Bean and Nut Intake Were Protective Factors for Comorbid Hypertension and Hyperuricemia in Chinese Adults: Results from China Nutrition and Health Surveillance (2015–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Samples
2.2. Data Collection
2.3. Definition of Comorbid Hypertension and Hyperuricemia
2.4. Dietary Intake Assessment
2.5. Covariates
2.6. Statistical Analysis
2.7. Quality Control
3. Results
3.1. Participant Characteristics
3.2. Dietary Intakes
3.3. Prevalence of HH among Participants
3.4. Associations between Dietary Factors and HH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Hou, W.; Zhang, X.; Hu, L.; Tang, Z. Hyperuricemia and risk of stroke: A systematic review and meta-analysis of prospective studies. Atherosclerosis 2014, 232, 265–270. [Google Scholar] [CrossRef]
- Escudero-Lopez, B.; Ortega, A.; Cerrillo, I.; Rodriguez-Grinolo, M.R.; Munoz-Hernandez, R.; Macher, H.C.; Martin, F.; Hornero-Mendez, D.; Mena, P.; Del Rio, D.; et al. Consumption of orange fermented beverage improves antioxidant status and reduces peroxidation lipid and inflammatory markers in healthy humans. J. Sci. Food Agric. 2018, 98, 2777–2786. [Google Scholar] [CrossRef]
- Doghramji, P.P.; Wortmann, R.L. Hyperuricemia and gout: New concepts in diagnosis and management. Postgrad. Med. 2012, 124, 98–109. [Google Scholar] [CrossRef]
- Vogt, B. Urate oxidase (rasburicase) for treatment of severe tophaceous gout. Nephrol. Dial. Transplant. 2005, 20, 431–433. [Google Scholar] [CrossRef]
- Lu, X.X.; Shi, X.G.; Li, Y.B.; Chi, H.Y.; Liao, E.Y.; Liu, C.; Liu, L.B.; Li, Y.Z.; Teng, D.; Teng, X.C.; et al. A negative association between urinary iodine concentration and the prevalence of hyperuricemia and gout: A cross-sectional and population-based study in Mainland China. Eur. J. Nutr. 2020, 59, 3659–3668. [Google Scholar] [CrossRef]
- Sun, P.; Chen, M.Q.; Guo, X.F.; Li, Z.; Zhou, Y.; Yu, S.S.; Yang, H.M.; Sun, G.Z.; Zheng, L.Q.; Sun, Y.X. Combined effect of hypertension and hyperuricemia on ischemic stroke in a rural Chinese population. BMC Public Health 2021, 21, 776. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, J.; Wong, M.C.S. Association between serum uric acid and prostate cancer risk in East Asian populations: A Mendelian randomization study. Eur. J. Nutr. 2022, 63, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Lawrence, W.R.; Yang, J.; Tian, J.; Li, C.; Lian, W.; He, J.; Qu, H.; Wang, X.; Liu, H.; et al. Association between serum uric acid and obesity in Chinese adults: A 9-year longitudinal data analysis. BMJ Open 2021, 11, e041919. [Google Scholar] [CrossRef]
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Cheserek, M.J.; Shi, Y.H.; Le, G.W. Association of hyperuricemia with metabolic syndrome among university workers: Sex and occupational differences. Afr. Health Sci. 2018, 18, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2015, 2015, 762820. [Google Scholar] [CrossRef] [PubMed]
- Piao, W.; Bo, Y.C.; Zhao, L.Y.; Yu, D.M. Status of Serum Uric Acid and Hyperuricemia among Adults in China: China Nutrition and Health Surveillance (2015). Biomed. Environ. Sci. 2022, 35, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Choe, J.Y. Association between smoking and serum uric acid in Korean population Data from the seventh Korea national health and nutrition examination survey 2016. Medicine 2019, 98, e14507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Sha, M.; Zhao, Y.J.; Chen, X.Y.; Long, L.; Zhang, B.F.; Ma, H.N. Association between Serum Level of Uric Acid and Components of Metabolic Syndrome in Wanqiao Community of Dali Bai Autonomous Prefecture. J. Am. Geriatr. Soc. 2017, 65, S313. [Google Scholar]
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Ofori, S.N.; Odia, O.J. Serum uric acid and target organ damage in essential hypertension. Vasc. Health Risk Manag. 2014, 10, 253–261. [Google Scholar] [CrossRef]
- Maloberti, A.; Rebora, P.; Occhino, G.; Alloni, M.; Musca, F.; Belli, O.; Spano, F.; Santambrogio, G.M.; Occhi, L.; De Chiara, B.; et al. Prevalence of hypertension mediated organ damage in subjects with high-normal blood pressure without known hypertension as well as cardiovascular and kidney disease. J. Hum. Hypertens. 2022, 36, 610–616. [Google Scholar] [CrossRef]
- Stewart, D.J.; Langlois, V.; Noone, D. Hyperuricemia and Hypertension: Links and Risks. Integr. Blood Press. Control 2019, 12, 43–62. [Google Scholar] [CrossRef]
- Feig, D.I. Serum uric acid and the risk of hypertension and chronic kidney disease. Curr. Opin. Rheumatol. 2014, 26, 176–185. [Google Scholar] [CrossRef]
- Cicero, A.F.; Salvi, P.; D’Addato, S.; Rosticci, M.; Borghi, C.; Brisighella Heart Study, g. Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: Data from the Brisighella Heart Study. J. Hypertens. 2014, 32, 57–64. [Google Scholar] [CrossRef]
- Tian, X.; Chen, S.; Wang, P.; Xu, Q.; Zhang, Y.; Zhang, X.; Wu, S.; Luo, Y.; Wang, A. Temporal relationship between hyperuricemia and hypertension and its impact on future risk of cardiovascular disease. Eur. J. Intern. Med. 2023, 111, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, L.; Yuan, H.; Huang, K.; Li, G.; Sun, N.; Huo, Y. Survey on uric acid in Chinese subjects with essential hypertension (SUCCESS): A nationwide cross-sectional study. Ann. Transl. Med. 2021, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Brands, M.W.; Daniels, S.R.; Karanja, N.; Elmer, P.J.; Sacks, F.M.; American Heart, A. Dietary approaches to prevent and treat hypertension: A scientific statement from the American Heart Association. Hypertension 2006, 47, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M. Dietary Approaches to Stop Hypertension (DASH): Potential mechanisms of action against risk factors of the metabolic syndrome. Nutr. Res. Rev. 2020, 33, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chang, Z.; Cui, K.; Song, C.; Cai, Z.; Shi, B.; Dong, Q.; Dou, K. The value of the MIND diet in the primary and secondary prevention of hypertension: A cross-sectional and longitudinal cohort study from NHANES analysis. Front. Nutr. 2023, 10, 1129667. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005, 52, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Piao, W.; Huang, K.; Fang, H.; Ju, L.; Zhao, L.; Yu, D.; Ma, Y. Dietary Pattern Associated with the Risk of Hyperuricemia in Chinese Elderly: Result from China Nutrition and Health Surveillance 2015–2017. Nutrients 2022, 14, 844. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Pang, S.J.; Man, Q.Q.; Song, S.; Song, P.K.; Liu, Z.; Li, Y.Q.; Jia, S.S.; Wang, J.Z.; Zhao, W.H.; Zhang, J. Relationships of Insulin Action to Age, Gender, Body Mass Index, and Waist Circumference Present Diversely in Different Glycemic Statuses among Chinese Population. J. Diabetes Res. 2018, 2018, 1682959. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.D. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement: Executive Summary. Crit. Pathw. Cardiol. 2005, 4, 198–203. [Google Scholar] [CrossRef]
- Wei, X.Q.; Yu, D.M.; Ju, L.H.; Cheng, X.; Zhao, L.Y. Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015. Nutrients 2022, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, H.P.; Bull, F.C. Invest in physical activity to protect and promote health: The 2020 WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phy. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, R.; Heinemann, L.; Schleicher, E.; Gerdes, C.; Petersmann, A.; Muller-Wieland, D.; Muller, U.A.; Freckmann, G.; Thaler, M.; Ziegler, A.G.; et al. Definition, classification and diagnosis of diabetes mellitus: Update 2022. Diabetologie 2023, 19, 44–55. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Hayashi, T.; Tsumura, K.; Endo, G.; Fujii, S.; Okada, K. Serum uric acid and the risk for hypertension and Type 2 diabetes in Japanese men: The Osaka Health Survey. J. Hypertens. 2001, 19, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Yu, C.; Hu, F.; Zhou, W.; Wang, T.; Zhu, L.; Huang, X.; Bao, H.; Cheng, X. Association between serum uric acid levels and peripheral artery disease in Chinese adults with hypertension. Front. Endocrinol. 2023, 14, 1197628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, L.; Xu, L.; Tian, J.; Liu, J.; Zhao, X.; Feng, X.; Wang, D.; Zhang, Y.; Sun, K.; et al. Implications of Hyperuricemia in Severe Coronary Artery Disease. Am. J. Cardiol. 2019, 123, 558–564. [Google Scholar] [CrossRef]
- Ponticelli, C.; Podestà, M.A.; Moroni, G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020, 98, 1149–1159. [Google Scholar] [CrossRef]
- Maloberti, A.; Qualliu, E.; Occhi, L.; Sun, J.; Grasso, E.; Tognola, C.; Tavecchia, G.; Cartella, I.; Milani, M.; Vallerio, P.; et al. Hyperuricemia prevalence in healthy subjects and its relationship with cardiovascular target organ damage. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 178–185. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, X.X.; Wu, J.; Huang, Z.J.; Zhao, Z.P.; Zhang, X.; Xue, Y.; Wan, W.G.; Li, C.; Zhang, W.R.; et al. Prevalence of Hyperuricemia among Chinese Adults: Findings from Two Nationally Representative Cross-Sectional Surveys in 2015-16 and 2018-19. Front. Immunol. 2022, 12, 791983. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.C.; Tang, Z.; Fang, X.H.; Wu, X.G.; Liu, H.J.; Wang, C.X.; Hou, C.B. Prevalence of hyperuricemia among Beijing post-menopausal women in 10 years. Arch. Gerontol. Geriat. 2016, 64, 162–166. [Google Scholar] [CrossRef]
- Kakutani-Hatayama, M.; Kadoya, M.; Okazaki, H.; Kurajoh, M.; Shoji, T.; Koyama, H.; Tsutsumi, Z.; Moriwaki, Y.; Namba, M.; Yamamoto, T. Nonpharmacological Management of Gout and Hyperuricemia: Hints for Better Lifestyle. Am. J. Lifestyle Med. 2017, 11, 321–329. [Google Scholar] [CrossRef]
- Li, R.; Yu, K.; Li, C. Dietary factors and risk of gout and hyperuricemia: A meta-analysis and systematic review. Asia Pac. J. Clin. Nutr. 2018, 27, 1344–1356. [Google Scholar] [CrossRef]
- Makinouchi, T.; Sakata, K.; Oishi, M.; Tanaka, K.; Nogawa, K.; Watanabe, M.; Suwazono, Y. Benchmark dose of alcohol consumption for development of hyperuricemia in Japanese male workers: An 8-year cohort study. Alcohol 2016, 56, 9–14. [Google Scholar] [CrossRef]
- Liu, X.; Gu, W.; Li, Z.; Lei, H.; Li, G.; Huang, W. Hypertension prevalence, awareness, treatment, control, and associated factors in Southwest China: An update. J. Hypertens. 2017, 35, 637–644. [Google Scholar] [CrossRef]
- Aggarwal, R.; Chiu, N.; Wadhera, R.K.; Moran, A.E.; Raber, I.; Shen, C.; Yeh, R.W.; Kazi, D.S. Racial/Ethnic Disparities in Hypertension Prevalence, Awareness, Treatment, and Control in the United States, 2013 to 2018. Hypertension 2021, 78, 1719–1726. [Google Scholar] [CrossRef]
- Choi, H.M.; Kim, H.C.; Kang, D.R. Sex differences in hypertension prevalence and control: Analysis of the 2010–2014 Korea National Health and Nutrition Examination Survey. PLoS ONE 2017, 12, e0178334. [Google Scholar] [CrossRef]
- Geldsetzer, P.; Manne-Goehler, J.; Theilmann, M.; Davies, J.I.; Awasthi, A.; Vollmer, S.; Jaacks, L.M.; Barnighausen, T.; Atun, R. Diabetes and Hypertension in India: A Nationally Representative Study of 1.3 Million Adults. JAMA Intern. Med. 2018, 178, 363–372. [Google Scholar] [CrossRef]
- Wu, Y.; Huxley, R.; Li, L.; Anna, V.; Xie, G.; Yao, C.; Woodward, M.; Li, X.; Chalmers, J.; Gao, R.; et al. Prevalence, awareness, treatment, and control of hypertension in China: Data from the China National Nutrition and Health Survey 2002. Circulation 2008, 118, 2679–2686. [Google Scholar] [CrossRef]
- Chen, W.W.; Gao, R.L.; Liu, L.S.; Zhu, M.L.; Wang, W.; Wang, Y.J.; Wu, Z.S.; Li, H.J.; Gu, D.F.; Yang, Y.J.; et al. China cardiovascular diseases report 2015: A summary. J. Geriatr. Cardiol. 2017, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Piao, W.; Zhao, L.Y.; Yang, Y.X.; Fang, H.Y.; Ju, L.H.; Cai, S.Y.; Yu, D.M. The Prevalence of Hyperuricemia and Its Correlates among Adults in China: Results from CNHS 2015–2017. Nutrients 2022, 14, 4095. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Chang, C.; Zhang, J.R.; Jiang, Y.; Ni, B.Y.; Wang, Y.L. Prevalence and risk factors associated with hypertension and prehypertension in a working population at high altitude in China: A cross-sectional study. Environ. Health Prev. 2017, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.B.; Zhang, W.Q.; Tang, W.W.; Liu, Y.; Ning, Y.; Huang, C.; Liu, J.X.; Yi, Y.J.; Xu, R.H.; Wang, T.D. Prevalence and associated factors of hyperuricemia among urban adults aged 35–79 years in southwestern China: A community-based cross-sectional study. Sci. Rep. 2020, 10, 15683. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Noda, Y.; Ohno, Y.; Sugiyama, H.; Oe, H.; Nakamura, K.; Kohno, K.; Ito, H. Omega-3 fatty acids improve postprandial lipemia and associated endothelial dysfunction in healthy individuals—A randomized cross-over trial. Biomed. Pharmacother. 2014, 68, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Plastiras, A.; Siasos, G.; Oikonomou, E.; Verveniotis, A.; Kokkou, E.; Maniatis, K.; Gouliopoulos, N.; Miliou, A.; Paraskevopoulos, T.; et al. Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis 2014, 232, 10–16. [Google Scholar] [CrossRef]
- Saito, H.; Toyoda, Y.; Takada, T.; Hirata, H.; Ota-Kontani, A.; Miyata, H.; Kobayashi, N.; Tsuchiya, Y.; Suzuki, H. Omega-3 Polyunsaturated Fatty Acids Inhibit the Function of Human URAT1, a Renal Urate Re-absorber. Nutrients 2020, 12, 1601. [Google Scholar] [CrossRef]
- Machado, A.D.; Andrade, G.R.G.; Levy, J.; Ferreira, S.S.; Marchioni, D.M. Association between Vitamins and Minerals with Antioxidant Effects and Coronary Artery Calcification in Adults and Older Adults: A Systematic Review. Curr. Pharm. Des. 2019, 25, 2474–2479. [Google Scholar] [CrossRef]
- Li, L.Z.; Zhou, G.X.; Li, J.; Jiang, W.; Liu, B.L.; Zhou, W. Compounds containing trace element copper or zinc exhibit as potent hyperuricemia inhibitors via xanthine oxidase inactivation. J. Trace Elem. Med. Bio. 2018, 49, 72–78. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Qiu, H.B. Dietary Magnesium Intake and Hyperuricemia among US Adults. Nutrients 2018, 10, 296. [Google Scholar] [CrossRef]
- Jones, D.W.; Clark, D.; Morgan, T.O.; He, F.J. Potassium-Enriched Salt Substitution as a Population Strategy to Prevent Cardiovascular Disease. Hypertension 2022, 79, 2199–2201. [Google Scholar] [CrossRef] [PubMed]
- Kisters, K.; Groeber, U.; Kisters, L. Increased Ionized Calcium-Magnesium Ratio in Elderly Hypertensives. J. Hypertens. 2023, 41, E98–E99. [Google Scholar] [CrossRef]
Overall | Male | Female | % | p-Value * | |||
---|---|---|---|---|---|---|---|
N | % ¶ | N | % ¶ | N | |||
Total | 52,627 | 100 | 24,425 | 51.6 | 28,202 | 48.4 | |
Bean and nut intake | |||||||
Insufficient | 23,919 | 40.9 | 10,614 | 39.1 | 13,305 | 42.9 | <0.0001 |
Sufficient | 28,708 | 59.1 | 13,811 | 60.9 | 14,897 | 57.1 | |
Vegetable intake | |||||||
Insufficient | 28,559 | 53.4 | 12,914 | 51.7 | 15,645 | 55.2 | <0.0001 |
Sufficient | 24,068 | 46.6 | 11,511 | 48.3 | 12,557 | 44.8 | |
Fruit intake | |||||||
Insufficient | 42,642 | 78.4 | 20,441 | 81.7 | 22,201 | 74.8 | <0.0001 |
Sufficient | 9985 | 21.6 | 3984 | 18.3 | 6001 | 25.2 | |
Milk intake | |||||||
Insufficient | 51,657 | 98.0 | 24,053 | 39.1 | 27,604 | 42.9 | 0.0878 |
Sufficient | 970 | 2.0 | 372 | 60.9 | 598 | 57.1 | |
Red meat intake | |||||||
Insufficient | 15,026 | 26.5 | 5503 | 20.0 | 9523 | 33.5 | <0.0001 |
Moderate | 4463 | 8.7 | 1805 | 7.3 | 2658 | 10.2 | |
Excessive | 33,138 | 64.8 | 17,117 | 72.7 | 16,021 | 56.4 | |
Alcohol consumption | |||||||
Never | 37,810 | 69.4 | 11,883 | 47.9 | 25,927 | 92.3 | <0.0001 |
Low risk | 10,712 | 23.9 | 8746 | 39.7 | 1966 | 7.0 | |
Medium risk | 1513 | 2.6 | 1346 | 4.6 | 167 | 0.4 | |
High and very high risk | 2592 | 4.2 | 2450 | 7.9 | 142 | 0.3 | |
Vegetarian | |||||||
No | 49,760 | 94.9 | 23,366 | 95.9 | 26,394 | 93.8 | <0.0001 |
Yes | 2867 | 5.1 | 1059 | 4.1 | 1808 | 6.2 | |
Residence location | |||||||
Urban | 21,143 | 52.3 | 9576 | 53.5 | 11,567 | 51.2 | 0.0110 |
Rural | 31,484 | 47.7 | 14,849 | 46.5 | 16,635 | 48.8 | |
Geographic region | |||||||
East | 20,612 | 44.5 | 9495 | 45.1 | 11,117 | 43.8 | 0.3167 |
Central | 14,868 | 30.3 | 6889 | 29.8 | 7979 | 30.9 | |
West | 17,147 | 25.2 | 8041 | 25.1 | 9106 | 25.3 | |
Age group (years) | |||||||
18~29 | 5642 | 26.6 | 2493 | 26.4 | 3149 | 26.7 | 0.6759 |
30~39 | 7796 | 23.3 | 3534 | 23.6 | 4262 | 22.9 | |
40~49 | 14,399 | 25.7 | 6595 | 25.4 | 7804 | 26.1 | |
50~64 | 24,790 | 24.5 | 11,803 | 24.6 | 12,987 | 24.3 | |
Education level | |||||||
Low | 22,316 | 29.0 | 8247 | 22.5 | 14,069 | 36.1 | <0.0001 |
Moderate | 17,984 | 35.3 | 9658 | 38.4 | 8326 | 32.0 | |
High | 12,327 | 35.7 | 6520 | 39.1 | 5807 | 32.0 | |
Household income | |||||||
Low | 34,917 | 60.4 | 16,324 | 60.4 | 18,593 | 60.5 | 0.0544 |
Moderate | 8490 | 20.8 | 3914 | 21.3 | 4576 | 20.2 | |
High | 929 | 2.5 | 430 | 2.7 | 499 | 2.3 | |
Unknown | 8291 | 16.3 | 3757 | 15.6 | 4534 | 17.1 | |
BMI | |||||||
Wasting | 2067 | 5.1 | 856 | 4.7 | 1211 | 5.6 | <0.0001 |
Normal | 24,294 | 47.4 | 11,133 | 44.8 | 13,161 | 50.2 | |
Overweight | 18,548 | 33.1 | 8907 | 35.4 | 9641 | 30.7 | |
Obese | 7718 | 14.3 | 3529 | 15.1 | 4189 | 13.5 | |
Smoking | |||||||
Never | 35,717 | 67.3 | 8327 | 38.4 | 27,390 | 97.9 | <0.0001 |
Former | 14,142 | 28.4 | 13,471 | 53.4 | 671 | 1.7 | |
Current | 2768 | 4.4 | 2627 | 8.1 | 141 | 0.4 | |
Physical activity | |||||||
Insufficient | 29,962 | 64.0 | 12,984 | 60.9 | 16,978 | 67.2 | <0.0001 |
Sufficient | 22,665 | 36.0 | 11,441 | 39.1 | 11,224 | 32.8 | |
Diabetes mellitus | |||||||
No | 48,487 | 94.0 | 22,381 | 93.6 | 26,106 | 94.5 | 0.0076 |
Yes | 4140 | 6.0 | 2044 | 6.4 | 2096 | 5.5 | |
Dyslipidemia | |||||||
No | 31,724 | 61.7 | 13,197 | 53.9 | 18,527 | 70.1 | <0.0001 |
Yes | 20,903 | 38.3 | 11,228 | 46.1 | 9675 | 29.9 | |
Hyperuricemia | |||||||
No | 45,633 | 84.9 | 19,958 | 78.8 | 25,675 | 91.5 | <0.0001 |
Yes | 6994 | 15.1 | 4467 | 21.2 | 2527 | 8.5 | |
Hypertension | |||||||
No | 35,743 | 76.5 | 15,917 | 73.2 | 19,826 | 80.1 | <0.0001 |
Yes | 16,884 | 23.5 | 8508 | 26.8 | 8376 | 19.9 | |
Hypertension and Hyperuricemia | |||||||
No | 49,739 | 95.3 | 22,546 | 93.2 | 27,193 | 97.6 | <0.0001 |
Yes | 2888 | 4.7 | 1879 | 6.8 | 1009 | 2.4 |
Total | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
% | 95% CI | p-Value * | % | 95% CI | p-Value * | % | 95% CI | p-Value * | |
Total | 4.7 | (4.3–5.0) | 6.8 | (6.2–7.5) | 2.4 | (2.1–2.6) | |||
Residence location | |||||||||
Urban | 4.9 | (4.4–5.5) | 0.1151 | 7.2 | (6.2–8.2) | 0.1771 | 2.4 | (2.0–2.8) | 0.7726 |
Rural | 4.4 | (3.9–4.8) | 6.4 | (5.6–7.1) | 2.3 | (2.0–2.7) | |||
Area of the country | |||||||||
East | 5.1 | (4.5–5.8) | 0.0627 | 7.4 | (6.4–8.4) | 0.2255 | 2.7 | (2.2–3.1) | 0.1362 |
Central | 4.4 | (3.7–5.0) | 6.6 | (5.4–7.7) | 2.1 | (1.7–2.6) | |||
West | 4.2 | (3.6–4.8) | 6.1 | (5.1–7.1) | 2.2 | (1.7–2.6) | |||
Age (years) | |||||||||
18~29 | 2.5 | (1.7–3.3) | <0.0001 | 4.1 | (2.8–5.5) | <0.0001 | 0.8 | (0.1–1.6) | <0.0001 |
30~39 | 3.6 | (2.9–4.2) | 5.9 | (4.6–7.1) | 1.0 | (0.6–1.5) | |||
40~49 | 5.3 | (4.6–6.1) | 8.2 | (7.0–9.4) | 2.4 | (1.9–2.9) | |||
50~64 | 7.3 | (6.7–7.9) | 9.2 | (8.3–10.1) | 5.3 | (4.6–5.9) | |||
Education level | |||||||||
Low | 5.0 | (4.4–5.7) | 0.2220 | 7.5 | (6.2–8.7) | 0.4752 | 3.4 | (2.9–3.9) | <0.0001 |
Moderate | 4.8 | (4.3–5.4) | 6.9 | (6.0–7.8) | 2.2 | (1.7–2.7) | |||
High | 4.2 | (3.4–5.0) | 6.4 | (5.1–7.6) | 1.4 | (0.8–2.0) | |||
Household income | |||||||||
Low | 4.8 | (4.3–5.2) | 0.4067 | 6.9 | (6.2–7.7) | 0.2277 | 2.5 | (2.2–2.8) | 0.4267 |
Moderate | 4.8 | (3.9–5.7) | 7.5 | (5.9–9.1) | 1.9 | (1.4–2.3) | |||
High | 3.3 | (1.8–4.9) | 4.4 | (1.8–7.0) | 2.0 | (0.7–3.3) | |||
Unknown | 4.1 | (3.1–5.2) | 5.8 | (4.5–7.2) | 2.5 | (1.4–3.6) | |||
BMI | |||||||||
Wasting | 1.5 | (0.1–3.0) | <0.0001 | 0.9 | (0.1–1.6) | <0.0001 | 2.1 | (0.0–4.7) | <0.0001 |
Normal | 1.7 | (1.4–1.9) | 2.6 | (2.1–3.0) | 0.8 | (0.6–1.0) | |||
Overweight | 6.2 | (5.4–6.9) | 8.8 | (7.6–10.0) | 2.9 | (2.4–3.4) | |||
Obese | 12.2 | (10.7–13.8) | 16.6 | (14.1–19.1) | 7.1 | (5.8–8.4) | |||
Smoking | |||||||||
Never | 3.7 | (3.3–4.1) | <0.0001 | 6.9 | (5.8–7.9) | 0.0009 | 2.4 | (2.1–2.6) | 0.6889 |
Former | 6.1 | (5.3–6.9) | 6.2 | (5.4–7.0) | 2.8 | (1.1–4.6) | |||
Current | 10.4 | (7.9–12.9) | 10.7 | (8.2–13.3) | 3.7 | (0.0–8.6) | |||
Physically active | |||||||||
Insufficient | 4.7 | (4.3–5.2) | 0.5658 | 7.3 | (6.4–8.2) | 0.0323 | 2.2 | (1.9–2.6) | 0.2563 |
Sufficient | 4.5 | (4.0–5.1) | 6.0 | (5.2–6.9) | 2.6 | (2.1–3.1) | |||
Diabetes mellitus | |||||||||
No | 4.3 | (4.0–4.7) | <0.0001 | 6.5 | (5.9–7.1) | <0.0001 | 2.1 | (1.8–2.3) | <0.0001 |
Yes | 9.7 | (8.1–11.4) | 11.7 | (9.2–14.2) | 7.3 | (5.6–9.0) | |||
Dyslipidemia | |||||||||
No | 2.3 | (2.0–2.6) | <0.0001 | 3.6 | (3.0–4.2) | <0.0001 | 1.3 | (1.0–1.5) | <0.0001 |
Yes | 8.5 | (7.7–9.2) | 10.6 | (9.5–11.7) | 4.9 | (4.2–5.7) | |||
Bean and nut intake | |||||||||
Insufficient | 5.0 | (4.4–5.6) | 0.1143 | 7.3 | (6.2–8.4) | 0.2355 | 2.8 | (2.3–3.2) | 0.0106 |
Sufficient | 4.4 | (4.0–4.9) | 6.5 | (5.7–7.3) | 2.1 | (1.8–2.4) | |||
Vegetable intake | |||||||||
Insufficient | 4.3 | (3.8–4.8) | 0.0231 | 6.4 | (5.5–7.3) | 0.2035 | 2.1 | (1.7–2.5) | 0.0965 |
Sufficient | 5.1 | (4.6–5.6) | 7.2 | (6.4–8.1) | 2.6 | (2.2–3.0) | |||
Fruit intake | |||||||||
Insufficient | 4.7 | (4.3–5.1) | 0.7301 | 6.8 | (6.1–7.4) | 0.6788 | 2.3 | (2.0–2.6) | 0.6510 |
Sufficient | 4.5 | (3.6–5.4) | 7.1 | (5.5–8.8) | 2.5 | (1.7–3.3) | |||
Milk intake | |||||||||
Insufficient | 4.7 | (4.3–5.1) | 0.2027 | 6.9 | (6.2–7.5) | 0.207 | 2.4 | (2.1–2.6) | 0.8373 |
Sufficient | 3.4 | (1.6–5.1) | 4.3 | (1.2–7.5) | 2.6 | (0.6–4.6) | |||
Red meat intake | |||||||||
Insufficient | 3.9 | (3.4–4.4) | 0.0007 | 5.9 | (4.8–7.1) | 0.1372 | 2.6 | (2.1–3.1) | 0.3871 |
Moderate | 3.6 | (2.7–4.6) | 5.9 | (4.0–7.8) | 1.9 | (1.1–2.7) | |||
Excessive | 5.1 | (4.6–5.6) | 7.2 | (6.4–7.9) | 2.3 | (1.9–2.7) | |||
Alcohol consumption | |||||||||
Never | 3.5 | (3.2–3.8) | <0.0001 | 5.5 | (4.7–6.2) | <0.0001 | 2.4 | (2.1–2.7) | 0.0907 |
Low risk | 6.1 | (5.1–7.0) | 6.8 | (5.7–7.9) | 1.7 | (1.0–2.3) | |||
Medium risk | 9.7 | (6.8–12.7) | 10.4 | (7.2–13.5) | 1.9 | (0.2–3.7) | |||
High and very high risk | 12.7 | (10.6–14.8) | 13.0 | (10.8–15.2) | 4.0 | (0.8–7.2) | |||
Vegetarian | |||||||||
No | 4.8 | (4.4–5.2) | 0.0050 | 6.9 | (6.3–7.6) | 0.0388 | 2.4 | (2.1–2.7) | 0.2862 |
Yes | 2.9 | 1.9–3.9 | 4.4 | 2.5–6.3 | 1.8 | 0.9–2.7 |
Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|
OR | (95% CI) | F | p-Value | OR | (95% CI) | F | p-Value | |
Bean and nut intake | ||||||||
Insufficient | Ref. | 8.97 | 0.0029 | Ref. | 11.00 | 0.0010 | ||
Sufficient | 0.767 | (0.645–0.913) | 0.734 | (0.611–0.881) | ||||
Vegetable intake | ||||||||
Insufficient | Ref. | 3.54 | 0.0604 | Ref. | 2.52 | 0.1133 | ||
Sufficient | 1.176 | (0.993–1.392) | 1.147 | (0.968–1.361) | ||||
Fruit intake | ||||||||
Insufficient | Ref. | 0.02 | 0.8828 | Ref. | 0.04 | 0.8463 | ||
Sufficient | 1.019 | (0.792–1.311) | 1.025 | (0.796–1.322) | ||||
Milk intake | ||||||||
Insufficient | Ref. | 0.88 | 0.3474 | Ref. | 0.44 | 0.5089 | ||
Sufficient | 0.77 | (0.447–1.328) | 0.818 | (0.450–1.487) | ||||
Red meat intake | ||||||||
Insufficient | Ref. | 2.09 | 0.1249 | Ref. | 1.86 | 0.1565 | ||
Moderate | 0.865 | (0.627–1.195) | 0.889 | (0.639–1.237) | ||||
Excessive | 1.119 | (0.934–1.34) | 1.135 | (0.943–1.368) | ||||
Alcohol consumption | ||||||||
Never | Ref. | 72.07 | <0.0001 | Ref. | 19.37 | <0.0001 | ||
Low risk | 1.802 | (1.502–2.161) | 1.293 | (1.045–1.600) | ||||
Medium risk | 2.972 | (2.083–4.242) | 1.678 | (1.118–2.520) | ||||
High and very high risk | 4.014 | (3.285–4.905) | 2.544 | (1.997–3.240) | ||||
Vegetarian | ||||||||
No | Ref. | 3.94 | 0.0478 | Ref. | 4.09 | 0.0436 | ||
Yes | 0.679 | (0.462–0.996) | 0.659 | (0.439–0.988) |
Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|
OR | (95% CI) | F | p-Value | OR | (95% CI) | F | p-Value | |
Bean and nut intake | ||||||||
Insufficient | Ref. | 4.40 | 0.0365 | Ref. | 7.46 | 0.0065 | ||
Sufficient | 0.795 | (0.642–0.986) | 0.733 | (0.587–0.917) | ||||
Vegetable intake | ||||||||
Insufficient | Ref. | 1.23 | 0.2676 | Ref. | 1.58 | 0.2090 | ||
Sufficient | 1.119 | (0.917–1.365) | 1.138 | (0.930–1.393) | ||||
Fruit intake | ||||||||
Insufficient | Ref. | 0.32 | 0.5723 | Ref. | 0.12 | 0.7302 | ||
Sufficient | 1.087 | (0.813–1.453) | 0.949 | (0.706–1.276) | ||||
Milk intake | ||||||||
Insufficient | Ref. | 1.08 | 0.2989 | Ref. | 1.24 | 0.2665 | ||
Sufficient | 0.668 | (0.311–1.433) | 0.637 | (0.287–1.413) | ||||
Red meat intake | ||||||||
Insufficient | Ref. | 0.79 | 0.4536 | Ref. | 1.48 | 0.2293 | ||
Moderate | 0.935 | (0.637–1.372) | 0.925 | (0.624–1.372) | ||||
Excessive | 1.115 | (0.888–1.400) | 1.182 | (0.930–1.501) | ||||
Alcohol consumption | ||||||||
Never | Ref. | 26.99 | <0.0001 | Ref. | 20.20 | <0.0001 | ||
Low risk | 1.289 | (1.029–1.614) | 1.350 | (1.071–1.701) | ||||
Medium risk | 2.028 | (1.413–2.909) | 1.793 | (1.177–2.732) | ||||
High and very high risk | 2.635 | (2.110–3.291) | 2.692 | (2.095–3.459) | ||||
Vegetarian | ||||||||
No | Ref. | 2.60 | 0.1078 | Ref. | 3.01 | 0.0835 | ||
Yes | 0.677 | (0.421–1.089) | 0.640 | (0.386–1.061) |
Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|
OR | (95% CI) | F | p-Value | OR | (95% CI) | F | p-Value | |
Bean and nut intake | ||||||||
Insufficient | Ref. | 7.46 | 0.0065 | Ref. | 5.04 | 0.0252 | ||
Sufficient | 0.733 | (0.587–0.917) | 0.739 | (0.567–0.963) | ||||
Vegetable intake | ||||||||
Insufficient | Ref. | 1.58 | 0.2090 | Ref. | 1.30 | 0.2547 | ||
Sufficient | 1.138 | (0.930–1.393) | 1.171 | (0.892–1.537) | ||||
Fruit intake | ||||||||
Insufficient | Ref. | 0.12 | 0.7302 | Ref. | 1.42 | 0.2345 | ||
Sufficient | 0.949 | (0.706–1.276) | 1.295 | (0.845–1.986) | ||||
Milk intake | ||||||||
Insufficient | Ref. | 0.2665 | Ref. | 0.35 | 0.5567 | |||
Sufficient | 0.637 | (0.287–1.413) | 1.24 | 1.272 | (0.569–2.843) | |||
Red meat intake | ||||||||
Insufficient | Ref. | 1.48 | 0.2293 | Ref. | 0.38 | 0.6833 | ||
Moderate | 0.925 | (0.624–1.372) | 0.830 | (0.504–1.366) | ||||
Excessive | 1.182 | (0.930–1.501) | 1.034 | (0.752–1.423) | ||||
Alcohol consumption | ||||||||
Never | Ref. | 20.20 | <0.0001 | Ref. | 0.68 | 0.5661 | ||
Low risk | 1.350 | (1.071–1.701) | 0.781 | (0.487–1.254) | ||||
Medium risk | 1.793 | (1.177–2.732) | 0.624 | (0.22–1.772) | ||||
High and very high risk | 2.692 | (2.095–3.459) | 1.144 | (0.351–3.724) | ||||
Vegetarian | ||||||||
No | Ref. | 3.01 | 0.0835 | Ref. | 1.54 | 0.2145 | ||
Yes | 0.717 | (0.406–1.266) | 0.693 | (0.388–1.237) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piao, W.; Li, S.; Guo, Q.; Cheng, X.; Xu, X.; Zhao, L.; Yu, D. Bean and Nut Intake Were Protective Factors for Comorbid Hypertension and Hyperuricemia in Chinese Adults: Results from China Nutrition and Health Surveillance (2015–2017). Nutrients 2024, 16, 192. https://doi.org/10.3390/nu16020192
Piao W, Li S, Guo Q, Cheng X, Xu X, Zhao L, Yu D. Bean and Nut Intake Were Protective Factors for Comorbid Hypertension and Hyperuricemia in Chinese Adults: Results from China Nutrition and Health Surveillance (2015–2017). Nutrients. 2024; 16(2):192. https://doi.org/10.3390/nu16020192
Chicago/Turabian StylePiao, Wei, Shujuan Li, Qiya Guo, Xue Cheng, Xiaoli Xu, Liyun Zhao, and Dongmei Yu. 2024. "Bean and Nut Intake Were Protective Factors for Comorbid Hypertension and Hyperuricemia in Chinese Adults: Results from China Nutrition and Health Surveillance (2015–2017)" Nutrients 16, no. 2: 192. https://doi.org/10.3390/nu16020192
APA StylePiao, W., Li, S., Guo, Q., Cheng, X., Xu, X., Zhao, L., & Yu, D. (2024). Bean and Nut Intake Were Protective Factors for Comorbid Hypertension and Hyperuricemia in Chinese Adults: Results from China Nutrition and Health Surveillance (2015–2017). Nutrients, 16(2), 192. https://doi.org/10.3390/nu16020192