Biomarkers of Iron Are Associated with Anterior-Pituitary-Produced Reproductive Hormones in Men with Infertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometric Measurements and General Health Information
2.3. Nutritional and Reproductive Hormone Biochemical Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Public Health Agency of Canada. “Fertility,” aem. Available online: https://www.canada.ca/en/public-health/services/fertility/fertility.html (accessed on 13 January 2020).
- Travison, T.G.; Araujo, A.B.; O’Donnell, A.B.; Kupelian, V.; McKinlay, J.B. A Population-Level Decline in Serum Testosterone Levels in American Men. J. Clin. Endocrinol. Metab. 2007, 92, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update 2017, 23, 646–659. [Google Scholar] [CrossRef]
- Lokeshwar, S.D.; Patel, P.; Fantus, R.J.; Halpern, J.; Chang, C.; Kargi, A.Y.; Ramasamy, R. Decline in Serum Testosterone Levels Among Adolescent and Young Adult Men in the USA. Eur. Urol. Focus 2021, 7, 886–889. [Google Scholar] [CrossRef]
- Jarow, J.P. Endocrine causes of male infertility. Urol. Clin. N. Am. 2003, 30, 83–90. [Google Scholar] [CrossRef] [PubMed]
- McNally, M.R. Male infertility. 3. Endocrine causes. Postgrad. Med. 1987, 81, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C.; Giachini, C. Genetic risk factors in male infertility. Arch. Androl. 2007, 53, 125–133. [Google Scholar] [CrossRef]
- Palnitkar, G.; Phillips, C.L.; Hoyos, C.M.; Marren, A.J.; Bowman, M.C.; Yee, B.J. Linking sleep disturbance to idiopathic male infertility. Sleep Med. Rev. 2018, 42, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.; Zahid, N.; Amjad, S.; Baig, M.; Gazzaz, Z.J. Relationship Between Smoking Habit and Sperm Parameters Among Patients Attending an Infertility Clinic. Front. Physiol. 2019, 10, 1356. [Google Scholar] [CrossRef]
- Phillips, K.P.; Tanphaichitr, N. Human exposure to endocrine disrupters and semen quality. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 188–220. [Google Scholar] [CrossRef]
- Rehman, S.; Usman, Z.; Rehman, S.; AlDraihem, M.; Rehman, N.; Rehman, I.; Ahmad, G. Endocrine disrupting chemicals and impact on male reproductive health. Transl. Androl. Urol. 2018, 7, 490–503. [Google Scholar] [CrossRef]
- Hayden, R.P.; Flannigan, R.; Schlegel, P.N. The Role of Lifestyle in Male Infertility: Diet, Physical Activity, and Body Habitus. Curr. Urol. Rep. 2018, 19, 56. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 2017, 154, R123–R131. [Google Scholar] [CrossRef] [PubMed]
- Kahn, B.E.; Brannigan, R.E. Obesity and male infertility. Curr. Opin. Urol. 2017, 27, 441–445. [Google Scholar] [CrossRef] [PubMed]
- McPherson, N.O.; Lane, M. Male obesity and subfertility, is it really about increased adiposity? Asian J. Androl. 2015, 17, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.-R.; Hekmatdoost, A. Intake of food groups and idiopathic asthenozoospermia: A case-control study. Hum. Reprod. 2012, 27, 3328–3336. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Colaci, D.S.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Dietary patterns and semen quality in young men. Hum. Reprod. 2012, 27, 2899–2907. [Google Scholar] [CrossRef]
- Vujkovic, M.; de Vries, J.H.; Dohle, G.R.; Bonsel, G.J.; Lindemans, J.; Macklon, N.S.; van der Spek, P.J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. Associations between dietary patterns and semen quality in men undergoing IVF/ICSI treatment. Hum. Reprod. 2009, 24, 1304–1312. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Chou, Y.-C.; Chao, J.C.-J.; Hsu, C.-Y.; Cha, T.-L.; Tsao, C.-W. The Association between Dietary Patterns and Semen Quality in a General Asian Population of 7282 Males. PLoS ONE 2015, 10, e0134224. [Google Scholar] [CrossRef]
- Vanderhout, S.M.; Rastegar Panah, M.; Garcia-Bailo, B.; Grace-Farfaglia, P.; Samsel, K.; Dockray, J.; Jarvi, K.; El-Sohemy, A. Nutrition, genetic variation and male fertility. Transl. Androl. Urol. 2021, 10, 1410. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191–196. [Google Scholar] [CrossRef]
- Cooper, T.G.; Noonan, E.; von Eckardstein, S.; Auger, J.; Baker, H.W.G.; Behre, H.M.; Haugen, T.B.; Kruger, T.; Wang, C.; Mbizvo, M.T.; et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 2010, 16, 231–245. [Google Scholar] [CrossRef]
- Clavijo, R.I.; Hsiao, W. Update on male reproductive endocrinology. Transl. Androl. Urol. 2018, 7, S367–S372. [Google Scholar] [CrossRef] [PubMed]
- Hormones and Male Infertility|MetroVan Urology. Available online: https://www.metrovanurology.com/hormones-and-male-infertility (accessed on 16 November 2020).
- Male Sexual Response and Hormonal Control|SEER Training. Available online: https://training.seer.cancer.gov/anatomy/reproductive/male/response.html (accessed on 9 November 2020).
- Cooke, P.S.; Nanjappa, M.K.; Ko, C.; Prins, G.S.; Hess, R.A. Estrogens in Male Physiology. Physiol. Rev. 2017, 97, 995–1043. [Google Scholar] [CrossRef] [PubMed]
- Schulster, M.; Bernie, A.M.; Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 2016, 18, 435. [Google Scholar] [CrossRef] [PubMed]
- Dabbous, Z.; Atkin, S.L. Hyperprolactinaemia in male infertility: Clinical case scenarios. Arab. J. Urol. 2017, 16, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, J.S.; Lamb, D.J.; Lipshultz, L.I. Iron and a Man’s Reproductive Health: The Good, the Bad and the Ugly. Curr. Urol. Rep. 2018, 19, 60. [Google Scholar] [CrossRef]
- Beard, J.L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 2001, 131, 568S–579S; discussion 580S. [Google Scholar] [CrossRef]
- Zeitoun, T.; El-Sohemy, A. Using Mendelian Randomization to Study the Role of Iron in Health and Disease. Int. J. Mol. Sci. 2023, 24, 13458. [Google Scholar] [CrossRef]
- Hales, K.G. Iron testes: Sperm mitochondria as a context for dissecting iron metabolism. BMC Biol. 2010, 8, 79. [Google Scholar] [CrossRef]
- Lieu, P.T.; Heiskala, M.; Peterson, P.A.; Yang, Y. The roles of iron in health and disease. Mol. Aspects Med. 2001, 22, 1–87. [Google Scholar] [CrossRef]
- Tvrda, E.; Peer, R.; Sikka, S.C.; Agarwal, A. Iron and copper in male reproduction: A double-edged sword. J. Assist. Reprod. Genet. 2015, 32, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Toebosch, A.M.; Kroos, M.J.; Grootegoed, J.A. Transport of transferrin-bound iron into rat Sertoli cells and spermatids. Int. J. Androl. 1987, 10, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Wise, T.; Lunstra, D.D.; Rohrer, G.A.; Ford, J.J. Relationships of testicular iron and ferritin concentrations with testicular weight and sperm production in boars. J. Anim. Sci. 2003, 81, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Reubinoff, B.E.; Har-El, R.; Kitrossky, N.; Friedler, S.; Levi, R.; Lewin, A.; Chevion, M. Increased levels of redox-active iron in follicular fluid: A possible cause of free radical-mediated infertility in beta-thalassemia major. Am. J. Obstet. Gynecol. 1996, 174, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Chao, K.-C.; Chang, C.-C.; Chiou, H.-Y.; Chang, J.-S. Serum Ferritin Is Inversely Correlated with Testosterone in Boys and Young Male Adolescents: A Cross-Sectional Study in Taiwan. PLoS ONE 2015, 10, e0144238. [Google Scholar] [CrossRef]
- Greenberg, S.R. The pathogenesis of hypophyseal fibrosis in aging: Its relationship to tissue iron deposition. J. Gerontol. 1975, 30, 531–538. [Google Scholar] [CrossRef]
- Noetzli, L.J.; Panigrahy, A.; Mittelman, S.D.; Hyderi, A.; Dongelyan, A.; Coates, T.D.; Wood, J.C. Pituitary iron and volume predict hypogonadism in transfusional iron overload. Am. J. Hematol. 2012, 87, 167–171. [Google Scholar] [CrossRef]
- Singer, S.T.; Killilea, D.; Suh, J.H.; Wang, Z.J.; Yuan, Q.; Ivani, K.; Evans, P.; Vichinsky, E.; Fischer, R.; Smith, J.F. Fertility in transfusion-dependent thalassemia men: Effects of iron burden on the reproductive axis. Am. J. Hematol. 2015, 90, E190–E192. [Google Scholar] [CrossRef]
- Bergeron, C.; Kovacs, K. Pituitary siderosis. A histologic, immunocytologic, and ultrastructural study. Am. J. Pathol. 1978, 93, 295–309. [Google Scholar] [CrossRef]
- Kontogeorgos, G.; Handy, S.; Kovacs, K.; Horvath, E.; Scheithauer, B.W. The Anterior Pituitary in Hemochromatosis. Endocr. Pathol. 1996, 7, 159–164. [Google Scholar] [CrossRef]
- Chatterjee, R.; Katz, M. Reversible hypogonadotrophic hypogonadism in sexually infantile male thalassaemic patients with transfusional iron overload. Clin. Endocrinol. 2000, 53, 33–42. [Google Scholar] [CrossRef]
- Papadimas, J.; Mandala, E.; Pados, G.; Kokkas, B.; Georgiadis, G.; Tarlatzis, B.; Bontis, J.; Sinakos, Z.; Mantalenakis, S. Pituitary-testicular axis in men with beta-thalassaemia major. Hum. Reprod. 1996, 11, 1900–1904. [Google Scholar] [CrossRef] [PubMed]
- Dichtl, S.; Haschka, D.; Nairz, M.; Seifert, M.; Volani, C.; Lutz, O.; Weiss, G. Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochem. Pharmacol. 2018, 148, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Prolactin and Dopamine: What Is the Connection? A Review Article—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/18477617/ (accessed on 24 May 2023).
- Macchi, C.; Steffani, L.; Oleari, R.; Lettieri, A.; Valenti, L.; Dongiovanni, P.; Romero-Ruiz, A.; Tena-Sempere, M.; Cariboni, A.; Magni, P.; et al. Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms. Mol. Cell. Endocrinol. 2017, 454, 135–145. [Google Scholar] [CrossRef]
- Rastegar Panah, M.; Tahir, I.; Garcia-Bailo, B.; Lo, K.; Jarvi, K.; El-Sohemy, A. Ascorbic acid is associated with favourable hormonal profiles among infertile males. Front. Reprod. Health 2023, 5, 1143579. [Google Scholar] [CrossRef]
- Shalitin, S.; Carmi, D.; Weintrob, N.; Phillip, M.; Miskin, H.; Kornreich, L.; Zilber, R.; Yaniv, I.; Tamary, H. Serum ferritin level as a predictor of impaired growth and puberty in thalassemia major patients. Eur. J. Haematol. 2005, 74, 93–100. [Google Scholar] [CrossRef]
- Mostafa, G.G.; Zahran, F.E.; Omer, S.A.; Ibrahim, A.; Elhakeem, H. The Effect of Serum Ferritin Level on Gonadal, Prolactin, Thyroid Hormones, and Thyroid Stimulating Hormone in Adult Males with Sickle Cell Anemia. JBM 2020, 11, 27–32. [Google Scholar] [CrossRef]
- The Association between the Levels of Serum Ferritin and Sex Hormones in a Large Scale of Chinese Male Population. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075908 (accessed on 16 February 2021).
- Cooper, M.; Bertinato, J.; Ennis, J.K.; Sadeghpour, A.; Weiler, H.A.; Dorais, V. Population Iron Status in Canada: Results from the Canadian Health Measures Survey 2012–2019. J. Nutr. 2023, 153, 1534–1543. [Google Scholar] [CrossRef]
Characteristics | Iron 1 | p3 | Ferritin 2 | p3 | ||||
---|---|---|---|---|---|---|---|---|
Lowest Tertile (n = 100) | Middle Tertile (n = 113) | Highest Tertile (n = 90) | Lowest Tertile (n = 101) | Middle Tertile (n = 100) | Highest Tertile (n = 102) | |||
Iron Biomarkers Serum Iron (μmol/L) | 10.9 ± 2.0 | 16.1 ± 1.4 | 22.9 ± 3.6 | - | 15.0 ± 5.1 | 16.9 ± 5.3 | 17.3 ± 5.5 | 0.05 |
Iron clinical status 4, n (%) Sufficient Deficient | - - - | - - - | - - - | - - - | - 84 (83.2) 17 (16.8) | - 90 (90.0) 10 (10.0) | - 95 (93.1) 7 (6.9) | 0.07 - - |
Serum ferritin (μg/L) | 184 ± 130 | 221 ± 165 | 252 ± 181 | 0.01 | 83.5 ± 30.4 | 184 ± 31.9 | 384 ± 169 | - |
Ferritin clinical status 5, n (%) Sufficient Deficient | - 98 (98.0) 2 (2.0) | - 113 (100) 0 (0.0) | - 90 (100) 0 (0.0) | 0.13 - - | - - - | - - - | - - - | - - - |
Factors of Clinical Relevance Age (years), mean ± SD | 37.8 ± 6.1 | 36.5 ± 6.0 | 35.4 ± 4.9 | 0.02 | 36.5 ± 6.0 | 36.1 ± 5.5 | 37.2 ± 5.8 | 0.40 |
BMI (kg/m2), mean ± SD | 28.5 ± 6.4 | 27.7 ± 5.5 | 27.5 ± 5.3 | 0.40 | 27.4 ± 4.9 | 27.3 ± 6.6 | 29.0 ± 5.5 | 0.52 |
Current Smoker | - | - | - | 0.52 | - | - | - | 0.54 |
No | 83 (83.0) | 100 (88.5) | 77 (85.6) | - | 85 (84.2) | 89 (89.0) | 86 (84.3) | - |
Yes | 17 (17.0) | 13 (11.5) | 13 (14.4) | - | 16 (15.9) | 11 (11.0) | 16 (15.7) | - |
Current Alcohol Consumption | - | - | - | 0.26 | - | - | - | 0.18 |
No | 60 (60.0) | 55 (48.7) | 47 (52.2) | - | 61 (60.4) | 52 (52.0) | 49 (48.0) | - |
Yes | 38 (38.0) | 55 (48.6) | 41 (45.6) | - | 38 (37.6) | 44 (44.0) | 52 (51.0) | - |
Unspecified | 2 (2.0) | 3 (2.7) | 2 (2.2) | - | 2 (2.0) | 4 (4.0) | 1 (1.0) | - |
Ethnicity, n (%) Caucasian Asian Unspecified African Canadian Middle Eastern Indo-Canadian Hispanic | - 36 (36.0) 21 (21.0) 18 (18.0) 11 (11.0) 6 (6.0) 5 (5.0) 3 (3.0) | - 47 (41.6) 17 (15.0) 18 (15.9) 12 (10.6) 9 (8.0) 6 (5.3) 4 (3.5) | - 52 (57.8) 20 (22.2) 7 (7.8) 4 (4.4) 4 (4.4) 3 (3.3) 0 (0.0) | 0.13 - - - - - - - | - 43 (42.6) 18 (17.8) 17 (16.8) 8 (7.9) 6 (5.9) 7 (6.9) 2 (2.0) | - 56 (56.0) 13 (13.0) 16 (16.0) 6 (6.0) 3 (3.0) 2 (2.0) 4 (4.0) | - 36 (35.3) 27 (26.5) 10 (9.8) 13 (12.7) 10 (9.8) 5 (4.9) 1 (1.0) | 0.05 - - - - - - - |
Seasonal variation 6, n (%) | - | - | - | 0.98 | - | - | - | 0.82 |
Fall | 33 (33.0) | 36 (31.9) | 27 (30.0) | - | 33 (32.7) | 34 (34.0) | 29 (28.4) | - |
Winter | 29 (29.0) | 35 (31.0) | 26 (28.9) | - | 31 (30.7) | 28 (28.0) | 31 (30.4) | - |
Summer | 28 (28.0) | 32 (28.3) | 25 (27.8) | - | 24 (23.8) | 28 (28.0) | 33 (32.4) | - |
Spring | 10 (10.0) | 10 (8.8) | 12 (13.3) | - | 13 (12.9) | 10 (10.0) | 9 (8.8) | - |
Reproductive Hormones Serum TT (nmol/L) | 12.8 ± 6.1 | 12.7 ± 6.9 | 14.4 ± 7.0 | 0.14 | 13.8 (7.8) | 13.4 (4.9) | 12.6 (7.0) | 0.43 |
Serum FSH (IU/L) | 10.6 ± 10.2 | 10.0 ± 9.9 | 8.7 ± 8.2 | 0.36 | 11.3 (11.5) | 9.36 (8.6) | 8.8 (8.1) | 0.16 |
Serum LH (IU/L) | 8.21 ± 6.1 | 7.0 ± 4.7 | 6.7 ± 4.01 | 0.08 | 8.2 (6.0) | 6.6 (3.7) | 7.0 (5.0) | 0.06 |
Serum Prolactin (ng/mL) | 9.5 ± 4.0 | 8.8 ± 3.7 | 7.9 ± 3.3 | 0.009 | 9.1 (3.7) | 8.3 (3.3) | 8.9 (4.1) | 0.23 |
TT clinical status 7, n (%) Normal Low | - 70 (70.0) 30 (39.0) | - 72 (63.7) 41 (36.3) | - 70 (77.8) 29 (32.2) | 0.09 - - | - 71 (70.3) 30 (29.7) | - 77 (77.0) 23 (23.0) | - 64 (62.7) 38 (37.3) | 0.09 - - |
FSH Clinical Status 7, n (%) | - | - | - | 0.31 | - | - | - | 0.36 |
Normal | 73 (73.0) | 83 (73.5) | 72 (80.0) | - | 71 (70.3) | 77 (77.0) | 80 (78.4) | - |
Elevated | 27 (27.0) | 30 (26.5) | 18 (20.0) | - | 30 (29.7) | 23 (23.0) | 22 (21.6) | - |
LH Clinical Status 7, n (%) Normal Elevated | - 61 (61.0) 39 (39.0%) | - 80 (70.9) 33 (29.2) | - 61 (67.8) 29 (32.2%) | 0.46 - - | - 61 (60.4) 40 (39.6) | - 71 (71.0) 29 (29.0) | - 70 (68.6) 32 (31.4) | 0.25 - - |
Prolactin clinical status 7, n (%) Normal Elevated | - 95 (95.0) 5 (5.0) | - 111 (98.2) 2 (1.8) | - 88 (97.8) 2 (2.2) | 0.34 - - | - 99 (98.0) 2 (2.0) | - 98 (98.0) 2 (2.0) | - 97 (95.1) 5 (4.9) | 0.37 - - |
Estradiol clinical status 7, n (%) Elevated Normal | - 80 (80.0) 20 (20.0%) | - 84 (74.3) 29 (25.7%) | - 67 (74.4) 23 (25.6%) | 0.56 - - | - 74 (73.3) 27 (26.7) | - 76 (76.0) 24 (24.0) | - 81 (79.4) 21 (20.6) | 0.59 - - |
Nutrient Biomarker | Hormone | ρ | p |
---|---|---|---|
Iron | |||
FSH | −0.06 | 0.28 | |
LH | −0.09 | 0.10 | |
TT | 0.10 | 0.09 | |
Prolactin | −0.22 | 0.0002 | |
Ferritin | |||
FSH | −0.03 | 0.61 | |
LH | −0.07 | 0.22 | |
TT | −0.12 | 0.05 | |
Prolactin | −0.04 | 0.44 |
Nutrient Biomarker | Hormone 1 | Unadjusted Model ß ± SE | Unadjusted p | Adjusted Model ß ± SE 2 | Adjusted p |
---|---|---|---|---|---|
Iron | |||||
FSH | −0.02 ± 0.01 | 0.28 | −0.004 ± 0.03 | 0.15 | |
LH | −0.02 ± 0.009 | 0.03 | −0.02 ± 0.009 | 0.03 | |
TT | 0.006 ± 0.01 | 0.51 | 0.004 ± 0.009 | 0.65 | |
Prolactin | −0.02 ± 0.006 | 0.001 | −0.02 ± 0.006 | 0.003 | |
Estradiol 3 | −0.02 ± 0.03 | 0.54 | −0.03 ± 0.03 | 0.40 | |
Ferritin | |||||
FSH | −0.0007 ± 0.0005 | 0.16 | −0.001 ± 0.0005 | 0.03 | |
LH | −0.0004 ± 0.0003 | 0.16 | −0.004± 0.002 | 0.02 | |
TT | −0.0005 ± 0.0003 | 0.09 | 0.0003 ± 0.0003 | 0.31 | |
Prolactin | −0.0002 ± 0.0002 | 0.37 | −0.0002 ± 0.0002 | 0.21 | |
Estradiol 3 | 0.0003 ± 0.0009 | 0.71 | 0.0006 ± 0.001 | 0.51 |
Hormone 1 | Unadjusted OR [95% CI] | Unadjusted p | Adjusted OR [95% CI] 4 | Adjusted p | Unadjusted OR [95% CI] | Unadjusted p | Adjusted OR [95% CI] 4 | Adjusted p |
---|---|---|---|---|---|---|---|---|
Serum Iron Middle Tertile 2 | Serum Iron Highest Tertile 3 | |||||||
FSH | 0.98 [0.53, 1.79] | 0.94 | 0.97 [0.51, 1.84] | 0.92 | 0.68 [0.34, 1.33] | 0.26 | 0.69 [0.33, 1.43] | 0.32 |
LH | 0.65 [0.36, 1.14] | 0.13 | 0.68 [0.34, 1.39] | 0.21 | 0.74 [0.41, 1.35] | 0.33 | 0.82 [0.38, 1.76] | 0.55 |
TT | 1.33 [0.75, 2.36] | 0.33 | 1.50 [0.80, 2.83] | 0.21 | 0.67 [0.35, 1.28] | 0.23 | 0.78 [0.38, 1.61] | 0.50 |
Estradiol | 0.72 [0.38, 1.38] | 0.33 | 0.74 [0.37, 1.46] | 0.38 | 0.73 [0.37, 1.44] | 0.36 | 0.63 [0.30, 1.32] | 0.22 |
Serum Ferritin Middle Tertile 2 | Serum Ferritin Highest Tertile 3 | |||||||
FSH | 0.69 [0.33, 1.33] | 0.32 | 0.97 [0.34, 1.30] | 0.23 | 0.65 [0.34, 1.23] | 0.19 | 0.69 [0.27, 1.09] | 0.09 |
LH | 0.62 [0.35, 1.12] | 0.11 | 0.63 [0.30, 1.30] | 0.13 | 0.70 [0.39, 1.24] | 0.22 | 0.60 [0.29, 1.25] | 0.10 |
TT | 0.71 [0.38, 1.33] | 0.28 | 0.73 [0.36, 1.44] | 0.36 | 1.41 [0.78, 2.52] | 0.26 | 1.31 [0.68, 2.52] | 0.42 |
Estradiol | 1.16 [0.61, 2.18] | 0.66 | 1.09 [0.55, 2.16] | 0.70 | 1.41 [0.73, 2.70] | 0.30 | 1.81 [0.89, 3.68] | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastegar Panah, M.; Jarvi, K.; Lo, K.; El-Sohemy, A. Biomarkers of Iron Are Associated with Anterior-Pituitary-Produced Reproductive Hormones in Men with Infertility. Nutrients 2024, 16, 290. https://doi.org/10.3390/nu16020290
Rastegar Panah M, Jarvi K, Lo K, El-Sohemy A. Biomarkers of Iron Are Associated with Anterior-Pituitary-Produced Reproductive Hormones in Men with Infertility. Nutrients. 2024; 16(2):290. https://doi.org/10.3390/nu16020290
Chicago/Turabian StyleRastegar Panah, Matineh, Keith Jarvi, Kirk Lo, and Ahmed El-Sohemy. 2024. "Biomarkers of Iron Are Associated with Anterior-Pituitary-Produced Reproductive Hormones in Men with Infertility" Nutrients 16, no. 2: 290. https://doi.org/10.3390/nu16020290
APA StyleRastegar Panah, M., Jarvi, K., Lo, K., & El-Sohemy, A. (2024). Biomarkers of Iron Are Associated with Anterior-Pituitary-Produced Reproductive Hormones in Men with Infertility. Nutrients, 16(2), 290. https://doi.org/10.3390/nu16020290