemia in males according to quartiles of trace metals. Table S4: Associations of QGC indexes of trace
metals with risk of anemia. Table S5: PIPs obtained using the BKMR model for each trace metal with
anemia. Table S6: Association between trace metals and iron status and inflammation. Table S7: The
effects of the iron status and inflammation biomarkers on the risk of anemia. Figure S1: Flowchart of
participants included in this study. Figure S2: Spearman correlations among the five trace metals.
Figure S3: The associations between trace metals with anemia identified by the BKMR model in
females. Figure S4: The associations between trace metals and anemia identified by the BKMR model
in males.
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