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Abstract: Recent observational studies have reported associations between serum mineral nutrient
levels, gut microbiota composition, and neurological, psychiatric, and metabolic diseases. However,
the causal effects of mineral nutrients on gut microbiota and their causal associations with diseases re-
main unclear and require further investigation. This study aimed to identify the associations between
serum mineral nutrients, gut microbiota, and risk of neurological, psychiatric, and metabolic diseases
using Mendelian randomization (MR). We conducted an MR study using the large-scale genome-wide
association study (GWAS) summary statistics of 5 serum mineral nutrients, 196 gut microbes at the
phylum, order, family, and genus levels, and a variety of common neurological, psychiatric, and
metabolic diseases. Initially, the independent causal associations of mineral nutrients and gut micro-
biota with diseases were examined by MR. Subsequently, the causal effect of mineral nutrients on
gut microbiota was estimated to investigate whether specific gut microbes mediated the association
between mineral nutrients and diseases. Finally, we performed sensitivity analyses to assess the
robustness of the study results. After correcting for multiple testing, we identified a total of 33 causal
relationships among mineral nutrients, gut microbiota, and diseases. Specifically, we found 4 causal
relationships between 3 mineral nutrition traits and 3 disease traits, 15 causal associations between
14 gut microbiota traits and 6 disease traits, and 14 causal associations involving 4 mineral nutrition
traits and 15 gut microbiota traits. Meanwhile, 118 suggestive associations were identified. The
current study reveals multiple causal associations between serum mineral nutrients, gut microbiota,
risk of neurological, psychiatric, and metabolic diseases, and potentially provides valuable insights
for subsequent nutritional therapies.

Keywords: mineral nutrient; gut microbiota; metabolic diseases; neurological diseases; psychiatric
diseases; mendelian randomization study

1. Introduction

The prevalence of neurological, psychiatric, and metabolic diseases is high and on
the rise globally with modernizing societies and aging populations. Neurological diseases,
including Alzheimer’s disease, multiple sclerosis, stroke, and psychiatric diseases such as
autism spectrum disorder and major depressive disorder, significantly contribute to the
global health burden as leading causes of disability and mortality [1]. Metabolic diseases,
such as type 2 diabetes and obesity, are complex and multifactorial. Epidemiological
studies indicate a rise in the global prevalence of metabolic diseases from 2000 to 2019 [2].
Therefore, there is an urgent need for more effective therapeutic and preventive strategies,
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given the rising incidence and disability rates of neurological, psychiatric, and metabolic
diseases, as well as the global trend towards their increase.

The incidence of neurological, psychiatric, and metabolic diseases is influenced by
multiple factors, such as genetics, lifestyle, and environment. Recent evidence underscores
the critical role of gut microbiota in host health, particularly in metabolism and immune
regulation [3]. The gut microbiota and the neurological system interact bidirectionally
through multiple pathways. The “brain–gut axis” refers to the bidirectional regulatory
pathway between the central nervous system and the gut, with the interplay of the gut mi-
crobiota and the gut-brain axis labelled as the gut microbiota–gut–brain axis [4]. The enteric
gut microbiota–gut–brain axis encompasses various pathways, including neuroanatomical
pathways, the intestinal immune system, and neurotransmitters and neuromodulators
synthesized by the gut microbiota. Furthermore, a growing number of studies are concen-
trating on the potential role of gut microbiota in the development of metabolic diseases.
The gut microbiota can affect the function of the intestinal mucosal barrier and nutrient
absorption, influence energy metabolism and hormone secretion, and contribute to the
development of metabolic diseases through immune regulation and the inflammatory
response [5,6]. In addition to gut microbiota, mineral nutrients also play a crucial role
in maintaining health. The effects of some mineral elements on health may be due to
their role in the structure and function of neurons, or their involvement in the body’s
immune response and oxidative stress response [7,8]. Moderate intake of metallic mineral
elements is important for preventing neurological, psychiatric, and metabolic diseases,
as well as for maintaining good health [9,10]. Meanwhile the stability and health of the
gut microbiota are influenced by multiple factors, notably mineral nutrients concentration.
Mineral nutrients are essential for many enzymes and are involved in many biochemical
reactions. Reduced serum mineral concentrations may affect the growth and metabolism of
gut microbes. In addition, both excessive and inadequate levels of certain mineral nutrients
can alter the composition of the gut microbiota, as some bacteria rely on these nutrients
for growth. Therefore, serum mineral concentrations should be regarded as an important
factor influencing the composition and health of the gut microbiota.

Neurological, psychiatric, and metabolic diseases possess complex aetiologies, requir-
ing further research into their underlying causes and pathological mechanisms to enhance
our understanding and treatment of these diseases. This will assist in developing new
treatments and preventive measures, ultimately reducing the burden of these diseases
on patients and society. Therefore, understanding the potential roles of gut microbiota
and mineral nutrition is essential for maintaining their healthy balance, as well as for the
prevention and treatment of neurological, psychiatric, and metabolic diseases.

Traditionally, causality has been inferred through randomized controlled trials (RCTs)
aimed at assessing the causal effect of interventions on specific outcomes. However, RCTs
have limitations, including potential confounding factors, reverse causality, and difficulties
in implementation due to ethical constraints [11,12]. Mendelian randomization, an alter-
native approach, employs naturally occurring genetic variation to assess the causality of
specific factors on outcomes [13]. MR exploits the random assignment of genetic alleles
that affect exposure and avoids interference from unobserved confounding factors and
reverse causality bias, providing advantages over other study designs [14,15].

Compared to existing MR studies on the association between mineral nutrients or gut
microbiota and disease, we employed MR to more systematically and comprehensively
investigate the causal effects between various mineral nutrients, gut microbiota, and
prevalent neurological, psychiatric, and metabolic diseases. Furthermore, we explored the
associations between mineral nutrients and gut microbiota to identify gut microbes that
may mediate the associations between mineral nutrients and diseases, thereby providing
new ideas and methods for the prevention and treatment of related diseases. Figure 1
provides a brief overview of this process.
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2. Methods
2.1. Exposure Data

Based on observational studies, we selected five serum mineral nutritional traits (cal-
cium, copper, iron, magnesium, and zinc) as exposure factors. The data were derived from
a recent large-scale Genome-Wide Association Study (GWAS) conducted on individuals
of European ancestry [16–19]. Calcium, copper, iron, magnesium, and zinc are vital nu-
trients for the human body. Including these minerals in our research can help guide the
development of dietary recommendations and supplementation strategies. These minerals,
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widespread in the body, perform crucial physiological functions, including neural transmis-
sion, bone health maintenance, immune support, cardiovascular wellbeing, and metabolic
regulation. Investigating these minerals may reveal their associations with neurological,
psychiatric, and metabolic diseases [16–19]. In addition, gut microbiota was also included
as exposure in the MR analysis. The GWSA summary statistics of gut microbiota taxa
were obtained from the international consortium MiBioGen. The MiBioGen consortium
included genomic and gut microbiota data from 24 cohorts of more than 18,000 people of
various ethnicities including Europe, America, the Middle East, and East Asia, making it
the largest GWAS of gut microbiota to date [20]. After removing unknown gut microbes, a
total of 196 taxa (119 genera, 32 families, 20 orders, 16 classes, and 9 phyla) were included
in this study. It is worth noting that gut microbiota was also included as the outcome when
investigating the association of mineral nutrients on the gut microbiota.

2.2. Outcome Data

We extracted GWAS summary statistics for various neurological and psychiatric
diseases, including Alzheimer’s disease (AD), autism spectrum disorder (ASD), major
depressive disorder (MDD), multiple sclerosis (MS), stroke (any stroke (AS), any ischemic
stroke (AIS), cardioembolic stroke (CES), large artery stroke (LAS), and small vessel stroke
(SVS)) [21–25], as well as for several metabolic diseases, including type 2 diabetes (T2D),
gout (Gout is often associated with metabolic diseases due to its underlying cause, hy-
peruricemia, a known metabolic disorder. By including gout in our study, which is a
form of arthritis resulting from hyperuricemia, we acknowledge its metabolic associa-
tions.), urate (urate was also included in our study due to its significant association with
metabolic disorders), hyperuricemia (Characterized by abnormally high levels of urate in
the serum, underscores this relationship. The pivotal role of urate, especially in the onset
of gout and other metabolic arthritic conditions, highlights its relevance in the context
of metabolic disorders.), and obesity (BMI) from publicly available large-scale GWAS or
meta-analyses [26–28] (Table 1).

Table 1. Characteristics of included genome-wide association studies for diseases.

Traits Populations Sample Size Reference Number of SNPs Year

Diseases

AD European 71,880 cases,
383,378 controls Jansen, I.E. et al. [21] 13,367,299 2019

ASD European 18,381 cases
27,969 controls Grove, J. et al. [22] 9,112,386 2019

MDD European
East Asian

15,771 cases
178,777 controls Giannakopoulou, O. et al. [23] 7,922,500 2021

MS European 47,429 cases
68,374 controls IMSGC [24] 6,276,314 2019

STROKE
(AS, AIS, CES,

LAS. SVS)
European 40,585 cases

406,111 controls Malik, R. et al. [25]
8,255,860 8,451,005
8,451,005 8,306,090

8,765,828
2018

T2D European 180,834 cases
1,159,055 controls Mahajan, A. et al. [26] 10,454,875 2022

GOUT European 2,115 cases
67,259 controls Köttgen, A. et al. [27] 2,534,835 2013

URATE European 110,347 individuals Köttgen, A. et al. [27] 2,447,616 2013
BMI European 681,275 individuals Yengo, L. et al. [28] 2,336,269 2018

2.3. Instrumental Variables

To ensure the accuracy and validity of the causal inferences, we implemented quality
control measures to select instrumental variables (IVs). SNPs associated with mineral
nutrients that reached the genome-wide significance threshold of p < 5.0 × 10−8 were
selected as potential IVs. To explore a more comprehensive causal relationship between the
gut microbiota and disease, we used a higher threshold (p < 5.0 × 10−6) to obtain more gut
microbiota IVs.
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Linkage disequilibrium (LD) is the genetic linkage between different loci, meaning
that genetic variation at these loci is interdependent. During MR analyses, a strong LD
relationship between selected IVs can result in biased or inaccurate effect estimates. We
conducted a clumping process to estimate LD, with the LD threshold for clumping set at
r2 < 0.001 and the clumping window size set at 10,000 kb.

The validity of MR analysis depends on meeting three key assumptions, one of which
is the absence of genetic variants associated with potential confounding factors. However,
the presence of horizontal pleiotropy may interfere with the validity of this assumption,
which can lead to biased MR results. To address this issue, we utilized MR-PRESSO and
MR-Egger regression tests to detect and correct bias resulting from horizontal pleiotropy.
The MR-PRESSO outlier test conducts a regression analysis on each genetic variant to
identify and remove outlier observations, and then recursively repeats the process using
the data without those observations. The MR-PRESSO global test is repeated recursively
until the p-value is no longer significant (p-value > 0.05) [29].

To reduce the bias due to weak instrumental variables, we also calculated the F-statistic,
which assesses the strength of association between instrumental variables and exposure
factors. There are no weak IVs when the F-statistic is > 10 [30].

2.4. MR Estimates

We used the Wald ratio test to estimate the association between exposure features
containing only one IV and outcome [31]. For exposure features containing two or more
IVs, we used five popular MR methods: inverse-variance weighted (IVW) test, MR-Egger,
weighted mode, weighted median estimator (WME), and simple mode. IVW was used as
the primary MR effect estimator, which weights the MR effect estimates of all IVs to obtain
an overall effect estimate [32,33].

To correct for the multiple hypothesis test results, we used the false discovery rate
(FDR) correction with a false discovery rate of q-value <0.1 [34–36]. Associations be-
tween mineral nutrients, gut microbiota, and diseases were deemed suggestive when
p-value <0.05 but q-value ≥0.1.

2.5. Sensitivity Analysis

To assess the robustness of the causal associations, sensitivity analyses were conducted
on the results, including Cochran’s Q statistics, MR-Egger intercept tests, and leave-one-out
analyses. Cochran’s Q statistics were used for heterogeneity testing. The presence of
heterogeneity can be implied when the Q statistic is significant at a p-value <0.05 [37,38].
The MR-Egger intercept test was used to assess horizontal pleiotropy. The MR effect
estimates of IVs will present a non-zero intercept in the presence of horizontal pleiotropy.
The MR-Egger intercept tests whether the non-zero intercept is significant by fitting a
regression model with an intercept term and a slope term [39]. Leave-one-out analyses
are used to assess the contribution of each IV to the overall effect estimate and the impact
of robustness.

All statistical analyses were performed using R version 4.2.1. MR analyses were
performed using TwosampleMR, MR-PRESSO, and the q-value R package.

3. Results

In this study, we conducted a series of quality control steps and obtained SNPs to be
used as IVs for each serum mineral nutrient feature (calcium, copper, iron, magnesium,
and zinc) and the gut microbiota features at the phylum, class, order, family, and genus
levels. For all causal associations, the F-statistic for IV was >10, thus there was no weak IV
bias. Details of the specific IVs are provided in Additional File S1: Tables S1–S5.
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3.1. Causal Association of Mineral Nutrients and Gut Microbiota on Neurological, Psychiatric, and
Metabolic Diseases

Our results revealed that zinc (OR = 1.02, 95% CI: 1.01–1.03, p = 3.62 × 10−3, q = 1.81 × 10−2)
may be associated with an increased risk of obesity, while iron was also found to be
associated with an increased risk of CES (OR = 1.21, 95% CI: 1.01–1.46, p = 4.21 × 10−2,
q = 4.53 × 10−2) and T2D (OR = 1.08, 95% CI: 1.01–1.15, p = 2.80 × 10−2, q = 8.99 × 10−2),
and magnesium (OR = 0.34, 95% CI: 0.03–0.63, p = 4.53 × 10−2, q = 2.81 × 10−2) was found
to be protective factor against CES risk. These causal associations remained significant after
FDR correction (Figures 2A and 3). In addition, there were two suggestive associations of
calcium on ASD and iron on AS, which were no longer significant after FDR correction
(Additional File S1: Table S6).
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Figure 2. Balloon plot of the association between exposure and outcome. (A) Balloon plot of the
association between gut microbiota and diseases (p-value < 0.05 and q-value < 0.10). (B) Balloon plot
of the association between mineral nutrition and gut microbiota. Red represents a positive correlation;
blue represents a negative correlation, with OR = 1 as the threshold.

Additionally, we identified a total of 15 causal associations between 14 bacterial fea-
tures and 6 disease features (Figures 2A and 3), as well as 93 suggestive associations between
other bacterial features and diseases (Additional File S1: Table S7). The IVW estimates
of the class Actinobacteria (OR = 1.04, 95% CI: 1.01–1.06, p = 2.28 × 10−3, q = 3.64 × 10−2)
showed an association with an increased risk of AD, the genus Sutterella (OR = 1.60, 95% CI:
1.27–2.01, p = 6.11 × 10−5, q = 7.03 × 10−3) indicated an association with an increased risk
of ASD, and the order NB1n (OR = 1.18, 95% CI: 1.05–1.32, p = 4.78 × 10−3, q = 9.56 × 10−2)
showed an association with an increased risk of MS. IVW estimates suggests that the
class Bacteroidia (OR = 0.60, 95% CI: 0.43–0.84, p = 2.81 × 10−3, q = 4.50 × 10−2) and the
order Bacteroidales (OR = 0.60, 95% CI: 0.43–0.84, p =2.81 × 10−3, q = 5.63 × 10−2) had
protective effects on CES. The IVW estimates for the family Streptococcaceae (OR = 1.57, 95%
CI: 1.17–2.12, p = 9.98 × 10−2, q = 2.94 × 10−3) showed an association with an increased
risk of SVS. In addition, we found that five bacterial features (the order Lactobacillales, the
family Lachnospiraceae, the genus Erysipelatoclostridium, the genus Roseburia, and the genus
Turicibacter) are protective factors against obesity, and four bacterial features (the class
Bacteroidia, the class Mollicutes, the family Pasteurellaceae, and the genus Parabacteroides) are
associated with the risk of obesity (Figure 3). These associations remained significant after
FDR correction.
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Figure 3. Mendelian randomization results of causal effects between mineral nutrients, gut microbiota,
and diseases (p-value < 0.05 and q-value < 0.10). OR, odds ratio; CI, confidence interval; IVW, inverse
variance weighted.

3.2. Causal Association of Mineral Nutrients on Gut Microbiota

To investigate whether gut microbiota regulates the association between mineral nu-
trients and diseases, we also estimated the association between mineral nutrients and gut
microbiota (Figures 2B and 4). Based on the results, we found that copper was causally
associated with two bacterial traits (the family Victivallaceae and the genus Butyricicoc-
cus), iron was causally associated with five bacterial traits (the class Melainabacteria, the
order Gastranaerophilales, family Enterobacteriaceae, the genus Escherichia Shigella, and the
genus Terrisporobacter), magnesium was negatively correlated with four bacterial traits (the
class Actinobacteria, the order Bifidobacteriales, the family Bifidobacteriaceae, and the genus
Bifidobacterium), and zinc was positively correlated with two bacterial traits (the genus
Ruminococcustorquesgroup and the genus Actinomyces). These causal relationships were still
significant after FDR correction (Figures 2B and 4). In addition, 23 suggestive associations
of mineral nutrients on gut microbiota were also found (Additional File S1: Table S8).

Suggestive associations are not included in Figures 2–4 and detailed information is
available in Additional File S1: Tables S6–S8. Figure 5 is a summary network to better
understand the associations between mineral nutrients, gut microbiota, and diseases.

3.3. Sensitivity Analyses

Through Cochran’s Q a tests, the results showed no significant heterogeneity in the
IVs used for MR analysis (Additional File S1: Tables S9–S11). According to the results
of the MR-Egger regression intercept analysis, all p-values explained by MR-Egger were
>0.05, indicating that there was no significant horizontal pleiotropy (Additional File S1:
Tables S12–S14). In the MR-PRESSO test, we removed outliers that had a significant level of
pleiotropy and performed MR analysis for the remaining SNPs again. (Additional File S1:
Tables S15–S17). The robustness of our main results was further confirmed by leave-one-out
analysis (Additional File S2: Figures S1–S30).
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Figure 5. The causal associations between mineral nutrients, gut microbiota, and diseases by
Mendelian randomization analysis (p-value < 0.05, q-value < 0.10). The thickness of the lines is
positively correlated with the absolute value of the “OR-1”. The lines start with the exposure and
end with the outcome. Red lines represent a positive correlation; blue lines represent a negative
correlation. Green nodes represent mineral nutrient traits, purple nodes represent gut microbiota
traits, orange nodes represent disease traits, and the size of the node represents the sum of the
in-degree and out-degree.
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4. Discussion

We conducted an MR analysis in this study to evaluate the causal associations between
5 serum mineral nutrients, 196 gut microbes, and some of neurological, psychiatric, and
metabolic diseases.

Our results demonstrated the effects of iron on CES and T2D, the effect of zinc on BMI,
and the effect of magnesium on CES, as well as suggestive associations of iron with AS
and calcium with ASD. The associations we observed have also been reported in several
previous studies.

Previous studies consistent with our results have shown that magnesium is associated
with a decreased risk of CES [40,41]. Associations exist between low serum magnesium
levels and elevated risks of atrial fibrillation, a strong risk factor for cardioembolic stroke.
Consequently, magnesium may reduce the risk of cardioembolic stroke, attributed in part
to its antiarrhythmic effects and atrial fibrillation [42]. Additionally, magnesium can also
inhibit platelet aggregation and reduce the likelihood of thrombosis, and the antithrombotic
effect may lead to a reduction in the risk of cardioembolic stroke [42]. Meanwhile, several
clinical and animal studies have reported that magnesium has a protective role in the
integrity of the blood–brain barrier and that higher serum magnesium concentration may
improve the prognosis of stroke by protecting nerve cells and reducing the inflammatory
response [43,44]. However, we did not observe a significant association between magne-
sium and other stroke subtypes, such as LAS and SVS. CES is mainly caused by thrombosis
or haemorrhage, while LAS and SVS are mainly caused by lesions of the blood vessel
walls [45–47]. Thus, magnesium might exert a more significant protective effect on CES
compared to LAS and SVS. Additionally, other factors, such as lifestyle habits and disease
states, may also influence the risk of different stroke subtypes, potentially modifying the
effect of magnesium [48]. In contrast to magnesium, high serum iron concentration may
increase the risk of CES as iron contributes to oxidative stress. Oxidative stress leads to an
increased production of free radicals within cells, which results in oxidative damage to cell
membranes and triggering of inflammatory responses. These reactions activate platelets
and other cells, promoting platelet aggregation. Furthermore, oxidative stress can lead to
impaired function of endothelial cells and exacerbate thrombosis [49,50].

In addition to the mineral nutrients, our results also highlight the class Bacteroidia
and the order Bacteroidales as protective factors against CES. The protective effect of these
beneficial bacteria aligns with Yin’s study [51]. Bacteroidia can ferment indigestible sugars to
produce short-chain fatty acids (SCFAs) that enhance immunity and can improve cognitive
and functional impairment in the brain after stroke via the gut–brain axis [52]. Therefore,
the class Bacteroidia and the order Bacteroidales may reduce the risk of CES through the
production of SCFAs.

High serum iron concentration may also contribute to insulin resistance and T2D by
affecting fat metabolism and increasing fatty acid release and oxidation [53]. Iron overload
can disrupt the production of reactive oxygen species in the islets, the stability of hypoxia-
inducible factor 1α, and adenosine triphosphate synthesis, thereby impairing islet β-cell
function and viability, which is detrimental to the prevention and treatment of T2D [54].
Thus, exploring interventions to lower serum iron concentration may be a novel strategy for
preventing and treating CES and T2D. Multiple clinical and epidemiological studies have
demonstrated that appropriate dietary changes can lower serum iron concentration [55],
which may subsequently lower the risk of T2D and CES. Additionally, some medications,
such as deferiprone [56], have been demonstrated to lower serum iron concentration.
Therefore, controlling serum iron concentration may assist in controlling T2D and CES, and
could offer insights for the development of future therapeutic strategies.

Our results underscore the significance of the gut microbiota, in addition to mineral
nutrients, in disease development. Specifically, we identified the class Actinobacteria, the
genus Sutterella, the order NB1n, and the family Streptococcaceae as risk factors for AD, ASD,
MS, and SVS, respectively.
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A study indicated a slightly higher abundance of Actinobacteria in the intestines of
AD patients compared to healthy individuals [57]. However, Vogt NM et al. found a
significantly lower abundance of Actinobacteria in AD patients [58]. This suggests that
specific species and strains of actinomycetes may affect different AD patients differently,
and our study linking actinomycetes to increased AD risk may offer new insights into
this uncertain association. Sutterella, identified as a microbial biomarker for ASD patients
in linear discriminant effect size analysis, is a principal bacterial genus implicated in the
increased risk of ASD, a finding consistent with our results [59]. The study by Williams et al.
also indicated a higher abundance of Sutterella in children with ASD [59,60].

Tan et al.’s study further supported our findings, and they found that the enrichment
of the family Streptococcaceae in IS patients was positively correlated with the apolipoprotein
B (ApoB)/ApoA1 ratio, a high-risk factor for IS patients, and negatively correlated with
a preventive factor (high-density lipoprotein cholesterol (HDL-c)) in two ethnic minority
(Tujia and Miao) and Han populations. Additionally, Tan et al. found that the enrichment
of Ruminococcaceae and Lachnospiraceae in healthy populations was negatively associated
with risk factors (systolic blood pressure, ApoB/ApoA1 ratio, fasting plasma glucose, and
high-sensitive C-reactive protein) [61]. In our suggestive analysis, we also found the same
association of Ruminococcaceae and Lachnospiraceae with IS subtypes CES and LAS.

Our analysis also revealed that many gut microbes are associated with BMI. Specifi-
cally, we identified the order Lactobacillales, the family Lachnospiraceae, the genus Erysipela-
toclostridium, the genus Roseburia, and the genus Turicibacter as protective factors against
obesity, while the class Bacteroidia, the class Mollicutes, the family Pasteurellaceae, and the
genus Parabacteroides are risk factors for obesity.

Strains of the genus Roseburia have been found to be beneficial for individuals with
high BMI, as they promote the excretion of indigestible polysaccharides when consumed
by obese people [62–64].

High levels of HDL-c and superoxide dismutase (SOD) are beneficial for preventing,
controlling, and treating obesity. Some studies have reported lower levels of HDL-c and
lower total serum SOD activity in obese individuals compared to healthy individuals [65].
The mouse animal studies highlighted genus Turicibacter as a typical bacterium positively
correlated with HDL-c and SOD levels [65,66]. These studies can support the association of
genus Turicibacter on BMI in our results.

In addition to the association of short-chain fatty acids (SCFAs) with stroke, several
clinical and animal studies have shown that SCFAs are effective in reducing BMI [67].
In this study, some of the gut microbiota associated with BMI were identified as SCFA-
producing bacteria, including Lactobacillales, Lachnospiraceae, and Roseburia [67]. The benefi-
cial metabolic effects of SCFAs are mediated by adipose peroxisome proliferator-activated
receptor-γ, including preventing high-fat diet-induced (HFD)-obesity and improving in-
sulin sensitivity [68]. Moreover, butyrate and propionate inhibit food intake, curb HFD-
induced weight gain and glucose intolerance, and stimulate intestinal hormone secretion,
mainly through free fatty acid receptor 3-independent mechanisms [69]. Chih min Chiu
collected 81 stool samples from Taiwanese participants and found a positive correlation
between Parabacteroides distasonis and obesity; this association is consistent with our find-
ings [70]. Additionally, we also found a positive correlation between zinc and BMI in
our results.

According to this study on the causal associations of mineral nutrients on gut micro-
biota, we found that magnesium is negatively correlated with the order Bifidobacteriales, the
family Bifidobacteriaceae, and the genus Bifidobacterium. This supports previous findings that
magnesium deficiency alters Bifidobacteria concentrations in the gut, underscoring a notable
negative relationship between magnesium levels and Bifidobacteria [71]. Additionally, we
found associations between iron and Escherichia Shigella and Enterobacteria have also been
noted in other studies, where providing iron-containing micronutrient powder (MNP) to
weaned infants affected the gut microbiota, with +FeMNP increasing the abundance of
Shigella and Enterobacteria [72]. Furthermore, the positive association between iron and
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Enterobacteriaceae was demonstrated in a mouse model [73,74]. We also found a negative
correlation between iron and Melainabacteria and Gastranaerophilales, which may be due to
different gut microbes having varying requirements and metabolisms of iron. For exam-
ple, many pathogenic Enterobacteriaceae are dependent on iron for bacterial virulence or
colonisation of the gut [75,76].

Zinc, a crucial nutrient, can significantly alter the distribution and function of the
microbiota. Zinc-binding proteins account for 5–6% of the bacterial proteome, highlighting
the critical importance of zinc for the composition of microorganisms in the gut [77,78]. It
has been reported that the long-term consumption of a zinc-rich diet significantly increases
Actinobacteria levels in mice’s gut [77–79], and our study confirms the positive correlation
between zinc and the Actinomyces genus, which is a genus within the phylum Actinobacteria.
Our study focusing on the genus level may provide a more precise reference compared to
previous studies.

A mouse model study found that dietary magnesium levels initially had a positive
correlation with Bifidobacteria abundance, but 21 days later, this correlation turned nega-
tive [80]. Initially, increased magnesium concentration may stimulate Bifidobacteria growth.
However, the excess of magnesium could have either negatively impacted the bifidobacteria
or prompted the bacteria to reduce their magnesium dependence through physiological or
metabolic adaptations. The results observed after 21 days are consistent with our findings.
This dynamic self-regulation potentially involves complex physiological and metabolic
mechanisms. To fully understand its operation, further research is required.

After integrating all significant associations (p-value < 0.05, q-value < 0.10), we as-
sessed the mediating role of the gut microbiota in the effects of serum mineral nutrients on
neurological, psychiatric, and metabolic diseases; however, we did not find that any of the
gut bacteria were identified as mediators. Subsequently, we included suggestive associa-
tions (p-value < 0.05, q-value > 0.10) and found associations of “zinc-family Pasteurellaceae-
BMI” and “Calcium-genus Coprobacter-ASD”, but the indirect effect (log(OR1) × log(OR2))
of zinc/calcium on BMI/ASD via family Pasteurellaceae/genus Coprobacter was not in the
same direction as the direct effect (log(OR3)) of zinc/calcium on BMI/ASD. Therefore,
we do not consider the family Pasteurellaceae or the genus Coprobacter as mediators. In
conclusion, in our study, we found no evidence to support that any of the gut bacteria
mediated the association between specific mineral nutrients and disease.

However, there are some limitations in this study. The gut microbiota was chosen
as the exposure for MR with the limitation that the abundance of gut microbiota may be
affected by medication, gender, diet, etc., and the variance explained by genetics may
decrease, so we incorporated serum mineral nutrients directly related to diet into the
exposure and analysed the effect of mineral nutrients on the gut microbiota and diseases
by MR, leading to more comprehensive insights.

The majority of participants in the GWAS meta-analyses of mineral nutrients, gut
microbiota, and diseases whose data were used for the MR analyses were of European
origin, so the results of this study may not be fully applicable to populations of non-
European origin. Although the different GWAS datasets were derived from different
samples of European populations, it is still difficult to completely rule out the possibility of
population stratification.

In addition, in order to obtain more comprehensive results, a significance threshold of
p < 5 × 10−6 was used for the SNPs in the analyses as the IVs of gut microbial exposure,
which was not used to reach the traditional GWAS significance threshold (5 × 10−8).
Therefore, we corrected the results for FDR to limit the possibility of false positives.

Since the lowest level of classification in gut microbiota GWAS statistics is the genus,
this limitation prevented us from further exploring the causal relationship between gut
microbiota and disease at the species level. In addition, we only included serum mineral
concentrations in the MR analyses, and subsequent studies could include more mineral
nutrient-related biomarkers as exposures to investigate the potential role of diet.
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In this study, we used linear MR to estimate the linear relationship between exposures
and outcomes, where a change in the exposure variable resulted in a proportional change
in the outcome variable. However, this approach may fail to account for non-linear rela-
tionships between exposure and outcome and fail to describe the shape of the association.
In subsequent research, we can enhance this study by adopting non-linear MR [81]. This
would involve collecting sample data at different levels, such as low, medium, and high
levels of serum mineral concentration and calculating segmented linear MR estimates at
each level. Specifically, we can determine the local average causal effect at each level to
more accurately capture the non-linear relationship between exposure and outcome.

5. Conclusions

In summary, our results provide a comprehensive estimate of the causal effects of
5 serum mineral nutrients and 196 gut microbes on various neurological, psychiatric, and
metabolic diseases, including AD, ASD, MDD, MS, AS, AIS, CES, LAS, SVS, T2D, gout,
urate, and obesity. While multiple causal effects were identified, none of the gut microbes
were found to mediate the effects of mineral nutrients on the evolution of the disease. This
study contributes towards addressing the long-standing question of whether gut microbes
mediate the association between mineral nutrients and a series of neurological, psychiatric,
and metabolic diseases, and has potential implications for nutritional therapy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16020244/s1, Additional File S1: Supplementary Tables S1–S17;
Additional File S2: Supplementary Figures S1–S30.

Author Contributions: H.-Y.Z. conceived and designed the project; W.L. and B.-M.L. analysed
and interpreted the data, drafted the manuscript; Q.Z. and Y.Q. interpreted the data and made
critical revision of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (Grant No. 2022YFF1001404), the National Key R&D Program of China (2022YFA1304104), the
Fundamental Research Funds for the Central Universities (Grant No. 2662020XXPY06), and Yingzi
Tech & Huazhong Agricultural University Intelligent Research Institute of Food Health (Grant No.
IRIFH202222).

Institutional Review Board Statement: Our study was analysed all using publicly available genome-
wide association study (GWAS) summary statistics. No new ethical approval was required.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analysed in this study can be downloaded from the
websites: https://www.decode.com/summarydata/ (accessed on 1 June 2023), https://mibiogen.gcc.
rug.nl/ (accessed on 1 June 2023), https://pgc.unc.edu/for-researchers/download-results/ (accessed
on 1 June 2023), https://imsgc.net/ (accessed on 1 June 2023), https://megastroke.org/ (accessed on
1 June 2023), https://gwas.mrcieu.ac.uk/ (accessed on 1 June 2023), https://portals.broadinstitute.
org/collaboration/giant/index.php/GIANT_consortium (accessed on 1 June 2023).

Acknowledgments: We gratefully acknowledge the authors and participants of all GWAS from which
we used summary statistics data. Figures were partly generated using Servier Medical Art, provided
by Servier, licenced under a Creative Commons Attribution 3.0 unported licence.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

AD: Alzheimer’s disease; AIS: Any ischemic stroke; AS: Any stroke; ASD: Autism spectrum
disorder; CES: Cardioembolic stroke; FDR: False discovery rate; GWAS: genome-wide association
studies; HDL-c: high-density lipoprotein cholesterol; IV: instrumental variable; IVW: inverse-variance
weighted; LAS: Large artery stroke; LD: linkage disequilibrium; MDD: Major depressive disor-
der; MR: Mendelian randomization; MS: Multiple sclerosis; RCTs: randomized controlled trials;

https://www.mdpi.com/article/10.3390/nu16020244/s1
https://www.mdpi.com/article/10.3390/nu16020244/s1
https://www.decode.com/summarydata/
https://mibiogen.gcc.rug.nl/
https://mibiogen.gcc.rug.nl/
https://pgc.unc.edu/for-researchers/download-results/
https://imsgc.net/
https://megastroke.org/
https://gwas.mrcieu.ac.uk/
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium


Nutrients 2024, 16, 244 13 of 16

SCFAs: short-chain fatty acids; SNP: Single nucleotide polymorphism; SOD: Superoxide dismutase;
SVS: Small vessel stroke; T2D: Type 2 diabetes.

References
1. Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.;

et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of
Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [CrossRef]

2. Chew, N.W.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; Lim, W.H.; Huang, D.Q.; Quek, J.; Fu, C.E.; et al. The global
burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023, 35, 414–428.e413. [CrossRef]

3. Yu, D.; Meng, X.; de Vos, W.M.; Wu, H.; Fang, X.; Maiti, A.K. Implications of Gut Microbiota in Complex Human Diseases. Int. J.
Mol. Sci. 2021, 22, 12661. [CrossRef]

4. Zhu, X.; Han, Y.; Du, J.; Liu, R.; Jin, K.; Yi, W. Microbiota-gut-brain axis and the central nervous system. Oncotarget 2017, 8,
53829–53838. [CrossRef]

5. Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [CrossRef]
6. Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.; Rawls, J.F.; David, L.A.; et al.

The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut
microbiota. Hepatology 2016, 63, 764–775. [CrossRef]

7. Li, Z.; Liu, Y.; Wei, R.; Yong, V.W.; Xue, M. The Important Role of Zinc in Neurological Diseases. Biomolecules 2022, 13, 28.
[CrossRef]

8. Baringer, S.L.; Simpson, I.A.; Connor, J.R. Brain iron acquisition: An overview of homeostatic regulation and disease dysregulation.
J. Neurochem. 2023, 165, 625–642. [CrossRef]

9. Vink, R. Magnesium in the CNS: Recent advances and developments. Magnes Res. 2016, 29, 95–101.
10. Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174.
11. Jones, D.S.; Podolsky, S.H. The history and fate of the gold standard. Lancet 2015, 385, 1502–1503. [CrossRef] [PubMed]
12. Bothwell, L.E.; Podolsky, S.H. The Emergence of the Randomized, Controlled Trial. N. Engl. J. Med. 2016, 375, 501–504. [CrossRef]

[PubMed]
13. Birney, E. Mendelian Randomization. Cold Spring Harb. Perspect. Med. 2022, 12, a041302. [CrossRef] [PubMed]
14. Bennett, D.A.; Holmes, M.V. Mendelian randomisation in cardiovascular research: An introduction for clinicians. Heart 2017, 103,

1400–1407. [CrossRef]
15. Ference, B.A.; Holmes, M.V.; Smith, G.D. Using Mendelian Randomization to Improve the Design of Randomized Trials. Cold

Spring Harb. Perspect. Med. 2021, 11, a040980. [CrossRef] [PubMed]
16. O’Seaghdha, C.M.; Wu, H.; Yang, Q.; Kapur, K.; Guessous, I.; Zuber, A.M.; Köttgen, A.; Stoudmann, C.; Teumer, A.; Kutalik, Z.;

et al. Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet.
2013, 9, e1003796. [CrossRef] [PubMed]

17. Evans, D.M.; Zhu, G.; Dy, V.; Heath, A.C.; Madden, P.A.F.; Kemp, J.P.; McMahon, G.; St Pourcain, B.; Timpson, N.J.; Golding,
J.; et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum. Mol. Genet. 2013, 22,
3998–4006. [CrossRef]

18. Bell, S.; Rigas, A.S.; Ferkingstad, E.; Allara, E.; Bjornsdottir, G.; Ramond, A.; Sørensen, E.; Halldorsson, G.H.; Paul, D.S.; Burgdorf,
K.S.; et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun. Biol. 2021,
4, 156. [CrossRef]

19. Meyer, T.E.; Verwoert, G.C.; Hwang, S.-J.; Glazer, N.L.; Smith, A.V.; van Rooij, F.J.A.; Ehret, G.B.; Boerwinkle, E.; Felix, J.F.;
Leak, T.S.; et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci
influencing serum magnesium levels. PLoS Genet. 2010, 6, e1001045. [CrossRef]

20. Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Garay, J.A.R.; Finnicum,
C.T.; Liu, X.; et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat.
Genet. 2021, 53, 156–165. [CrossRef]

21. Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.;
et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet.
2019, 51, 404–413. [CrossRef] [PubMed]

22. Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al.
Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [CrossRef] [PubMed]

23. Giannakopoulou, O.; Lin, K.; Meng, X.; Su, M.-H.; Kuo, P.-H.; Peterson, R.E.; Awasthi, S.; Moscati, A.; Coleman, J.R.I.; Bass, N.;
et al. The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study. JAMA
Psychiatry 2021, 78, 1258–1269. [CrossRef]

24. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and
microglia in susceptibility. Science 2019, 365, eaav7188. [CrossRef] [PubMed]

25. Malik, R.; Chauhan, G.; Traylor, M.; Sargurupremraj, M.; Okada, Y.; Mishra, A.; Rutten-Jacobs, L.; Giese, A.-K.; van der Laan, S.W.;
Gretarsdottir, S.; et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke
and stroke subtypes. Nat. Genet. 2018, 50, 524–537. [CrossRef] [PubMed]

https://doi.org/10.1016/S1474-4422(18)30499-X
https://doi.org/10.1016/j.cmet.2023.02.003
https://doi.org/10.3390/ijms222312661
https://doi.org/10.18632/oncotarget.17754
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.1002/hep.28356
https://doi.org/10.3390/biom13010028
https://doi.org/10.1111/jnc.15819
https://doi.org/10.1016/S0140-6736(15)60742-5
https://www.ncbi.nlm.nih.gov/pubmed/25933270
https://doi.org/10.1056/NEJMp1604635
https://www.ncbi.nlm.nih.gov/pubmed/27509097
https://doi.org/10.1101/cshperspect.a041302
https://www.ncbi.nlm.nih.gov/pubmed/34872952
https://doi.org/10.1136/heartjnl-2016-310605
https://doi.org/10.1101/cshperspect.a040980
https://www.ncbi.nlm.nih.gov/pubmed/33431510
https://doi.org/10.1371/journal.pgen.1003796
https://www.ncbi.nlm.nih.gov/pubmed/24068962
https://doi.org/10.1093/hmg/ddt239
https://doi.org/10.1038/s42003-020-01575-z
https://doi.org/10.1371/journal.pgen.1001045
https://doi.org/10.1038/s41588-020-00763-1
https://doi.org/10.1038/s41588-018-0311-9
https://www.ncbi.nlm.nih.gov/pubmed/30617256
https://doi.org/10.1038/s41588-019-0344-8
https://www.ncbi.nlm.nih.gov/pubmed/30804558
https://doi.org/10.1001/jamapsychiatry.2021.2099
https://doi.org/10.1126/science.aav7188
https://www.ncbi.nlm.nih.gov/pubmed/31604244
https://doi.org/10.1038/s41588-018-0058-3
https://www.ncbi.nlm.nih.gov/pubmed/29531354


Nutrients 2024, 16, 244 14 of 16

26. Mahajan, A.; Spracklen, C.N.; Zhang, W.; Ng, M.C.Y.; Petty, L.E.; Kitajima, H.; Yu, G.Z.; Rüeger, S.; Speidel, L.; Kim, Y.J.; et al.
Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat.
Genet. 2022, 54, 560–572. [CrossRef]

27. Kottgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O’Seaghdha, C.M.; Haller,
T.; et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013, 45,
145–154. [CrossRef]

28. Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher,
P.M.; et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European
ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [CrossRef]

29. Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from
Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [CrossRef]

30. Papadimitriou, N.; Dimou, N.; Tsilidis, K.K.; Banbury, B.; Martin, R.M.; Lewis, S.J.; Kazmi, N.; Robinson, T.M.; Albanes, D.;
Aleksandrova, K.; et al. Physical activity and risks of breast and colorectal cancer: A Mendelian randomisation analysis. Nat.
Commun. 2020, 11, 597. [CrossRef]

31. Burgess, S.; Small, D.S.; Thompson, S.G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods
Med. Res. 2017, 26, 2333–2355. [CrossRef] [PubMed]

32. Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized
data. Genet. Epidemiol. 2013, 37, 658–665. [CrossRef] [PubMed]

33. Bowden, J.; Smith, G.D.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid
Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [CrossRef]

34. Korthauer, K.; Kimes, P.K.; Duvallet, C.; Reyes, A.; Subramanian, A.; Teng, M.; Shukla, C.; Alm, E.J.; Hicks, S.C. A practical guide
to methods controlling false discoveries in computational biology. Genome Biol. 2019, 20, 118. [CrossRef] [PubMed]

35. Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments
in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [CrossRef] [PubMed]

36. Li, P.; Wang, H.; Guo, L.; Gou, X.; Chen, G.; Lin, D.; Fan, D.; Guo, X.; Liu, Z. Association between gut microbiota and
preeclampsia-eclampsia: A two-sample Mendelian randomization study. BMC Med. 2022, 20, 443. [CrossRef] [PubMed]

37. Greco, M.F.; Minelli, C.; Sheehan, N.A.; Thompson, J.R. Detecting pleiotropy in Mendelian randomisation studies with summary
data and a continuous outcome. Stat. Med. 2015, 34, 2926–2940. [CrossRef]

38. Bowden, J.; Del Greco, M.F.; Minelli, C.; Zhao, Q.; Lawlor, D.A.; Sheehan, N.A.; Thompson, J.; Smith, G.D. Improving the accuracy
of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption. Int. J. Epidemiol. 2019, 48,
728–742. [CrossRef]

39. Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection
through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [CrossRef]

40. Tehrani, S.S.; Khatami, S.H.; Saadat, P.; Sarfi, M.; Ahangar, A.A.; Daroie, R.; Firozejahi, A.; Maniati, M. Association of serum
magnesium levels with risk factors, severity and prognosis in ischemic and hemorrhagic stroke patients. Casp. J. Intern. Med.
2020, 11, 83–91. [CrossRef]

41. Zhang, W.; Iso, H.; Ohira, T.; Date, C.; Tamakoshi, A. Associations of dietary magnesium intake with mortality from cardiovascular
disease: The JACC study. Atherosclerosis 2012, 221, 587–595. [CrossRef] [PubMed]

42. Larsson, S.C.; Traylor, M.; Burgess, S.; Boncoraglio, G.B.; Jern, C.; Michaëlsson, K.; Markus, H.S.; Malik, R.; Chauhan, G.;
Sargurupremraj, M.; et al. Serum magnesium and calcium levels in relation to ischemic stroke: Mendelian randomization study.
Neurology 2019, 92, e944–e950. [CrossRef]

43. Shadman, J.; Sadeghian, N.; Moradi, A.; Bohlooli, S.; Panahpour, H. Magnesium sulfate protects blood–brain barrier integrity and
reduces brain edema after acute ischemic stroke in rats. Metab. Brain Dis. 2019, 34, 1221–1229. [CrossRef]

44. Kieboom, B.C.T.; Niemeijer, M.N.; Leening, M.J.G.; van den Berg, M.E.; Franco, O.H.; Deckers, J.W.; Hofman, A.; Zietse, R.;
Stricker, B.H.; Hoorn, E.J. Serum Magnesium and the Risk of Death from Coronary Heart Disease and Sudden Cardiac Death.
J. Am. Heart Assoc. 2016, 5, e002707. [CrossRef] [PubMed]

45. Zhu, D.; You, J.; Zhao, N.; Xu, H. Magnesium Regulates Endothelial Barrier Functions through TRPM7, MagT1, and S1P1. Adv.
Sci. 2019, 6, 1901166. [CrossRef] [PubMed]

46. Nie, Z.-L.; Wang, Z.-M.; Zhou, B.; Tang, Z.-P.; Wang, S.-K. Magnesium intake and incidence of stroke: Meta-analysis of cohort
studies. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 169–176. [CrossRef] [PubMed]

47. Kolmos, M.; Christoffersen, L.; Kruuse, C. Recurrent Ischemic Stroke—A Systematic Review and Meta-Analysis. J. Stroke
Cerebrovasc. Dis. 2021, 30, 105935. [CrossRef]

48. Guo, N.; Zhu, Y.; Tian, D.; Zhao, Y.; Zhang, C.; Mu, C.; Han, C.; Zhu, R.; Liu, X. Role of diet in stroke incidence: An umbrella
review of meta-analyses of prospective observational studies. BMC Med. 2022, 20, 194. [CrossRef]

49. Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta
(BBA)—Mol. Cell Res. 2019, 1866, 118535. [CrossRef]

50. Fuentes, E.; Gibbins, J.M.; Holbrook, L.M.; Palomo, I. NADPH oxidase 2 (NOX2): A key target of oxidative stress-mediated
platelet activation and thrombosis. Trends Cardiovasc. Med. 2018, 28, 429–434. [CrossRef]

https://doi.org/10.1038/s41588-022-01058-3
https://doi.org/10.1038/ng.2500
https://doi.org/10.1093/hmg/ddy271
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/s41467-020-14389-8
https://doi.org/10.1177/0962280215597579
https://www.ncbi.nlm.nih.gov/pubmed/26282889
https://doi.org/10.1002/gepi.21758
https://www.ncbi.nlm.nih.gov/pubmed/24114802
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1186/s13059-019-1716-1
https://www.ncbi.nlm.nih.gov/pubmed/31164141
https://doi.org/10.1016/j.jclinepi.2014.03.012
https://www.ncbi.nlm.nih.gov/pubmed/24831050
https://doi.org/10.1186/s12916-022-02657-x
https://www.ncbi.nlm.nih.gov/pubmed/36380372
https://doi.org/10.1002/sim.6522
https://doi.org/10.1093/ije/dyy258
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.22088/cjim.11.1.83
https://doi.org/10.1016/j.atherosclerosis.2012.01.034
https://www.ncbi.nlm.nih.gov/pubmed/22341866
https://doi.org/10.1212/WNL.0000000000007001
https://doi.org/10.1007/s11011-019-00419-y
https://doi.org/10.1161/JAHA.115.002707
https://www.ncbi.nlm.nih.gov/pubmed/26802105
https://doi.org/10.1002/advs.201901166
https://www.ncbi.nlm.nih.gov/pubmed/31559137
https://doi.org/10.1016/j.numecd.2012.04.015
https://www.ncbi.nlm.nih.gov/pubmed/22789806
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105935
https://doi.org/10.1186/s12916-022-02381-6
https://doi.org/10.1016/j.bbamcr.2019.118535
https://doi.org/10.1016/j.tcm.2018.03.001


Nutrients 2024, 16, 244 15 of 16

51. Yin, J.; Liao, S.X.; He, Y.; Wang, S.; Xia, G.H.; Liu, F.T.; Zhu, J.J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of Gut Microbiota
With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack.
J. Am. Heart Assoc. 2015, 4, e002699. [CrossRef]

52. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as
Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [CrossRef] [PubMed]

53. Pathak, A.K.; Tiwari, V.; Kulshrestha, M.R.; Singh, S.; Singh, S.; Singh, V. Impact of essential metals on insulin sensitivity and
fetuin in obesity-related type 2 diabetes pathogenesis. J. Diabetes Metab. Disord. 2023, 22, 703–712. [CrossRef] [PubMed]

54. Wang, X.; Fang, X.; Wang, F. Pleiotropic actions of iron balance in diabetes mellitus. Rev. Endocr. Metab. Disord. 2015, 16, 15–23.
[CrossRef]

55. McKay, A.K.A.; Pyne, D.B.; Burke, L.M.; Peeling, P. Iron Metabolism: Interactions with Energy and Carbohydrate Availability.
Nutrients 2020, 12, 3692. [CrossRef] [PubMed]

56. Kosyakovsky, J.; Fine, J.M.; Frey, W.H.; Hanson, L.R. Mechanisms of Intranasal Deferoxamine in Neurodegenerative and
Neurovascular Disease. Pharmaceuticals 2021, 14, 95. [CrossRef]

57. Zhuang, Z.-Q.; Shen, L.-L.; Li, W.-W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.-L.; et al. Gut Microbiota is Altered in
Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 63, 1337–1346. [CrossRef]

58. Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg,
H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [CrossRef]

59. Manokaran, R.K.; Gulati, S. Gut–brain axis: Role of probiotics in neurodevelopmental disorders including autism spectrum
disorder. In Probiotics in the Prevention and Management of Human Diseases; Academic Press: Cambridge, MA, USA, 2022;
pp. 353–362. [CrossRef]

60. Vernocchi, P.; Ristori, M.V.; Guerrera, S.; Guarrasi, V.; Conte, F.; Russo, A.; Lupi, E.; Albitar-Nehme, S.; Gardini, S.; Paci, P.; et al.
Gut Microbiota Ecology and Inferred Functions in Children with ASD Compared to Neurotypical Subjects. Front. Microbiol. 2022,
13, 871086. [CrossRef]

61. Zhang, N.; Wang, H.; Wang, X.; Tian, M.; Tian, Y.; Li, Q.; Liang, C.; Peng, X.; Ding, J.; Wu, X.; et al. Combination effect between gut
microbiota and traditional potentially modifiable risk factors for first-ever ischemic stroke in Tujia, Miao and Han populations in
China. Front. Mol. Neurosci. 2022, 15, 922399. [CrossRef]

62. Patil, D.P.; Dhotre, D.P.; Chavan, S.G.; Sultan, A.; Jain, D.S.; Lanjekar, V.B.; Gangawani, J.; Shah, P.S.; Todkar, J.S.; Shah, S.; et al.
Molecular analysis of gut microbiota in obesity among Indian individuals. J. Biosci. 2012, 37, 647–657. [CrossRef] [PubMed]

63. Barathikannan, K.; Chelliah, R.; Rubab, M.; Daliri, E.B.-M.; Elahi, F.; Kim, D.-H.; Agastian, P.; Oh, S.-Y.; Oh, D.H. Gut Microbiome
Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms 2019, 7, 456.
[CrossRef] [PubMed]

64. Ignacio, A.; Fernandes, M.R.; Rodrigues, V.A.A.; Groppo, F.C.; Cardoso, A.L.; Avila-Campos, M.J.; Nakano, V. Correlation between
body mass index and faecal microbiota from children. Clin. Microbiol. Infect. 2016, 22, 258.E1–258.E8. [CrossRef] [PubMed]

65. Torkanlou, K.; Bibak, B.; Abbaspour, A.; Abdi, H.; Moghaddam, M.S.; Tayefi, M.; Mohammadzadeh, E.; Bana, H.S.; Aghasizade,
M.; Ferns, G.A.; et al. Reduced Serum Levels of Zinc and Superoxide Dismutase in Obese Individuals. Ann. Nutr. Metab. 2016, 69,
232–236. [CrossRef] [PubMed]

66. Zheng, B.; Wang, T.; Wang, H.; Chen, L.; Zhou, Z. Studies on nutritional intervention of rice starch- oleic acid complex (resistant
starch type V) in rats fed by high-fat diet. Carbohydr. Polym. 2020, 246, 116637. [CrossRef]

67. Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; Van Harsselaar, J.; et al.
Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [CrossRef] [PubMed]

68. den Besten, G.; Bleeker, A.; Gerding, A.; Van Eunen, K.; Havinga, R.; Van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.;
Reijngoud, D.-J.; et al. Short-Chain Fatty Acids Protect against High-Fat Diet–Induced Obesity via a PPARgamma-Dependent
Switch from Lipogenesis to Fat Oxidation. Diabetes 2015, 64, 2398–2408. [CrossRef]

69. Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest,
G.; et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor
3-independent mechanisms. PLoS ONE 2012, 7, e35240. [CrossRef]

70. Chiu, C.-M.; Huang, W.-C.; Weng, S.-L.; Tseng, H.-C.; Liang, C.; Wang, W.-C.; Yang, T.; Yang, T.-L.; Weng, C.-T.; Chang, T.-H.; et al.
Systematic analysis of the association between gut flora and obesity through high-throughput sequencing and bioinformatics
approaches. BioMed Res. Int. 2014, 2014, 906168. [CrossRef]

71. Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q.-J.; Zhang, W. Role of Dietary Nutrients in the Modulation of Gut
Microbiota: A Narrative Review. Nutrients 2020, 12, 381. [CrossRef]

72. Jaeggi, T.; Kortman, G.A.M.; Moretti, D.; Chassard, C.; Holding, P.; Dostal, A.; Boekhorst, J.; Timmerman, H.M.; Swinkels, D.W.;
Tjalsma, H.; et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal
inflammation in Kenyan infants. Gut 2015, 64, 731–742. [CrossRef] [PubMed]

73. Ellermann, M.; Gharaibeh, R.Z.; Maharshak, N.; Peréz-Chanona, E.; Jobin, C.; Carroll, I.M.; Arthur, J.C.; E Plevy, S.; Fodor, A.A.;
Brouwer, C.R.; et al. Dietary iron variably modulates assembly of the intestinal microbiota in colitis-resistant and colitis-susceptible
mice. Gut Microbes 2020, 11, 32–50. [CrossRef] [PubMed]

https://doi.org/10.1161/JAHA.115.002699
https://doi.org/10.1016/j.cell.2016.05.041
https://www.ncbi.nlm.nih.gov/pubmed/27259147
https://doi.org/10.1007/s40200-023-01193-6
https://www.ncbi.nlm.nih.gov/pubmed/37255834
https://doi.org/10.1007/s11154-014-9303-y
https://doi.org/10.3390/nu12123692
https://www.ncbi.nlm.nih.gov/pubmed/33265953
https://doi.org/10.3390/ph14020095
https://doi.org/10.3233/JAD-180176
https://doi.org/10.1038/s41598-017-13601-y
https://doi.org/10.1016/B978-0-12-823733-5.00017-9
https://doi.org/10.3389/fmicb.2022.871086
https://doi.org/10.3389/fnmol.2022.922399
https://doi.org/10.1007/s12038-012-9244-0
https://www.ncbi.nlm.nih.gov/pubmed/22922190
https://doi.org/10.3390/microorganisms7100456
https://www.ncbi.nlm.nih.gov/pubmed/31623075
https://doi.org/10.1016/j.cmi.2015.10.031
https://www.ncbi.nlm.nih.gov/pubmed/26551842
https://doi.org/10.1159/000454894
https://www.ncbi.nlm.nih.gov/pubmed/28002829
https://doi.org/10.1016/j.carbpol.2020.116637
https://doi.org/10.3920/BM2020.0057
https://www.ncbi.nlm.nih.gov/pubmed/32865024
https://doi.org/10.2337/db14-1213
https://doi.org/10.1371/journal.pone.0035240
https://doi.org/10.1155/2014/906168
https://doi.org/10.3390/nu12020381
https://doi.org/10.1136/gutjnl-2014-307720
https://www.ncbi.nlm.nih.gov/pubmed/25143342
https://doi.org/10.1080/19490976.2019.1599794
https://www.ncbi.nlm.nih.gov/pubmed/31179826


Nutrients 2024, 16, 244 16 of 16

74. Dostal, A.; Lacroix, C.; Pham, V.T.; Zimmermann, M.B.; Del’Homme, C.; Bernalier-Donadille, A.; Chassard, C. Iron supplementa-
tion promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. Br. J. Nutr. 2014,
111, 2135–2145. [CrossRef] [PubMed]

75. Klebba, P.E.; Newton, S.M.C.; Six, D.A.; Kumar, A.; Yang, T.; Nairn, B.L.; Munger, C.; Chakravorty, S. Iron Acquisition Systems of
Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem. Rev. 2021, 121, 5193–5239.
[CrossRef] [PubMed]

76. Gehrer, C.M.; Hoffmann, A.; Hilbe, R.; Grubwieser, P.; Mitterstiller, A.-M.; Talasz, H.; Fang, F.C.; Meyron-Holtz, E.G.; Atkinson,
S.H.; Weiss, G.; et al. Availability of Ferritin-Bound Iron to Enterobacteriaceae. Int. J. Mol. Sci. 2022, 23, 13087. [CrossRef]

77. Zhang, Y.; Zheng, J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020, 25, 3366. [CrossRef]
78. Cheng, J.; Kolba, N.; Tako, E. The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome

in vivo. Crit. Rev. Food Sci. Nutr. 2023. [CrossRef]
79. Chen, L.; Wang, Z.; Wang, P.; Yu, X.; Ding, H.; Wang, Z.; Feng, J. Effect of Long-Term and Short-Term Imbalanced Zn Manipulation

on Gut Microbiota and Screening for Microbial Markers Sensitive to Zinc Status. Microbiol. Spectr. 2021, 9, e0048321. [CrossRef]
80. Pachikian, B.D.; Neyrinck, A.M.; Deldicque, L.; De Backer, F.C.; Catry, E.; Dewulf, E.M.; Sohet, F.M.; Bindels, L.B.; Everard, A.;

Francaux, M.; et al. Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-
deficient mice. J. Nutr. 2010, 140, 509–514. [CrossRef]

81. Staley, J.R.; Burgess, S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental
variables with application to Mendelian randomization. Genet. Epidemiol. 2017, 41, 341–352. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1017/S000711451400021X
https://www.ncbi.nlm.nih.gov/pubmed/24555487
https://doi.org/10.1021/acs.chemrev.0c01005
https://www.ncbi.nlm.nih.gov/pubmed/33724814
https://doi.org/10.3390/ijms232113087
https://doi.org/10.3390/molecules25153366
https://doi.org/10.1080/10408398.2023.2169857
https://doi.org/10.1128/Spectrum.00483-21
https://doi.org/10.3945/jn.109.117374
https://doi.org/10.1002/gepi.22041

	Introduction 
	Methods 
	Exposure Data 
	Outcome Data 
	Instrumental Variables 
	MR Estimates 
	Sensitivity Analysis 

	Results 
	Causal Association of Mineral Nutrients and Gut Microbiota on Neurological, Psychiatric, and Metabolic Diseases 
	Causal Association of Mineral Nutrients on Gut Microbiota 
	Sensitivity Analyses 

	Discussion 
	Conclusions 
	References

