Acute Sarcopenia: Mechanisms and Management
Abstract
:1. Introduction
2. Methods
3. Definitions of Sarcopenia
4. Epidemiology
5. Pathophysiology
5.1. Disuse
5.1.1. Decreased Protein Synthesis
5.1.2. Increased Protein Breakdown
5.2. Inflammation
GDF-15
5.3. Hormonal Imbalances
5.4. MicroRNAs
6. Assessment
6.1. Muscle Mass Measurement
6.2. Muscle Quality Measurement
6.3. Muscle Strength Assessment
6.4. Muscle Performance Assessment
7. Biomarkers of Acute Sarcopenia
8. Risk Factors
8.1. Old Age
8.1.1. Inflammaging
8.1.2. Immunosenescence
8.1.3. Mitochondrial Damage
8.1.4. Gut Microbiota
8.1.5. Oral Health and Protein Intake
8.1.6. Anabolic Resistance
8.1.7. Endocrine Dysregulation
8.2. Inactivty
Immobility
8.3. Malnutrition
8.3.1. Anorexia
8.3.2. Obesity
8.4. Hospitalization and Delirium
8.5. Chronic Sarcopenia
8.6. Drugs
8.7. Surgery
8.8. Stroke
8.9. COVID-19
9. Consequences
10. Interventions
10.1. Physical Activity
10.2. Nutritional Interventions
10.2.1. Proteins
10.2.2. Leucine and Beta-Hydroxybeta-Methylbutyrate
10.2.3. Creatine Monohydrate
10.2.4. Polyunsaturated Fatty Acids
10.2.5. Nutritional Supplements
10.2.6. Probiotics and Prebiotics
10.2.7. Combined Approaches
10.3. Neuromuscular Electrical Stimulation
10.4. Pharmacological Treatments
11. Future Perspectives
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sponsor Role
References
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646, Erratum in Lancet 2019, 393, 2590. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Aihie, A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Lai, Y.; Ramírez-Pardo, I.; Isern, J.; An, J.; Perdiguero, E.; Serrano, A.L.; Li, J.; García-Domínguez, E.; Segalés, J.; Guo, P.; et al. Multimodal Cell Atlas of the Ageing Human Skeletal Muscle. Nature 2024, 629, 154–164. [Google Scholar] [CrossRef]
- Cristea, A.; Qaisar, R.; Edlund, P.K.; Lindblad, J.; Bengtsson, E.; Larsson, L. Effects of Aging and Gender on the Spatial Organization of Nuclei in Single Human Skeletal Muscle Cells. Aging Cell 2010, 9, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Combaret, L.; Dardevet, D.; Béchet, D.; Taillandier, D.; Mosoni, L.; Attaix, D. Skeletal Muscle Proteolysis in Aging. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M. Autophagy in Skeletal Muscle. FEBS Lett. 2010, 584, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Brook, M.S.; Wilkinson, D.J.; Phillips, B.E.; Perez-Schindler, J.; Philp, A.; Smith, K.; Atherton, P.J. Skeletal Muscle Homeostasis and Plasticity in Youth and Ageing: Impact of Nutrition and Exercise. Acta Physiol. 2016, 216, 15–41. [Google Scholar] [CrossRef]
- Jiao, J.; Demontis, F. Skeletal Muscle Autophagy and Its Role in Sarcopenia and Organismal Aging. Curr. Opin. Pharmacol. 2017, 34, 1–6. [Google Scholar] [CrossRef]
- Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenen-Schimke, J.; Raghavakaimal, S.; Nair, K.S. Decline in Skeletal Muscle Mitochondrial Function with Aging in Humans. Proc. Natl. Acad. Sci. USA 2005, 102, 5618–5623. [Google Scholar] [CrossRef]
- Dirks, A.J.; Leeuwenburgh, C. The Role of Apoptosis in Age-Related Skeletal Muscle Atrophy. Sports Med. 2005, 35, 473–483. [Google Scholar] [CrossRef]
- Rahmati, M.; McCarthy, J.J.; Malakoutinia, F. Myonuclear Permanence in Skeletal Muscle Memory: A Systematic Review and Meta-Analysis of Human and Animal Studies. J. Cachexia Sarcopenia Muscle 2022, 13, 2276–2297. [Google Scholar] [CrossRef]
- Musarò, A.; Giacinti, C.; Pelosi, L.; Dobrowolny, G.; Barberi, L.; Nardis, C.; Coletti, D.; Scicchitano, B.M.; Adamo, S.; Molinaro, M. Stem Cell-Mediated Muscle Regeneration and Repair in Aging and Neuromuscular Diseases. Eur. J. Histochem. 2007, 51 (Suppl. 1), 35–43. [Google Scholar] [PubMed]
- García-Prat, L.; Sousa-Victor, P.; Muñoz-Cánoves, P. Functional Dysregulation of Stem Cells during Aging: A Focus on Skeletal Muscle Stem Cells. FEBS J. 2013, 280, 4051–4062. [Google Scholar] [CrossRef] [PubMed]
- Barns, M.; Gondro, C.; Tellam, R.L.; Radley-Crabb, H.G.; Grounds, M.D.; Shavlakadze, T. Molecular Analyses Provide Insight into Mechanisms Underlying Sarcopenia and Myofibre Denervation in Old Skeletal Muscles of Mice. Int. J. Biochem. Cell Biol. 2014, 53, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Lopes, K.G.; Farinatti, P.; Bottino, D.A.; de Souza, M.d.G.C.; Maranhão, P.A.; Bouskela, E.; Lourenço, R.A.; de Oliveira, R.B. Sarcopenia in the Elderly versus Microcirculation, Inflammation Status, and Oxidative Stress: A Cross-Sectional Study. Clin. Hemorheol. Microcirc. 2022, 80, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and Sarcopenia: A Focus on Circulating Inflammatory Cytokines. Exp. Gerontol. 2021, 154, 111544. [Google Scholar] [CrossRef]
- Léger, B.; Derave, W.; De Bock, K.; Hespel, P.; Russell, A.P. Human Sarcopenia Reveals an Increase in SOCS-3 and Myostatin and a Reduced Efficiency of Akt Phosphorylation. Rejuvenation Res. 2008, 11, 163–175B. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- English, K.L.; Paddon-Jones, D. Protecting Muscle Mass and Function in Older Adults during Bed Rest. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 34–39. [Google Scholar] [CrossRef]
- Cree, M.G.; Paddon-Jones, D.; Newcomer, B.R.; Ronsen, O.; Aarsland, A.; Wolfe, R.R.; Ferrando, A. Twenty-Eight-Day Bed Rest with Hypercortisolemia Induces Peripheral Insulin Resistance and Increases Intramuscular Triglycerides. Metabolism 2010, 59, 703–710. [Google Scholar] [CrossRef]
- Welch, C.; Greig, C.A.; Masud, T.; Pinkney, T.; Jackson, T.A. Protocol for Understanding Acute Sarcopenia: A Cohort Study to Characterise Changes in Muscle Quantity and Physical Function in Older Adults Following Hospitalisation. BMC Geriatr. 2020, 20, 239. [Google Scholar] [CrossRef] [PubMed]
- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of Pro-Inflammatory Cytokines (IL-1 and IL-6) and Lung Inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-Inflammatory Strategies. J. Biol. Regul. Homeost. Agents 2020, 34, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Sager, M.A.; Franke, T.; Inouye, S.K.; Landefeld, C.S.; Morgan, T.M.; Rudberg, M.A.; Siebens, H.; Winograd, C.H. Functional Outcomes of Acute Medical Illness and Hospitalization in Older Persons. Arch. Intern. Med. 1996, 156, 645–652. [Google Scholar] [CrossRef]
- Friedman, S.M.; Mendelson, D.A.; Bingham, K.W.; McCann, R.M. Hazards of Hospitalization: Residence Prior to Admission Predicts Outcomes. Gerontologist 2008, 48, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.T.; Dirks, M.L.; Van Loon, L.J.C. Skeletal Muscle Atrophy during Short-Term Disuse: Implications for Age-Related Sarcopenia. Ageing Res. Rev. 2013, 12, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Buford, T.W.; Anton, S.D.; Judge, A.R.; Marzetti, E.; Wohlgemuth, S.E.; Carter, C.S.; Leeuwenburgh, C.; Pahor, M.; Manini, T.M. Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy. Ageing Res. Rev. 2010, 9, 369–383. [Google Scholar] [CrossRef]
- de Moura, P.H.; de Souza, H.; Brandão, D.C.; Barros, C.; Correia, M.; Reinaux, C.; Leite, W.S.; de Andrade, A.D.; Campos, S.L. Mapping Peripheral and Abdominal Sarcopenia Acquired in the Acute Phase of COVID-19 during 7 Days of Mechanical Ventilation. Sci. Rep. 2023, 13, 3514. [Google Scholar] [CrossRef] [PubMed]
- Martone, A.M.; Bianchi, L.; Abete, P.; Bellelli, G.; Bo, M.; Cherubini, A.; Corica, F.; Di Bari, M.; Maggio, M.; Manca, G.M.; et al. The Incidence of Sarcopenia among Hospitalized Older Patients: Results from the Glisten Study. J. Cachexia Sarcopenia Muscle 2017, 8, 907–914. [Google Scholar] [CrossRef]
- Churilov, I.; Churilov, L.; MacIsaac, R.J.; Ekinci, E.I. Systematic Review and Meta-Analysis of Prevalence of Sarcopenia in Post Acute Inpatient Rehabilitation. Osteoporos. Int. 2018, 29, 805–812. [Google Scholar] [CrossRef]
- Welch, C.; Greig, C.A.; Hassan-Smith, Z.K.; Pinkney, T.D.; Lord, J.M.; Jackson, T.A. A Pilot Observational Study Measuring Acute Sarcopenia in Older Colorectal Surgery Patients. BMC Res. Notes 2019, 12, 24. [Google Scholar] [CrossRef]
- Takahashi, S.; Shimizu, S.; Nagai, S.; Watanabe, H.; Nishitani, Y.; Kurisu, Y. Characteristics of Sarcopenia after Distal Gastrectomy in Elderly Patients. PLoS ONE 2019, 14, e0222412. [Google Scholar] [CrossRef] [PubMed]
- Kemp, P.R.; Griffiths, M.; Polkey, M.I. Muscle Wasting in the Presence of Disease, Why Is It so Variable? Biol. Rev. Camb. Philos. Soc. 2019, 94, 1038–1055. [Google Scholar] [CrossRef] [PubMed]
- Horstman, A.M.H.; Damink, S.W.O.; Schols, A.M.W.J.; van Loon, L.J.C. Is Cancer Cachexia Attributed to Impairments in Basal or Postprandial Muscle Protein Metabolism? Nutrients 2016, 8, 499. [Google Scholar] [CrossRef]
- Kortebein, P.; Ferrando, A.; Lombeida, J.; Wolfe, R.; Evans, W.J. Effect of 10 Days of Bed Rest on Skeletal Muscle in Healthy Older Adults. JAMA 2007, 297, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- Tanner, R.E.; Brunker, L.B.; Agergaard, J.; Barrows, K.M.; Briggs, R.A.; Kwon, O.S.; Young, L.M.; Hopkins, P.N.; Volpi, E.; Marcus, R.L.; et al. Age-Related Differences in Lean Mass, Protein Synthesis and Skeletal Muscle Markers of Proteolysis after Bed Rest and Exercise Rehabilitation. J. Physiol. 2015, 593, 4259–4273. [Google Scholar] [CrossRef] [PubMed]
- De Larichaudy, J.; Zufferli, A.; Serra, F.; Isidori, A.M.; Naro, F.; Dessalle, K.; Desgeorges, M.; Piraud, M.; Cheillan, D.; Vidal, H.; et al. TNF-α- and Tumor-Induced Skeletal Muscle Atrophy Involves Sphingolipid Metabolism. Skelet. Muscle 2012, 2, 2. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Sheffield-Moore, M.; Cree, M.G.; Hewlings, S.J.; Aarsland, A.; Wolfe, R.R.; Ferrando, A.A. Atrophy and Impaired Muscle Protein Synthesis during Prolonged Inactivity and Stress. J. Clin. Endocrinol. Metab. 2006, 91, 4836–4841. [Google Scholar] [CrossRef]
- Butcher, S.K.; Killampalli, V.; Lascelles, D.; Wang, K.; Alpar, K.E.; Lord, J.M. Raised Cortisol:DHEAS Ratios in the Elderly after Injury: Potential Impact upon Neutrophil Function and Immunity. Aging Cell 2005, 4, 319–324. [Google Scholar] [CrossRef]
- Garros, R.F.; Paul, R.; Connolly, M.; Lewis, A.; Garfield, B.E.; Natanek, S.A.; Bloch, S.; Mouly, V.; Griffiths, M.J.; Polkey, M.I.; et al. MicroRNA-542 Promotes Mitochondrial Dysfunction and SMAD Activity and Is Elevated in Intensive Care Unit-Acquired Weakness. Am. J. Respir. Crit. Care Med. 2017, 196, 1422–1433. [Google Scholar] [CrossRef]
- Connolly, M.; Paul, R.; Farre-Garros, R.; Natanek, S.A.; Bloch, S.; Lee, J.; Lorenzo, J.P.; Patel, H.; Cooper, C.; Sayer, A.A.; et al. MiR-424-5p Reduces Ribosomal RNA and Protein Synthesis in Muscle Wasting. J. Cachexia Sarcopenia Muscle 2018, 9, 400–416. [Google Scholar] [CrossRef]
- Bloch, S.A.A.; Lee, J.Y.; Wort, S.J.; Polkey, M.I.; Kemp, P.R.; Griffiths, M.J.D. Sustained Elevation of Circulating Growth and Differentiation Factor-15 and a Dynamic Imbalance in Mediators of Muscle Homeostasis Are Associated with the Development of Acute Muscle Wasting Following Cardiac Surgery. Crit. Care Med. 2013, 41, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Brooks, N.; Cloutier, G.J.; Cadena, S.M.; Layne, J.E.; Nelsen, C.A.; Freed, A.M.; Roubenoff, R.; Castaneda-Sceppa, C. Resistance Training and Timed Essential Amino Acids Protect against the Loss of Muscle Mass and Strength during 28 Days of Bed Rest and Energy Deficit. J. Appl. Physiol. 2008, 105, 241–248. [Google Scholar] [CrossRef] [PubMed]
- de Boer, M.D.; Maganaris, C.N.; Seynnes, O.R.; Rennie, M.J.; Narici, M.V. Time Course of Muscular, Neural and Tendinous Adaptations to 23 Day Unilateral Lower-Limb Suspension in Young Men. J. Physiol. 2007, 583, 1079–1091. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, A.A.; Tipton, K.D.; Bamman, M.M.; Wolfe, R.R. Resistance Exercise Maintains Skeletal Muscle Protein Synthesis during Bed Rest. J. Appl. Physiol. 1997, 82, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Glover, E.I.; Yasuda, N.; Tarnopolsky, M.A.; Abadi, A.; Phillips, S.M. Little Change in Markers of Protein Breakdown and Oxidative Stress in Humans in Immobilization-Induced Skeletal Muscle Atrophy. Appl. Physiol. Nutr. Metab. 2010, 35, 125–133. [Google Scholar] [CrossRef]
- Hespel, P.; Eijnde, B.O.T.; Van Leemputte, M.; Ursø, B.; Greenhaff, P.L.; Labarque, V.; Dymarkowski, S.; Van Hecke, P.; Richter, E.A. Oral Creatine Supplementation Facilitates the Rehabilitation of Disuse Atrophy and Alters the Expression of Muscle Myogenic Factors in Humans. J. Physiol. 2001, 536, 625–633. [Google Scholar] [CrossRef]
- Jones, S.W.; Hill, R.J.; Krasney, P.A.; O’Conner, B.; Peirce, N.; Greenhaff, P.L. Disuse Atrophy and Exercise Rehabilitation in Humans Profoundly Affects the Expression of Genes Associated with the Regulation of Skeletal Muscle Mass. FASEB J. 2004, 18, 1025–1027. [Google Scholar] [CrossRef]
- Thom, J.M.; Thompson, M.W.; Ruell, P.A.; Bryant, G.J.; Fonda, J.S.; Harmer, A.R.; De Janse Jonge, X.A.K.; Hunter, S.K. Effect of 10-Day Cast Immobilization on Sarcoplasmic Reticulum Calcium Regulation in Humans. Acta Physiol. Scand. 2001, 172, 141–147. [Google Scholar] [CrossRef]
- LeBlanc, A.D.; Schneider, V.S.; Evans, H.J.; Pientok, C.; Rowe, R.; Spector, E. Regional Changes in Muscle Mass Following 17 Weeks of Bed Rest. J. Appl. Physiol. 1992, 73, 2172–2178. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Sheffield-Moore, M.; Urban, R.J.; Sanford, A.P.; Aarsland, A.; Wolfe, R.R.; Ferrando, A.A. Essential Amino Acid and Carbohydrate Supplementation Ameliorates Muscle Protein Loss in Humans during 28 Days Bedrest. J. Clin. Endocrinol. Metab. 2004, 89, 4351–4358. [Google Scholar] [CrossRef]
- Seki, K.; Taniguchi, Y.; Narusawa, M. Effects of Joint Immobilization on Firing Rate Modulation of Human Motor Units. J. Physiol. 2001, 530, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.N.A.; Halliday, D.; Morrison, W.L.; Stoward, P.J.; Hornsby, G.A.; Watt, P.W.; Murdoch, G.; Rennie, M.J. Decrease in Human Quadriceps Muscle Protein Turnover Consequent upon Leg Immobilization. Clin. Sci. 1987, 72, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, A.A.; Lane, H.W.; Stuart, C.A.; Davis-Street, J.; Wolfe, R.R. Prolonged Bed Rest Decreases Skeletal Muscle and Whole Body Protein Synthesis. Am. J. Physiol. Metab. 1996, 270, E627–E633. [Google Scholar] [CrossRef] [PubMed]
- Glover, E.I.; Phillips, S.M.; Oates, B.R.; Tang, J.E.; Tarnopolsky, M.A.; Selby, A.; Smith, K.; Rennie, M.J. Immobilization Induces Anabolic Resistance in Human Myofibrillar Protein Synthesis with Low and High Dose Amino Acid Infusion. J. Physiol. 2008, 586, 6049–6061. [Google Scholar] [CrossRef]
- Ziaaldini, M.M.; Marzetti, E.; Picca, A.; Murlasits, Z. Biochemical Pathways of Sarcopenia and Their Modulation by Physical Exercise: A Narrative Review. Front. Med. 2017, 4, 167. [Google Scholar] [CrossRef]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/MTOR Pathway Is a Crucial Regulator of Skeletal Muscle Hypertrophy and Can Prevent Muscle Atrophy in Vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Urso, M.L.; Scrimgeour, A.G.; Chen, Y.W.; Thompson, P.D.; Clarkson, P.M. Analysis of Human Skeletal Muscle after 48 h Immobilization Reveals Alterations in MRNA and Protein for Extracellular Matrix Components. J. Appl. Physiol. 2006, 101, 1136–1148. [Google Scholar] [CrossRef]
- Suetta, C.; Frandsen, U.; Jensen, L.; Jensen, M.M.; Jespersen, J.G.; Hvid, L.G.; Bayer, M.; Petersson, S.J.; Schrøder, H.D.; Andersen, J.L.; et al. Aging Affects the Transcriptional Regulation of Human Skeletal Muscle Disuse Atrophy. PLoS ONE 2012, 7, e51238. [Google Scholar] [CrossRef]
- Tjäder, I.; Essen, P.; Thörne, A.; Garlick, P.J.; Wernerman, J.; McNurlan, M.A. Muscle Protein Synthesis Rate Decreases 24 Hours after Abdominal Surgery Irrespective of Total Parenteral Nutrition. JPEN J. Parenter. Enteral Nutr. 1996, 20, 135–138. [Google Scholar] [CrossRef]
- Lang, S.M.; Kazi, A.A.; Hong-Brown, L.; Lang, C.H. Delayed Recovery of Skeletal Muscle Mass Following Hindlimb Immobilization in MTOR Heterozygous Mice. PLoS ONE 2012, 7, e38910. [Google Scholar] [CrossRef]
- Magne, H.; Savary-Auzeloux, I.; Migné, C.; Peyron, M.A.; Combaret, L.; Rémond, D.; Dardevet, D. Contrarily to Whey and High Protein Diets, Dietary Free Leucine Supplementation Cannot Reverse the Lack of Recovery of Muscle Mass after Prolonged Immobilization during Ageing. J. Physiol. 2012, 590, 2035–2049. [Google Scholar] [CrossRef] [PubMed]
- Bechet, D.; Tassa, A.; Taillandier, D.; Combaret, L.; Attaix, D. Lysosomal Proteolysis in Skeletal Muscle. Int. J. Biochem. Cell Biol. 2005, 37, 2098–2114. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, M.; Richard, I. Calpains in Muscle Wasting. Int. J. Biochem. Cell Biol. 2005, 37, 2115–2133. [Google Scholar] [CrossRef] [PubMed]
- Greenhaff, P.L.; Karagounis, L.G.; Peirce, N.; Simpson, E.J.; Hazell, M.; Layfield, R.; Wackerhage, H.; Smith, K.; Atherton, P.; Selby, A.; et al. Disassociation between the Effects of Amino Acids and Insulin on Signaling, Ubiquitin Ligases, and Protein Turnover in Human Muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E595–E604. [Google Scholar] [CrossRef]
- Jagoe, R.T.; Goldberg, A.L. What Do We Really Know about the Ubiquitin-Proteasome Pathway in Muscle Atrophy? Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 183–190. [Google Scholar] [CrossRef]
- Murton, A.J.; Constantin, D.; Greenhaff, P.L. The Involvement of the Ubiquitin Proteasome System in Human Skeletal Muscle Remodelling and Atrophy. Biochim. Biophys. Acta 2008, 1782, 730–743. [Google Scholar] [CrossRef]
- Lecker, S.H.; Jagoe, R.T.; Gilbert, A.; Gomes, M.; Baracos, V.; Bailey, J.; Price, S.R.; Mitch, W.E.; Goldberg, A.L. Multiple Types of Skeletal Muscle Atrophy Involve a Common Program of Changes in Gene Expression. FASEB J. 2004, 18, 39–51. [Google Scholar] [CrossRef]
- Baehr, L.M.; Furlow, J.D.; Bodine, S.C. Muscle Sparing in Muscle RING Finger 1 Null Mice: Response to Synthetic Glucocorticoids. J. Physiol. 2011, 589, 4759–4776. [Google Scholar] [CrossRef]
- Ogawa, T.; Furochi, H.; Mameoka, M.; Hirasaka, K.; Onishi, Y.; Suzue, N.; Oarada, M.; Akamatsu, M.; Akima, H.; Fukunaga, T.; et al. Ubiquitin Ligase Gene Expression in Healthy Volunteers with 20-Day Bedrest. Muscle Nerve 2006, 34, 463–469. [Google Scholar] [CrossRef]
- Brocca, L.; Cannavino, J.; Coletto, L.; Biolo, G.; Sandri, M.; Bottinelli, R.; Pellegrino, M.A. The Time Course of the Adaptations of Human Muscle Proteome to Bed Rest and the Underlying Mechanisms. J. Physiol. 2012, 590, 5211–5230. [Google Scholar] [CrossRef]
- Kücükakin, B.; Gögenur, I.; Reiter, R.J.; Rosenberg, J. Oxidative Stress in Relation to Surgery: Is There a Role for the Antioxidant Melatonin? J. Surg. Res. 2009, 152, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Siu, P.M.; Pistilli, E.E.; Alway, S.E. Age-Dependent Increase in Oxidative Stress in Gastrocnemius Muscle with Unloading. J. Appl. Physiol. 2008, 105, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Drescher, C.; Konishi, M.; Ebner, N.; Springer, J. Loss of Muscle Mass: Current Developments in Cachexia and Sarcopenia Focused on Biomarkers and Treatment. Int. J. Cardiol. 2016, 202, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Abadi, A.; Glover, E.I.; Isfort, R.J.; Raha, S.; Safdar, A.; Yasuda, N.; Kaczor, J.J.; Melov, S.; Hubbard, A.; Qu, X.; et al. Limb Immobilization Induces a Coordinate Down-Regulation of Mitochondrial and Other Metabolic Pathways in Men and Women. PLoS ONE 2009, 4, e6518. [Google Scholar] [CrossRef]
- Reich, K.A.; Chen, Y.W.; Thompson, P.D.; Hoffman, E.P.; Clarkson, P.M. Forty-Eight Hours of Unloading and 24 h of Reloading Lead to Changes in Global Gene Expression Patterns Related to Ubiquitination and Oxidative Stress in Humans. J. Appl. Physiol. 2010, 109, 1404–1415. [Google Scholar] [CrossRef]
- Gustafsson, T.; Osterlund, T.; Flanagan, J.N.; Von Waldén, F.; Trappe, T.A.; Linnehan, R.M.; Tesch, P.A. Effects of 3 Days Unloading on Molecular Regulators of Muscle Size in Humans. J. Appl. Physiol. 2010, 109, 721–727. [Google Scholar] [CrossRef]
- Rennie, M.J.; Selby, A.; Atherton, P.; Smith, K.; Kumar, V.; Glover, E.L.; Philips, S.M. Facts, Noise and Wishful Thinking: Muscle Protein Turnover in Aging and Human Disuse Atrophy. Scand. J. Med. Sci. Sports 2010, 20, 5–9. [Google Scholar] [CrossRef]
- Sakuma, K.; Aoi, W.; Yamaguchi, A. Current Understanding of Sarcopenia: Possible Candidates Modulating Muscle Mass. Pflugers Arch. 2015, 467, 213–229. [Google Scholar] [CrossRef]
- Zhong, F.; Liang, S.; Zhong, Z. Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends Immunol. 2019, 40, 1120–1133. [Google Scholar] [CrossRef]
- Laforge, M.; Rodrigues, V.; Silvestre, R.; Gautier, C.; Weil, R.; Corti, O.; Estaquier, J. NF-ΚB Pathway Controls Mitochondrial Dynamics. Cell Death Differ. 2016, 23, 89–98. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 Inflammasome Activation and Cell Death. Cell Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef] [PubMed]
- Leduc-Gaudet, J.-P.; Hussain, S.N.A.; Barreiro, E.; Gouspillou, G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int. J. Mol. Sci. 2021, 22, 8179. [Google Scholar] [CrossRef] [PubMed]
- Schakman, O.; Dehoux, M.; Bouchuari, S.; Delaere, S.; Lause, P.; Decroly, N.; Shoelson, S.E.; Thissen, J.-P. Role of IGF-I and the TNFα/NF-ΚB Pathway in the Induction of Muscle Atrogenes by Acute Inflammation. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E729–E739. [Google Scholar] [CrossRef] [PubMed]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and Sarcopenia: A Systematic Review and Meta-Analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of Inflammation and Their Association with Muscle Strength and Mass: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef]
- Bierbrauer, J.; Koch, S.; Olbricht, C.; Hamati, J.; Lodka, D.; Schneider, J.; Luther-Schröder, A.; Kleber, C.; Faust, K.; Wiesener, S.; et al. Early Type II Fiber Atrophy in Intensive Care Unit Patients with Nonexcitable Muscle Membrane. Crit. Care Med. 2012, 40, 647–650. [Google Scholar] [CrossRef]
- Baldwin, C.E.; Bersten, A.D. Alterations in Respiratory and Limb Muscle Strength and Size in Patients with Sepsis Who Are Mechanically Ventilated. Phys. Ther. 2014, 94, 68–82. [Google Scholar] [CrossRef]
- Doiron, K.A.; Hoffmann, T.C.; Beller, E.M. Early Intervention (Mobilization or Active Exercise) for Critically Ill Adults in the Intensive Care Unit. Cochrane Database Syst. Rev. 2018, 2018, CD010754. [Google Scholar] [CrossRef]
- Gelfand, R.A.; Matthews, D.E.; Bier, D.M.; Sherwin, R.S. Role of Counterregulatory Hormones in the Catabolic Response to Stress. J. Clin. Investig. 1984, 74, 2238–2248. [Google Scholar] [CrossRef]
- Kemp, P.R.; Paul, R.; Hinken, A.C.; Neil, D.; Russell, A.; Griffiths, M.J. Metabolic Profiling Shows Pre-Existing Mitochondrial Dysfunction Contributes to Muscle Loss in a Model of ICU-Acquired Weakness. J. Cachexia Sarcopenia Muscle 2020, 11, 1321–1335. [Google Scholar] [CrossRef]
- Hassan-Smith, Z.K.; Morgan, S.A.; Sherlock, M.; Hughes, B.; Taylor, A.E.; Lavery, G.G.; Tomlinson, J.W.; Stewart, P.M. Gender-Specific Differences in Skeletal Muscle 11β-HSD1 Expression Across Healthy Aging. J. Clin. Endocrinol. Metab. 2015, 100, 2673–2681. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.A.; McCabe, E.L.; Gathercole, L.L.; Hassan-Smith, Z.K.; Larner, D.P.; Bujalska, I.J.; Stewart, P.M.; Tomlinson, J.W.; Lavery, G.G. 11β-HSD1 Is the Major Regulator of the Tissue-Specific Effects of Circulating Glucocorticoid Excess. Proc. Natl. Acad. Sci. USA 2014, 111, E2482–E2491. [Google Scholar] [CrossRef] [PubMed]
- Velloso, C.P. Regulation of Muscle Mass by Growth Hormone and IGF-I. Br. J. Pharmacol. 2008, 154, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lei, S.; Jiang, T.; She, Y.; Shi, H. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-Coding RNAs. Front. Cell Dev. Biol. 2020, 8, 577010. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.-C.; et al. Sarcopenia in Daily Practice: Assessment and Management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef]
- Messina, C.; Monaco, C.G.; Ulivieri, F.M.; Sardanelli, F.; Sconfienza, L.M. Dual-Energy X-Ray Absorptiometry Body Composition in Patients with Secondary Osteoporosis. Eur. J. Radiol. 2016, 85, 1493–1498. [Google Scholar] [CrossRef]
- Foster, K.R.; Lukaski, H.C. Whole-Body Impedance—What Does It Measure? Am. J. Clin. Nutr. 1996, 64, 388S–396S. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Heymsfield, S.B. Bioelectrical Impedance Analysis for Diagnosing Sarcopenia and Cachexia: What Are We Really Estimating? J. Cachexia Sarcopenia Muscle 2017, 8, 187–189. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing Appendicular Skeletal Muscle Mass with Bioelectrical Impedance Analysis in Free-Living Caucasian Older Adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef]
- Kyle, U.G.; Genton, L.; Hans, D.; Pichard, C. Validation of a Bioelectrical Impedance Analysis Equation to Predict Appendicular Skeletal Muscle Mass (ASMM). Clin. Nutr. 2003, 22, 537–543. [Google Scholar] [CrossRef]
- Yamada, Y.; Nishizawa, M.; Uchiyama, T.; Kasahara, Y.; Shindo, M.; Miyachi, M.; Tanaka, S. Developing and Validating an Age-Independent Equation Using Multi-Frequency Bioelectrical Impedance Analysis for Estimation of Appendicular Skeletal Muscle Mass and Establishing a Cutoff for Sarcopenia. Int. J. Environ. Res. Public Health 2017, 14, 809. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Sapey, E. Frailty, Sarcopenia and Immunesenescence: Shared Mechanisms and Clinical Insights. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2018. [Google Scholar]
- Ticinesi, A.; Meschi, T.; Narici, M.V.; Lauretani, F.; Maggio, M. Muscle Ultrasound and Sarcopenia in Older Individuals: A Clinical Perspective. J. Am. Med. Dir. Assoc. 2017, 18, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Tsutsumi, R.; Okayama, Y.; Takashima, T.; Ueno, Y.; Itagaki, T.; Tsutsumi, Y.; Sakaue, H.; Oto, J. Monitoring of Muscle Mass in Critically Ill Patients: Comparison of Ultrasound and Two Bioelectrical Impedance Analysis Devices. J. Intensive Care 2019, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Chabin, X.; Taghli-Lamallem, O.; Mulliez, A.; Bordachar, P.; Jean, F.; Futier, E.; Massoullié, G.; Andonache, M.; Souteyrand, G.; Ploux, S.; et al. Bioimpedance Analysis Is Safe in Patients with Implanted Cardiac Electronic Devices. Clin. Nutr. 2019, 38, 806–811. [Google Scholar] [CrossRef]
- Perkisas, S.; Baudry, S.; Bauer, J.; Beckwée, D.; De Cock, A.-M.; Hobbelen, H.; Jager-Wittenaar, H.; Kasiukiewicz, A.; Landi, F.; Marco, E.; et al. Application of Ultrasound for Muscle Assessment in Sarcopenia: Towards Standardized Measurements. Eur. Geriatr. Med. 2018, 9, 739–757. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.V.; Moorey, H.; Stringer, H.; Sahbudin, I.; Filer, A.; Lord, J.M.; Sapey, E. Bilateral Anterior Thigh Thickness: A New Diagnostic Tool for the Identification of Low Muscle Mass? J. Am. Med. Dir. Assoc. 2019, 20, 1247–1253.e2. [Google Scholar] [CrossRef] [PubMed]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwée, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of Ultrasound for Muscle Assessment in Sarcopenia: 2020 SARCUS Update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef]
- Damanti, S.; Cristel, G.; Ramirez, G.A.; Bozzolo, E.P.; Da Prat, V.; Gobbi, A.; Centurioni, C.; Di Gaeta, E.; Del Prete, A.; Calabrò, M.G.; et al. Influence of Reduced Muscle Mass and Quality on Ventilator Weaning and Complications during Intensive Care Unit Stay in COVID-19 Patients. Clin. Nutr. 2022, 41, 2965–2972. [Google Scholar] [CrossRef]
- Damanti, S.; Cilla, M.; Tuscano, B.; Pomaranzi, C.; Tiraferri, V.; Papaioannu, R.; Ponta, G.; DE Lorenzo, R.; Chiabrando, F.; Vitali, G.; et al. Muscle Quality Assessment in COVID-19 Survivors: Agreement between Echointensity and Stiffness. Panminerva Med. 2024. online ahead of print. [Google Scholar] [CrossRef]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It Is Not Just Muscle Mass: A Review of Muscle Quality, Composition and Metabolism during Ageing as Determinants of Muscle Function and Mobility in Later Life. Longev. Healthspan 2014, 3, 9. [Google Scholar] [CrossRef]
- Mahdy, M.A.A. Skeletal Muscle Fibrosis: An Overview. Cell Tissue Res. 2019, 375, 575–588. [Google Scholar] [CrossRef]
- Walsh, C.J.; Batt, J.; Herridge, M.S.; Mathur, S.; Bader, G.D.; Hu, P.; Dos Santos, C.C. Transcriptomic Analysis Reveals Abnormal Muscle Repair and Remodeling in Survivors of Critical Illness with Sustained Weakness. Sci. Rep. 2016, 6, 29334. [Google Scholar] [CrossRef]
- Sipilä, S.; Suominen, H. Muscle Ultrasonography and Computed Tomography in Elderly Trained and Untrained Women. Muscle Nerve 1993, 16, 294–300. [Google Scholar] [CrossRef]
- Ismail, C.; Zabal, J.; Hernandez, H.J.; Woletz, P.; Manning, H.; Teixeira, C.; DiPietro, L.; Blackman, M.R.; Harris-Love, M.O. Diagnostic Ultrasound Estimates of Muscle Mass and Muscle Quality Discriminate between Women with and without Sarcopenia. Front. Physiol. 2015, 6, 302. [Google Scholar] [CrossRef]
- Phan, A.; Lee, J.; Gao, J. Ultrasound Shear Wave Elastography in Assessment of Skeletal Muscle Stiffness in Senior Volunteers. Clin. Imaging 2019, 58, 22–26. [Google Scholar] [CrossRef]
- de Andrade-Junior, M.C.; de Salles, I.C.D.; de Brito, C.M.M.; Pastore-Junior, L.; Righetti, R.F.; Yamaguti, W.P. Skeletal Muscle Wasting and Function Impairment in Intensive Care Patients with Severe COVID-19. Front. Physiol. 2021, 12, 640973. [Google Scholar] [CrossRef] [PubMed]
- Damanti, S.; Cilla, M.; Tuscano, B.; De Lorenzo, R.; Manganaro, G.; Merolla, A.; Pacioni, G.; Pomaranzi, C.; Tiraferri, V.; Martinenghi, S.; et al. Evaluation of Muscle Mass and Stiffness with Limb Ultrasound in COVID-19 Survivors. Front. Endocrinol. 2022, 13, 801133. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Kritchevsky, S.B.; Newman, A.B.; Simonsick, E.M.; Harris, T.B.; Penninx, B.W.; Brach, J.S.; Tylavsky, F.A.; Satterfield, S.; Bauer, D.C.; et al. Added Value of Physical Performance Measures in Predicting Adverse Health-Related Events: Results from the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2009, 57, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chan, M.C.; Yu, Y.; Bei, Y.; Chen, P.; Zhou, Q.; Cheng, L.; Chen, L.; Ziegler, O.; Rowe, G.C.; et al. MiR-29b Contributes to Multiple Types of Muscle Atrophy. Nat. Commun. 2017, 8, 15201. [Google Scholar] [CrossRef]
- Oost, L.J.; Kustermann, M.; Armani, A.; Blaauw, B.; Romanello, V. Fibroblast Growth Factor 21 Controls Mitophagy and Muscle Mass. J. Cachexia Sarcopenia Muscle 2019, 10, 630–642. [Google Scholar] [CrossRef]
- Kim, H.; Song, W. Resistance Training Increases Fibroblast Growth Factor-21 and Irisin Levels in the Skeletal Muscle of Zucker Diabetic Fatty Rats. J. Exerc. Nutrition Biochem. 2017, 21, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Soltany, A.; Visavadiya, N.P.; Burtscher, M.; Millet, G.P.; Khoramipour, K.; Khamoui, A.V. Mitochondrial Stress and Mitokines in Aging. Aging Cell 2023, 22, e13770. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune-Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Cevenini, E.; Monti, D.; Franceschi, C. Inflamm-Ageing. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 14–20. [Google Scholar] [CrossRef]
- Witteveen, E.; Wieske, L.; Verhamme, C.; Schultz, M.J.; Van Schaik, I.N.; Horn, J. Muscle and Nerve Inflammation in Intensive Care Unit-Acquired Weakness: A Systematic Translational Review. J. Neurol. Sci. 2014, 345, 15–25. [Google Scholar] [CrossRef]
- De Letter, M.A.C.J.; Van Doorn, P.A.; Savelkoul, H.F.J.; Laman, J.D.; Schmitz, P.I.M.; Op De Coul, A.A.W.; Visser, L.H.; Kros, J.M.; Teepen, J.L.J.M.; Van Der Meché, F.G.A. Critical Illness Polyneuropathy and Myopathy (CIPNM): Evidence for Local Immune Activation by Cytokine-Expression in the Muscle Tissue. J. Neuroimmunol. 2000, 106, 206–213. [Google Scholar] [CrossRef]
- Piotrowicz, K.; Gąsowski, J.; Michel, J.P.; Veronese, N. Post-COVID-19 Acute Sarcopenia: Physiopathology and Management. Aging Clin. Exp. Res. 2021, 33, 2887–2898. [Google Scholar] [CrossRef]
- Sapey, E.; Greenwood, H.; Walton, G.; Mann, E.; Love, A.; Aaronson, N.; Insall, R.H.; Stockley, R.A.; Lord, J.M. Phosphoinositide 3-Kinase Inhibition Restores Neutrophil Accuracy in the Elderly: Toward Targeted Treatments for Immunosenescence. Blood 2014, 123, 239–248. [Google Scholar] [CrossRef]
- Dupont-Versteegden, E.E. Apoptosis in Muscle Atrophy: Relevance to Sarcopenia. Exp. Gerontol. 2005, 40, 473–481. [Google Scholar] [CrossRef]
- Thoma, A.; Akter-Miah, T.; Reade, R.L.; Lightfoot, A.P. Targeting Reactive Oxygen Species (ROS) to Combat the Age-Related Loss of Muscle Mass and Function. Biogerontology 2020, 21, 475–484. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial Dysfunction and Sarcopenia of Aging: From Signaling Pathways to Clinical Trials. Int. J. Biochem. Cell Biol. 2013, 45, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Alway, S.E.; Mohamed, J.S.; Myers, M.J. Mitochondria Initiate and Regulate Sarcopenia. Exerc. Sport Sci. Rev. 2017, 45, 58–69. [Google Scholar] [CrossRef]
- Boengler, K.; Kosiol, M.; Mayr, M.; Schulz, R.; Rohrbach, S. Mitochondria and Ageing: Role in Heart, Skeletal Muscle and Adipose Tissue. J. Cachexia Sarcopenia Muscle 2017, 8, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Candela, M.; Turroni, S.; Garagnani, P.; Franceschi, C.; Brigidi, P. Ageing and Gut Microbes: Perspectives for Health Maintenance and Longevity. Pharmacol. Res. 2013, 69, 11–20. [Google Scholar] [CrossRef]
- Min, Y.W.; Rhee, P.L. The Role of Microbiota on the Gut Immunology. Clin. Ther. 2015, 37, 968–975. [Google Scholar] [CrossRef]
- Cunha, L.L.; Perazzio, S.F.; Azzi, J.; Cravedi, P.; Riella, L.V. Remodeling of the Immune Response with Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response. Front. Immunol. 2020, 11, 1748. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments. Nutrients 2016, 8, 69. [Google Scholar] [CrossRef]
- Morley, J.E. Anorexia of Aging: A True Geriatric Syndrome. J. Nutr. Health Aging 2012, 16, 422–425. [Google Scholar] [CrossRef]
- Azzolino, D.; Passarelli, P.C.; De Angelis, P.; Piccirillo, G.B.; D’addona, A.; Cesari, M. Poor Oral Health as a Determinant of Malnutrition and Sarcopenia. Nutrients 2019, 11, 2898. [Google Scholar] [CrossRef]
- Volpi, E.; Mittendorfer, B.; Rasmussen, B.B.; Wolfe, R.R. The Response of Muscle Protein Anabolism to Combined Hyperaminoacidemia and Glucose-Induced Hyperinsulinemia Is Impaired in the Elderly. J. Clin. Endocrinol. Metab. 2000, 85, 4481–4490. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.B.; Fujita, S.; Wolfe, R.R.; Mittendorfer, B.; Roy, M.; Rowe, V.L.; Volpi, E. Insulin Resistance of Muscle Protein Metabolism in Aging. FASEB J. 2006, 20, 768–769. [Google Scholar] [CrossRef] [PubMed]
- Guillet, C.; Prod’homme, M.; Balage, M.; Gachon, P.; Giraudet, C.; Morin, L.; Grizard, J.; Boirie, Y. Impaired Anabolic Response of Muscle Protein Synthesis Is Associated with S6K1 Dysregulation in Elderly Humans. FASEB J. 2004, 18, 1586–1587. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, D.; Smith, K.; Babraj, J.; Leese, G.; Waddell, T.; Atherton, P.; Wackerhage, H.; Taylor, P.M.; Rennie, M.J. Anabolic Signaling Deficits Underlie Amino Acid Resistance of Wasting, Aging Muscle. FASEB J. 2005, 19, 1–22. [Google Scholar] [CrossRef]
- Damanti, S.; Azzolino, D.; Roncaglione, C.; Arosio, B.; Rossi, P.; Cesari, M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients 2019, 11, 1991. [Google Scholar] [CrossRef]
- Banks, N.F.; Rogers, E.M.; Church, D.D.; Ferrando, A.A.; Jenkins, N.D.M. The Contributory Role of Vascular Health in Age-related Anabolic Resistance. J. Cachexia Sarcopenia Muscle 2022, 13, 114–127. [Google Scholar] [CrossRef]
- Drummond, M.J.; Dickinson, J.M.; Fry, C.S.; Walker, D.K.; Gundermann, D.M.; Reidy, P.T.; Timmerman, K.L.; Markofski, M.M.; Paddon-Jones, D.; Rasmussen, B.B.; et al. Bed Rest Impairs Skeletal Muscle Amino Acid Transporter Expression, MTORC1 Signaling, and Protein Synthesis in Response to Essential Amino Acids in Older Adults. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1113–E1122. [Google Scholar] [CrossRef]
- Biolo, G.; Ciocchi, B.; Lebenstedt, M.; Heer, M.; Guarnieri, G. Sensitivity of Whole Body Protein Synthesis to Amino Acid Administration during Short-Term Bed Rest. J. Gravit. Physiol. 2002, 9, 197–198. [Google Scholar]
- Biolo, G.; Ciocchi, B.; Lebenstedt, M.; Barazzoni, R.; Zanetti, M.; Platen, P.; Heer, M.; Guarnieri, G. Short-Term Bed Rest Impairs Amino Acid-Induced Protein Anabolism in Humans. J. Physiol. 2004, 558, 381–388. [Google Scholar] [CrossRef]
- Hanna, J.S. Sarcopenia and Critical Illness: A Deadly Combination in the Elderly. J. Parenter. Enter. Nutr. 2015, 39, 273–281. [Google Scholar] [CrossRef]
- Yiallouris, A.; Tsioutis, C.; Agapidaki, E.; Zafeiri, M.; Agouridis, A.P.; Ntourakis, D.; Johnson, E.O. Adrenal Aging and Its Implications on Stress Responsiveness in Humans. Front. Endocrinol. 2019, 10, 54. [Google Scholar] [CrossRef]
- Peeters, G.M.E.E.; Van Schoor, N.M.; Van Rossum, E.F.C.; Visser, M.; Lips, P. The Relationship between Cortisol, Muscle Mass and Muscle Strength in Older Persons and the Role of Genetic Variations in the Glucocorticoid Receptor. Clin. Endocrinol. 2008, 69, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.C.; Upton, J.; Carroll, D.; Arora Duggal, N.; Lord, J.M. New-Onset Depression Following Hip Fracture Is Associated with Increased Length of Stay in Hospital and Rehabilitation Centers. SAGE Open 2015, 5, 2158244015583690. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H.; Ali, C.; Kunugi, A.M. Physical Frailty/Sarcopenia as a Key Predisposing Factor to Coronavirus Disease 2019 (COVID-19) and Its Complications in Older Adults. BioMed 2021, 1, 11–40. [Google Scholar] [CrossRef]
- Martinez-Ferran, M.; de la Guía-Galipienso, F.; Sanchis-Gomar, F.; Pareja-Galeano, H. Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits. Nutrients 2020, 12, 1549. [Google Scholar] [CrossRef]
- Olsen, R.H.; Krogh-Madsen, R.; Thomsen, C.; Booth, F.W.; Pedersen, B.K. Metabolic Responses to Reduced Daily Steps in Healthy Nonexercising Men. JAMA 2008, 299, 1261–1263. [Google Scholar] [CrossRef]
- Krogh-Madsen, R.; Thyfault, J.P.; Broholm, C.; Mortensen, O.H.; Olsen, R.H.; Mounier, R.; Plomgaard, P.; Van Hall, G.; Booth, F.W.; Pedersen, B.K.; et al. A 2-Wk Reduction of Ambulatory Activity Attenuates Peripheral Insulin Sensitivity. J. Appl. Physiol. 2010, 108, 1034–1040. [Google Scholar] [CrossRef]
- McGlory, C.; Von Allmen, M.T.; Stokes, T.; Morton, R.W.; Hector, A.J.; Lago, B.A.; Raphenya, A.R.; Smith, B.K.; McArthur, A.G.; Steinberg, G.R.; et al. Failed Recovery of Glycemic Control and Myofibrillar Protein Synthesis With 2 Wk of Physical Inactivity in Overweight, Prediabetic Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1070–1077. [Google Scholar] [CrossRef]
- Ingemann-Hansen, T.; Halkjaer-Kristensen, J. Computerized Tomographic Determination of Human Thigh Components. The Effects of Immobilization in Plaster and Subsequent Physical Training. Scand. J. Rehabil. Med. 1980, 12, 27–31. [Google Scholar]
- Breen, L.; Stokes, K.A.; Churchward-Venne, T.A.; Moore, D.R.; Baker, S.K.; Smith, K.; Atherton, P.J.; Phillips, S.M. Two Weeks of Reduced Activity Decreases Leg Lean Mass and Induces “Anabolic Resistance” of Myofibrillar Protein Synthesis in Healthy Elderly. J. Clin. Endocrinol. Metab. 2013, 98, 2604–2612. [Google Scholar] [CrossRef]
- Welch, C.; Hassan-Smith, Z.K.; Greig, C.A.; Lord, J.M.; Jackson, T.A. Acute Sarcopenia Secondary to Hospitalisation—An Emerging Condition Affecting Older Adults. Aging Dis. 2018, 9, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.T.; van Loon, L.J. Nutritional Strategies to Attenuate Muscle Disuse Atrophy. Nutr. Rev. 2013, 71, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K.; Philips, P.; Egger, M.E.; Scoggins, C.R.; Martin, R.C. Developing Sarcopenia during Neoadjuvant Therapy Is Associated with Worse Survival in Esophageal Adenocarcinoma Patients. Surgery 2024, 175, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Nilwik, R.; Snijders, T.; Leenders, M.; Groen, B.B.L.; van Kranenburg, J.; Verdijk, L.B.; Van Loon, L.J.C. The Decline in Skeletal Muscle Mass with Aging Is Mainly Attributed to a Reduction in Type II Muscle Fiber Size. Exp. Gerontol. 2013, 48, 492–498. [Google Scholar] [CrossRef]
- Verdijk, L.B.; Snijders, T.; Drost, M.; Delhaas, T.; Kadi, F.; Van Loon, L.J.C. Satellite Cells in Human Skeletal Muscle; from Birth to Old Age. Age 2014, 36, 545–557. [Google Scholar] [CrossRef]
- Arentson-Lantz, E.J.; English, K.L.; Paddon-Jones, D.; Fry, C.S. Fourteen Days of Bed Rest Induces a Decline in Satellite Cell Content and Robust Atrophy of Skeletal Muscle Fibers in Middle-Aged Adults. J. Appl. Physiol. 2016, 120, 965–975. [Google Scholar] [CrossRef]
- Gruther, W.; Benesch, T.; Zorn, C.; Paternostro-Sluga, T.; Quittan, M.; Fialka-Moser, V.; Spiss, C.; Kainberger, F.; Crevenna, R. Muscle Wasting in Intensive Care Patients: Ultrasound Observation of the M. Quadriceps Femoris Muscle Layer. J. Rehabil. Med. 2008, 40, 185–189. [Google Scholar] [CrossRef]
- Krishnamoorthy, Y.; Nagarajan, R.; Saya, G.K.; Menon, V. Prevalence of Psychological Morbidities among General Population, Healthcare Workers and COVID-19 Patients amidst the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Psychiatry Res. 2020, 293, 113382. [Google Scholar] [CrossRef]
- Morley, J.E. Editorial: COVID-19—The Long Road to Recovery. J. Nutr. Health Aging 2020, 24, 917–919. [Google Scholar] [CrossRef]
- Welch, C.; Greig, C.; Masud, T.; Wilson, D.; Jackson, T.A. COVID-19 and Acute Sarcopenia. Aging Dis. 2020, 11, 1345–1351. [Google Scholar] [CrossRef]
- Kirwan, R.; McCullough, D.; Butler, T.; Perez de Heredia, F.; Davies, I.G.; Stewart, C. Sarcopenia during COVID-19 Lockdown Restrictions: Long-Term Health Effects of Short-Term Muscle Loss. Geroscience 2020, 42, 1547–1578. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Anker, S.D.; Argilés, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus Definition of Sarcopenia, Cachexia and Pre-Cachexia: Joint Document Elaborated by Special Interest Groups (SIG) “Cachexia-Anorexia in Chronic Wasting Diseases” and “Nutrition in Geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Kruizenga, H.M.; Seidell, J.C.; de Vet, H.C.W.; Wierdsma, N.J.; van Bokhorst-de van der Schueren, M.A.E. Development and Validation of a Hospital Screening Tool for Malnutrition: The Short Nutritional Assessment Questionnaire (SNAQ). Clin. Nutr. 2005, 24, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Pilgrim, A.L.; Baylis, D.; Jameson, K.A.; Cooper, C.; Sayer, A.A.; Robinson, S.M.; Roberts, H.C. Measuring Appetite with the Simplified Nutritional Appetite Questionnaire Identifies Hospitalised Older People at Risk of Worse Health Outcomes. J. Nutr. Health Aging 2016, 20, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Keller, H.; Allard, J.; Vesnaver, E.; Laporte, M.; Gramlich, L.; Bernier, P.; Davidson, B.; Duerksen, D.; Jeejeebhoy, K.; Payette, H. Barriers to Food Intake in Acute Care Hospitals: A Report of the Canadian Malnutrition Task Force. J. Hum. Nutr. Diet. 2015, 28, 546–557. [Google Scholar] [CrossRef]
- Reijnierse, E.M.; Trappenburg, M.C.; Leter, M.J.; Blauw, G.J.; De Van Der Schueren, M.A.E.; Meskers, C.G.M.; Maier, A.B. The Association between Parameters of Malnutrition and Diagnostic Measures of Sarcopenia in Geriatric Outpatients. PLoS ONE 2015, 10, e0135933. [Google Scholar] [CrossRef]
- Van Dronkelaar, C.; Tieland, M.; Aarden, J.J.; Reichardt, L.A.; Van Seben, R.; Van Der Schaaf, M.; Van Der Esch, M.; Engelbert, R.H.H.; Twisk, J.W.R.; Bosch, J.A.; et al. Decreased Appetite Is Associated with Sarcopenia-Related Outcomes in Acute Hospitalized Older Adults. Nutrients 2019, 11, 932. [Google Scholar] [CrossRef]
- Cleasby, M.E.; Jamieson, P.M.; Atherton, P.J. Insulin Resistance and Sarcopenia: Mechanistic Links between Common Co-Morbidities. J. Endocrinol. 2016, 229, R67–R81. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Scott, D.; Sanders, K.M.; Aitken, D.; Hayes, A.; Ebeling, P.R.; Jones, G. Sarcopenic Obesity and Dynapenic Obesity: 5-Year Associations with Falls Risk in Middle-Aged and Older Adults. Obesity 2014, 22, 1568–1574. [Google Scholar] [CrossRef]
- Scott, D.; Chandrasekara, S.D.; Laslett, L.L.; Cicuttini, F.; Ebeling, P.R.; Jones, G. Associations of Sarcopenic Obesity and Dynapenic Obesity with Bone Mineral Density and Incident Fractures Over 5–10 Years in Community-Dwelling Older Adults. Calcif. Tissue Int. 2016, 99, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, H.-J.; Yoon, S.; Shin, J.; Park, K.-C.; Lee, S.; Lee, S. Association Between Overweight Sarcopenic Population and Acute Vertebral Osteoporotic Compression Fractures in Females: Retrospective, Cross-Sectional Study. Front. Med. 2021, 8, 790135. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.E.; Mathur, R.; Schmidt, A.F.; Bhaskaran, K.; Fatemifar, G.; Eastwood, S.V.; Finan, C.; Denaxas, S.; Smeeth, L.; Chaturvedi, N. Associations Between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank. J. Am. Heart Assoc. 2019, 8, e011638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, X.; Dou, Q.; Liu, C.; Zhang, W.; Yang, Y.; Deng, R.; Cheng, A.S.K. Association of Sarcopenic Obesity with the Risk of All-Cause Mortality among Adults over a Broad Range of Different Settings: A Updated Meta-Analysis. BMC Geriatr. 2019, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic Obesity Predicts Instrumental Activities of Daily Living Disability in the Elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef]
- Welch, C.; Greig, C.; Majid, Z.; Masud, T.; Moorey, H.; Pinkney, T.; Jackson, T. Induced Frailty and Acute Sarcopenia Are Overlapping Consequences of Hospitalisation in Older Adults. J. Frailty Sarcopenia Falls 2022, 07, 103–116. [Google Scholar] [CrossRef]
- Hartley, P.; Dewitt, A.L.; Forsyth, F.; Romero-Ortuno, R.; Deaton, C. Predictors of Physical Activity in Older Adults Early in an Emergency Hospital Admission: A Prospective Cohort Study. BMC Geriatr. 2020, 20, 177. [Google Scholar] [CrossRef]
- Parry, S.M.; El-Ansary, D.; Cartwright, M.S.; Sarwal, A.; Berney, S.; Koopman, R.; Annoni, R.; Puthucheary, Z.; Gordon, I.R.; Morris, P.E.; et al. Ultrasonography in the Intensive Care Setting Can Be Used to Detect Changes in the Quality and Quantity of Muscle and Is Related to Muscle Strength and Function. J. Crit. Care 2015, 30, 1151.e9–1151.e14. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Padhke, R.; Dew, T.; Sidhu, P.S.; et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef]
- De Spiegeleer, A.; Kahya, H.; Sanchez-Rodriguez, D.; Piotrowicz, K.; Surquin, M.; Marco, E.; Detremerie, C.; Hussein, D.; Hope, S.; Dallmeier, D.; et al. Acute Sarcopenia Changes Following Hospitalization: Influence of Pre-Admission Care Dependency Level. Age Ageing 2021, 50, 2140–2146. [Google Scholar] [CrossRef]
- Dodds, R.M.; Granic, A.; Robinson, S.M.; Sayer, A.A. Sarcopenia, Long-Term Conditions, and Multimorbidity: Findings from UK Biobank Participants. J. Cachexia Sarcopenia Muscle 2020, 11, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Dam, T.T.L.; Barber, V.; Judge, J.O.; Studenski, S.A.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; et al. Strength and Function Response to Clinical Interventions of Older Women Categorized by Weakness and Low Lean Mass Using Classifications from the Foundation for the National Institute of Health Sarcopenia Project. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.; Guerra, R.S.; Fonseca, I.; Pichel, F.; Amaral, T.F. Sarcopenia and Length of Hospital Stay. Eur. J. Clin. Nutr. 2016, 70, 595–601. [Google Scholar] [CrossRef]
- Dovjak, P. Sarkopenie Im Falle Einer Akuten Oder Chronischen Erkrankung: Eine Miniübersicht. Z. Gerontol. Geriatr. 2016, 49, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Gaddey, H.L.; Holder, K.K. Unintentional Weight Loss in Older Adults. Am. Fam. Physician 2021, 104, 34–40. [Google Scholar] [CrossRef]
- Trappe, T.A.; Carroll, C.C.; Dickinson, J.M.; LeMoine, J.K.; Haus, J.M.; Sullivan, B.E.; Lee, J.D.; Jemiolo, B.; Weinheimer, E.M.; Hollon, C.J. Influence of Acetaminophen and Ibuprofen on Skeletal Muscle Adaptations to Resistance Exercise in Older Adults. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2011, 300, R655–R662. [Google Scholar] [CrossRef]
- Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory Cytokines and Cell Response in Surgery. Surgery 2000, 127, 117–126. [Google Scholar] [CrossRef]
- Rosenfeldt, F.; Wilson, M.; Lee, G.; Kure, C.; Ou, R.; Braun, L.; de Haan, J. Oxidative Stress in Surgery in an Ageing Population: Pathophysiology and Therapy. Exp. Gerontol. 2013, 48, 45–54. [Google Scholar] [CrossRef]
- Karachalios, T.; Paridis, D.; Tekos, F.; Skaperda, Z.; Veskoukis, A.S.; Kouretas, D. Patients Undergoing Surgery for Hip Fractures Suffer from Severe Oxidative Stress as Compared to Patients with Hip Osteoarthritis Undergoing Total Hip Arthroplasty. Oxid. Med. Cell Longev. 2021, 2021, 5542634. [Google Scholar] [CrossRef]
- Paul, R.; Lee, J.; Donaldson, A.V.; Connolly, M.; Sharif, M.; Natanek, S.A.; Rosendahl, U.; Polkey, M.I.; Griffiths, M.; Kemp, P.R. MiR-422a Suppresses SMAD4 Protein Expression and Promotes Resistance to Muscle Loss. J. Cachexia Sarcopenia Muscle 2018, 9, 119–128. [Google Scholar] [CrossRef]
- Fawcett, W.J.; Thomas, M. Pre-Operative Fasting in Adults and Children: Clinical Practice and Guidelines. Anaesthesia 2019, 74, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Egger, M.; Sylvester, P.A.; Thomas, S. Early Enteral Feeding versus “Nil by Mouth” after Gastrointestinal Surgery: Systematic Review and Meta-Analysis of Controlled Trials. BMJ 2001, 323, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.R.; Eastlack, M.; Hicks, G.E.; Alley, D.E.; Shardell, M.D.; Orwig, D.L.; Goodpaster, B.H.; Chomentowski, P.J.; Hawkes, W.G.; Hochberg, M.C.; et al. Asymmetry in CT Scan Measures of Thigh Muscle 2 Months After Hip Fracture: The Baltimore Hip Studies. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1276–1280. [Google Scholar] [CrossRef] [PubMed]
- Mikkola, T.; Sipilä, S.; Portegijs, E.; Kallinen, M.; Alén, M.; Kiviranta, I.; Pekkonen, M.; Heinonen, A. Impaired Geometric Properties of Tibia in Older Women with Hip Fracture History. Osteoporos. Int. 2007, 18, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Linsen, L.; Verboven, K.; Hendrikx, M.; Rummens, J.L.; van Erum, M.; Eijnde, B.O.; Dendale, P. Magnitude of Muscle Wasting Early after On-Pump Coronary Artery Bypass Graft Surgery and Exploration of Aetiology. Exp. Physiol. 2015, 100, 818–828. [Google Scholar] [CrossRef]
- Van Ancum, J.M.; Scheerman, K.; Jonkman, N.H.; Smeenk, H.E.; Kruizinga, R.C.; Meskers, C.G.M.; Maier, A.B. Change in Muscle Strength and Muscle Mass in Older Hospitalized Patients: A Systematic Review and Meta-Analysis. Exp. Gerontol. 2017, 92, 34–41. [Google Scholar] [CrossRef]
- Scherbakov, N.; Sandek, A.; Doehner, W. Stroke-Related Sarcopenia: Specific Characteristics. J. Am. Med. Dir. Assoc. 2015, 16, 272–276. [Google Scholar] [CrossRef]
- Scherbakov, N.; Von Haehling, S.; Anker, S.D.; Dirnagl, U.; Doehner, W. Stroke Induced Sarcopenia: Muscle Wasting and Disability after Stroke. Int. J. Cardiol. 2013, 170, 89–94. [Google Scholar] [CrossRef]
- Arasaki, K.; Igarashi, O.; Ichikawa, Y.; Machida, T.; Shirozu, I.; Hyodo, A.; Ushijima, R. Reduction in the Motor Unit Number Estimate (MUNE) after Cerebral Infarction. J. Neurol. Sci. 2006, 250, 27–32. [Google Scholar] [CrossRef]
- Bernhardt, J.; Dewey, H.; Thrift, A.; Donnan, G. Inactive and Alone: Physical Activity within the First 14 Days of Acute Stroke Unit Care. Stroke 2004, 35, 1005–1009. [Google Scholar] [CrossRef]
- Lee, H.; Lee, I.H.; Heo, J.N.; Baik, M.; Park, H.; Lee, H.S.; Nam, H.S.; Kim, Y.D. Impact of Sarcopenia on Functional Outcomes Among Patients with Mild Acute Ischemic Stroke and Transient Ischemic Attack: A Retrospective Study. Front. Neurol. 2022, 13, 841945. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Yamaga, M.; Koga, H. Sarcopenia Is Associated with Worse Recovery of Physical Function and Dysphagia and a Lower Rate of Home Discharge in Japanese Hospitalized Adults Undergoing Convalescent Rehabilitation. Nutrition 2019, 61, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yoshimura, Y.; Abe, T. Phase Angle as an Indicator of Baseline Nutritional Status and Sarcopenia in Acute Stroke. J. Stroke Cerebrovasc. Dis. 2022, 31, 106220. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, M.; Kubo, H.; Kanai, M.; Yamamoto, M.; Okakita, M.; Suzuki, H.; Shimada, S.; Mase, K. Reliability and Validity of Measuring Temporal Muscle Thickness as the Evaluation of Sarcopenia Risk and the Relationship with Functional Outcome in Older Patients with Acute Stroke. Clin. Neurol. Neurosurg. 2021, 201, 106444. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Yoshimua, Y.; Imai, R.; Sato, Y. A Combined Assessment Method of Phase Angle and Skeletal Muscle Index to Better Predict Functional Recovery after Acute Stroke. J. Nutr. Health Aging 2022, 26, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Bellelli, G.; Zambon, A.; Volpato, S.; Abete, P.; Bianchi, L.; Bo, M.; Cherubini, A.; Corica, F.; Di Bari, M.; Maggio, M.; et al. The Association between Delirium and Sarcopenia in Older Adult Patients Admitted to Acute Geriatrics Units: Results from the GLISTEN Multicenter Observational Study. Clin. Nutr. 2018, 37, 1498–1504. [Google Scholar] [CrossRef]
- Inoue, T.; Ueshima, J.; Kawase, F.; Kobayashi, H.; Nagano, A.; Murotani, K.; Saino, Y.; Maeda, K. Trajectories of the Prevalence of Sarcopenia in the Pre- and Post-Stroke Periods: A Systematic Review. Nutrients 2023, 15, 113. [Google Scholar] [CrossRef]
- Morley, J.E.; Kalantar-Zadeh, K.; Anker, S.D. COVID-19: A Major Cause of Cachexia and Sarcopenia? J. Cachexia Sarcopenia Muscle 2020, 11, 863–865. [Google Scholar] [CrossRef]
- Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.C.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune Response to SARS-CoV-2 and Mechanisms of Immunopathological Changes in COVID-19. Allergy 2020, 75, 1564–1581. [Google Scholar] [CrossRef]
- Saleh, J.; Peyssonnaux, C.; Singh, K.K.; Edeas, M. Mitochondria and Microbiota Dysfunction in COVID-19 Pathogenesis. Mitochondrion 2020, 54, 1–7. [Google Scholar] [CrossRef]
- Moreira, A.C.; Mesquita, G.; Gomes, M.S. Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions. Microorganisms 2020, 8, 589. [Google Scholar] [CrossRef]
- Appelman, B.; Charlton, B.T.; Goulding, R.P.; Kerkhoff, T.J.; Breedveld, E.A.; Noort, W.; Offringa, C.; Bloemers, F.W.; van Weeghel, M.; Schomakers, B.V.; et al. Muscle Abnormalities Worsen after Post-Exertional Malaise in Long COVID. Nat. Commun. 2024, 15, 17. [Google Scholar] [CrossRef]
- Agyeman, A.A.; Chin, K.L.; Landersdorfer, C.B.; Liew, D.; Ofori-Asenso, R. Smell and Taste Dysfunction in Patients With COVID-19: A Systematic Review and Meta-Analysis. Mayo Clin. Proc. 2020, 95, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.Y.; Wong, A.; Zhu, D.; Fastenberg, J.H.; Tham, T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-Analysis. Otolaryngol. Head. Neck Surg. 2020, 163, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; Salzano, G.; Fois, A.G.; Piombino, P.; De Riu, G. Potential Pathogenesis of Ageusia and Anosmia in COVID-19 Patients. Int. Forum Allergy Rhinol. 2020, 10, 1103–1104. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M. COVID’s Toll on Smell and Taste: What Scientists Do and Don’t Know. Nature 2021, 589, 342–343. [Google Scholar] [CrossRef]
- Mao, R.; Qiu, Y.; He, J.S.; Tan, J.Y.; Li, X.H.; Liang, J.; Shen, J.; Zhu, L.R.; Chen, Y.; Iacucci, M.; et al. Manifestations and Prognosis of Gastrointestinal and Liver Involvement in Patients with COVID-19: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 667–678. [Google Scholar] [CrossRef]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Cinelli, G.; Bigioni, G.; Soldati, L.; Attinà, A.; Bianco, F.F.; Caparello, G.; Camodeca, V.; Carrano, E.; et al. Psychological Aspects and Eating Habits during COVID-19 Home Confinement: Results of EHLC-COVID-19 Italian Online Survey. Nutrients 2020, 12, 2152. [Google Scholar] [CrossRef]
- López-Moreno, M.; López, M.T.I.; Miguel, M.; Garcés-Rimón, M. Physical and Psychological Effects Related to Food Habits and Lifestyle Changes Derived from Covid-19 Home Confinement in the Spanish Population. Nutrients 2020, 12, 3445. [Google Scholar] [CrossRef] [PubMed]
- Martinchek, M.; Beiting, K.J.; Walker, J.; Graupner, J.; Huisingh-Scheetz, M.; Thompson, K.; Gleason, L.J.; Levine, S. Weight Loss in COVID-19-Positive Nursing Home Residents. J. Am. Med. Dir. Assoc. 2021, 22, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; De Lorenzo, R.; D’Amico, M.; Sofia, V.; Roveri, L.; Mele, R.; Saibene, A.; Rovere-Querini, P.; Conte, C. COVID-19 Is Associated with Clinically Significant Weight Loss and Risk of Malnutrition, Independent of Hospitalisation: A Post-Hoc Analysis of a Prospective Cohort Study. Clin. Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.P.; Thompson Bastin, M.L.; Montgomery-Yates, A.A.; Pastva, A.M.; Dupont-Versteegden, E.E.; Parry, S.M.; Morris, P.E. Acute Skeletal Muscle Wasting and Dysfunction Predict Physical Disability at Hospital Discharge in Patients with Critical Illness. Crit. Care 2020, 24, 637. [Google Scholar] [CrossRef] [PubMed]
- WAKABAYASHI, H. Presbyphagia and Sarcopenic Dysphagia: Association between Aging, Sarcopenia, and Deglutition Disorders. J. Frailty Aging 2014, 3, 97–103. [Google Scholar] [CrossRef]
- Langen, R.C.J.; Gosker, H.R.; Remels, A.H.V.; Schols, A.M.W.J. Triggers and Mechanisms of Skeletal Muscle Wasting in Chronic Obstructive Pulmonary Disease. Int. J. Biochem. Cell Biol. 2013, 45, 2245–2256. [Google Scholar] [CrossRef]
- Ferrandi, P.J.; Alway, S.E.; Mohamed, J.S. The Interaction between SARS-CoV-2 and ACE2 May Have Consequences for Skeletal Muscle Viral Susceptibility and Myopathies. J. Appl. Physiol. 2020, 129, 864–867. [Google Scholar] [CrossRef]
- Dudgeon, D.; Baracos, V.E. Physiological and Functional Failure in Chronic Obstructive Pulmonary Disease, Congestive Heart Failure and Cancer: A Debilitating Intersection of Sarcopenia, Cachexia and Breathlessness. Curr. Opin. Support. Palliat. Care 2016, 10, 236–241. [Google Scholar] [CrossRef]
- Schakman, O.; Kalista, S.; Barbé, C.; Loumaye, A.; Thissen, J.P. Glucocorticoid-Induced Skeletal Muscle Atrophy. Int. J. Biochem. Cell Biol. 2013, 45, 2163–2172. [Google Scholar] [CrossRef]
- Castillero, E.; Alamdari, N.; Aversa, Z.; Gurav, A.; Hasselgren, P.O. PPARβ/δ Regulates Glucocorticoid- and Sepsis-Induced FOXO1 Activation and Muscle Wasting. PLoS ONE 2013, 8, e59726. [Google Scholar] [CrossRef]
- Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; et al. Anxiety and Depression in COVID-19 Survivors: Role of Inflammatory and Clinical Predictors. Brain Behav. Immun. 2020, 89, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Janiri, D.; Kotzalidis, G.D.; Giuseppin, G.; Molinaro, M.; Modica, M.; Montanari, S.; Terenzi, B.; Carfì, A.; Landi, F.; Sani, G.; et al. Psychological Distress After Covid-19 Recovery: Reciprocal Effects with Temperament and Emotional Dysregulation. An Exploratory Study of Patients Over 60 Years of Age Assessed in a Post-Acute Care Service. Front. Psychiatry 2020, 11, 590135. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int. J. Environ. Res. Public Health 2020, 17, 4065. [Google Scholar] [CrossRef] [PubMed]
- Moctezuma-Velázquez, P. The Importance of Muscle Mass Analysis in Acute Diseases. Chest 2023, 164, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Mcauley, H.J.C.; Harvey-Dunstan, T.C.; Craner, M.; Richardson, M.; Singh, S.J.; Steiner, M.C.; Greening, N.J. Longitudinal Changes to Quadriceps Thickness Demonstrate Acute Sarcopenia Following Admission to Hospital for an Exacerbation of Chronic Respiratory Disease. Thorax 2021, 76, 726–728. [Google Scholar] [CrossRef]
- Solverson, K.J.; Grant, C.; Doig, C.J. Assessment and Predictors of Physical Functioning Post-Hospital Discharge in Survivors of Critical Illness. Ann. Intensive Care 2016, 6, 92. [Google Scholar] [CrossRef]
- Paneroni, M.; Simonelli, C.; Saleri, M.; Bertacchini, L.; Venturelli, M.; Troosters, T.; Ambrosino, N.; Vitacca, M. Muscle Strength and Physical Performance in Patients Without Previous Disabilities Recovering From COVID-19 Pneumonia. Am. J. Phys. Med. Rehabil. 2021, 100, 105–109. [Google Scholar] [CrossRef]
- Attaway, A.; Welch, N.; Dasarathy, D.; Amaya-Hughley, J.; Bellar, A.; Biehl, M.; Dugar, S.; Engelen, M.P.K.J.; Zein, J.; Dasarathy, S. Acute Skeletal Muscle Loss in SARS-CoV-2 Infection Contributes to Poor Clinical Outcomes in COVID-19 Patients. J. Cachexia Sarcopenia Muscle 2022, 13, 2436–2446. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Guorgui, J.; Coy, H.; Ito, T.; Lu, M.; DiNorcia, J.; Agopian, V.G.; Farmer, D.G.; Raman, S.S.; Busuttil, R.W.; et al. Perioperative Skeletal Muscle Fluctuations in High-Acuity Liver Transplantation. J. Surg. Res. 2022, 270, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Lussiez, A.; Sullivan, J.; Wang, S.; Englesbe, M. Implications of Sarcopenia in Major Surgery. Nutr. Clin. Pract. 2015, 30, 175–179. [Google Scholar] [CrossRef]
- Buettner, S.; Wagner, D.; Kim, Y.; Margonis, G.A.; Makary, M.A.; Wilson, A.; Sasaki, K.; Amini, N.; Gani, F.; Pawlik, T.M. Inclusion of Sarcopenia Outperforms the Modified Frailty Index in Predicting 1-Year Mortality among 1,326 Patients Undergoing Gastrointestinal Surgery for a Malignant Indication. J. Am. Coll. Surg. 2016, 222, 397–407.e2. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.; Bendix, T.; Kehlet, H. Fatigue and Cardiorespiratory Function Following Abdominal Surgery. Br. J. Surg. 2005, 69, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, A.C.; Tonelli, A.C.; Orzechowski, R.; Corte, R.R.D.; Moriguchi, E.H.; de Mello, R.B. Bedside Ultrasound of Quadriceps to Predict Rehospitalization and Functional Decline in Hospitalized Elders. Front. Med. 2017, 4, 122. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Wang, H.J.; Ock, S.Y.; Xu, W.; Lee, J.D.; Lee, J.H.; Kim, H.J.; Kim, D.J.; Lee, K.W.; Han, S.J. Newly Developed Sarcopenia as a Prognostic Factor for Survival in Patients Who Underwent Liver Transplantation. PLoS ONE 2015, 10, e0143966. [Google Scholar] [CrossRef]
- Argillander, T.E.; Spek, D.; van der Zaag-Loonen, H.J.; van Raamt, A.F.; van Duijvendijk, P.; van Munster, B.C. Association between Postoperative Muscle Wasting and Survival in Older Patients Undergoing Surgery for Non-Metastatic Colorectal Cancer. J. Geriatr. Oncol. 2021, 12, 1052–1058. [Google Scholar] [CrossRef]
- Brown, J.C.; Caan, B.J.; Meyerhardt, J.A.; Weltzien, E.; Xiao, J.; Cespedes Feliciano, E.M.; Kroenke, C.H.; Castillo, A.; Kwan, M.L.; Prado, C.M. The Deterioration of Muscle Mass and Radiodensity Is Prognostic of Poor Survival in Stage I-III Colorectal Cancer: A Population-Based Cohort Study (C-SCANS). J. Cachexia Sarcopenia Muscle 2018, 9, 664–672. [Google Scholar] [CrossRef]
- Lindström, I.; Protto, S.; Khan, N.; Sillanpää, N.; Hernesniemi, J.; Oksala, N. Developing Sarcopenia Predicts Long-Term Mortality after Elective Endovascular Aortic Aneurysm Repair. J. Vasc. Surg. 2020, 71, 1169–1178.e5. [Google Scholar] [CrossRef]
- Morton, R.W.; Traylor, D.A.; Weijs, P.J.M.; Phillips, S.M. Defining Anabolic Resistance: Implications for Delivery of Clinical Care Nutrition. Curr. Opin. Crit. Care 2018, 24, 124–130. [Google Scholar] [CrossRef]
- Montero-Errasquín, B.; Cruz-Jentoft, A.J. Acute Sarcopenia. Gerontology 2023, 69, 519–525. [Google Scholar] [CrossRef]
- Greysen, S.R. Activating Hospitalized Older Patients to Confront the Epidemic of Low Mobility. JAMA Intern. Med. 2016, 176, 928–929. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Green, D.A.; Vaz, M.A.; Dirks, M.L. Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight. Front. Physiol. 2019, 10, 1031. [Google Scholar] [CrossRef] [PubMed]
- Deer, R.R.; Dickinson, J.M.; Baillargeon, J.; Fisher, S.R.; Raji, M.; Volpi, E. A Phase I Randomized Clinical Trial of Evidence-Based, Pragmatic Interventions to Improve Functional Recovery After Hospitalization in Geriatric Patients. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1628–1636. [Google Scholar] [CrossRef] [PubMed]
- Houborg, K.B.; Jensen, M.B.; Hessov, I.; Laurberg, S. Little Effect of Physical Training on Body Composition and Nutritional Intake Following Colorectal Surgery--a Randomised Placebo-Controlled Trial. Eur. J. Clin. Nutr. 2005, 59, 969–977. [Google Scholar] [CrossRef]
- Said, C.M.; Morris, M.E.; McGinley, J.L.; Szoeke, C.; Workman, B.; Liew, D.; Hill, K.D.; Woodward, M.; Wittwer, J.E.; Churilov, L.; et al. Additional Structured Physical Activity Does Not Improve Walking in Older People (>60 years) Undergoing Inpatient Rehabilitation: A Randomised Trial. J. Physiother. 2018, 64, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Wnuk, B.R.; Durmała, J.; Ziaja, K.; Kotyla, P.; Woźniewski, M.; Błaszczak, E. A Controlled Trial of the Efficacy of a Training Walking Program in Patients Recovering from Abdominal Aortic Aneurysm Surgery. Adv. Clin. Exp. Med. 2016, 25, 1241–1247. [Google Scholar] [CrossRef]
- Fiore, J.F.; Castelino, T.; Pecorelli, N.; Niculiseanu, P.; Balvardi, S.; Hershorn, O.; Liberman, S.; Charlebois, P.; Stein, B.; Carli, F.; et al. Ensuring Early Mobilization Within an Enhanced Recovery Program for Colorectal Surgery: A Randomized Controlled Trial. Ann. Surg. 2017, 266, 223–231. [Google Scholar] [CrossRef]
- Said, C.M.; Morris, M.E.; Woodward, M.; Churilov, L.; Bernhardt, J. Enhancing Physical Activity in Older Adults Receiving Hospital Based Rehabilitation: A Phase II Feasibility Study. BMC Geriatr. 2012, 12, 26. [Google Scholar] [CrossRef]
- Blanc-Bisson, C.; Dechamps, A.; Gouspillou, G.; Dehail, P.; Bourdel-Marchasson, I. A Randomized Controlled Trial on Early Physiotherapy Intervention versus Usual Care in Acute Care Unit for Elderly: Potential Benefits in Light of Dietary Intakes. J. Nutr. Health Aging 2008, 12, 395–399. [Google Scholar] [CrossRef]
- Henriksen, M.G.; Jensen, M.B.; Hansen, H.V.; Jespersen, T.W.; Hessov, I. Enforced Mobilization, Early Oral Feeding, and Balanced Analgesia Improve Convalescence after Colorectal Surgery. Nutrition 2002, 18, 147–152. [Google Scholar] [CrossRef]
- de Morton, N.A.; Keating, J.L.; Berlowitz, D.J.; Jackson, B.; Lim, W.K. Additional Exercise Does Not Change Hospital or Patient Outcomes in Older Medical Patients: A Controlled Clinical Trial. Aust. J. Physiother. 2007, 53, 105–111. [Google Scholar] [CrossRef]
- Raymond, M.J.M.; Jeffs, K.J.; Winter, A.; Soh, S.E.; Hunter, P.; Holland, A.E. The Effects of a High-Intensity Functional Exercise Group on Clinical Outcomes in Hospitalised Older Adults: An Assessor-Blinded, Randomised-Controlled Trial. Age Ageing 2017, 46, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Rahmann, A.E.; Brauer, S.G.; Nitz, J.C. A Specific Inpatient Aquatic Physiotherapy Program Improves Strength after Total Hip or Knee Replacement Surgery: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2009, 90, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Zinglersen, A.H.; Halsteen, M.B.; Kjaer, M.; Karlsen, A. Can Electrical Stimulation Enhance Effects of a Functional Training Program in Hospitalized Geriatric Patients? Exp. Gerontol. 2018, 106, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Sano, Y.; Iwata, A.; Wanaka, H.; Matsui, M.; Yamamoto, S.; Koyanagi, J.; Iwata, H. An Easy and Safe Training Method for Trunk Function Improves Mobility in Total Knee Arthroplasty Patients: A Quasi-Randomized Controlled Trial. PLoS ONE 2018, 13, e0204884. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sánchez, I.; Valenza, M.C.; Cabrera-Martos, I.; López-Torres, I.; Benítez-Feliponi, Á.; Conde-Valero, A. Effects of an Exercise Intervention in Frail Older Patients with Chronic Obstructive Pulmonary Disease Hospitalized Due to an Exacerbation: A Randomized Controlled Trial. COPD 2017, 14, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Mcgowan, T.; Ong, T.; Kumar, A.; Lunt, E.; Sahota, O. The Effect of Chair-Based Pedal Exercises for Older People Admitted to an Acute Hospital Compared to Standard Care: A Feasibility Study. Age Ageing 2018, 47, 483–486. [Google Scholar] [CrossRef]
- Giangregorio, L.M.; Thabane, L.; deBeer, J.; Farrauto, L.; McCartney, N.; Adachi, J.D.; Papaioannou, A. Body Weight-Supported Treadmill Training for Patients with Hip Fracture: A Feasibility Study. Arch. Phys. Med. Rehabil. 2009, 90, 2125–2130. [Google Scholar] [CrossRef]
- Moseley, A.M.; Sherrington, C.; Lord, S.R.; Barraclough, E.; St George, R.J.; Cameron, I.D. Mobility Training after Hip Fracture: A Randomised Controlled Trial. Age Ageing 2009, 38, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Sherrington, C.; Lord, S.R.; Herbert, R.D. A Randomised Trial of Weight-Bearing versus Non-Weight-Bearing Exercise for Improving Physical Ability in Inpatients after Hip Fracture. Aust. J. Physiother. 2003, 49, 15–22. [Google Scholar] [CrossRef]
- Morley, J.E.; Argiles, J.M.; Evans, W.J.; Bhasin, S.; Cella, D.; Deutz, N.E.P.; Doehner, W.; Fearon, K.C.H.; Ferrucci, L.; Hellerstein, M.K.; et al. Nutritional Recommendations for the Management of Sarcopenia. J. Am. Med. Dir. Assoc. 2010, 11, 391–396. [Google Scholar] [CrossRef]
- Shen, Y.; Shi, Q.; Nong, K.; Li, S.; Yue, J.; Huang, J.; Dong, B.; Beauchamp, M.; Hao, Q. Exercise for Sarcopenia in Older People: A Systematic Review and Network Meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1199–1211. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zuniga, C.; Arai, H.; Boirie, Y.; Chen, L.-K.; Fielding, R.A.; Martin, F.C.; Michel, J.-P.; et al. Prevalence of and Interventions for Sarcopenia in Ageing Adults: A Systematic Review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yue, T.; Liu, Y. New Understanding of the Pathogenesis and Treatment of Stroke-Related Sarcopenia. Biomed. Pharmacother. 2020, 131, 110721. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.A.S.; Franco, C.M.C.; Silva, A.L.; Castro-e-Souza, P.; Kunevaliki, G.; Izquierdo, M.; Cyrino, E.S.; Padilha, C.S. Resistance Exercise Intervention on Muscular Strength and Power, and Functional Capacity in Acute Hospitalized Older Adults: A Systematic Review and Meta-Analysis of 2498 Patients in 7 Randomized Clinical Trials. Geroscience 2021, 43, 2693–2705. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Velilla, N.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Sáez de Asteasu, M.L.; Lucia, A.; Galbete, A.; García-Baztán, A.; Alonso-Renedo, J.; González-Glaría, B.; Gonzalo-Lázaro, M.; et al. Effect of Exercise Intervention on Functional Decline in Very Elderly Patients During Acute Hospitalization. JAMA Intern. Med. 2019, 179, 28. [Google Scholar] [CrossRef]
- Welch, C.; Majid, Z.; Greig, C.; Gladman, J.; Masud, T.; Jackson, T. Interventions to Ameliorate Reductions in Muscle Quantity and Function in Hospitalised Older Adults: A Systematic Review towards Acute Sarcopenia Treatment. Age Ageing 2021, 50, 394–404. [Google Scholar] [CrossRef]
- Available online: https://vivifrail.com/es/inicio/ (accessed on 6 October 2024).
- De Morton, N.A.; Keating, J.L.; Jeffs, K. Exercise for Acutely Hospitalised Older Medical Patients. Cochrane Database Syst. Rev. 2007, 2007, CD005955. [Google Scholar] [CrossRef]
- Gillis, C.; Li, C.; Lee, L.; Awasthi, R.; Augustin, B.; Gamsa, A.; Liberman, A.S.; Stein, B.; Charlebois, P.; Feldman, L.S.; et al. Prehabilitation versus Rehabilitation: A Randomized Control Trial in Patients Undergoing Colorectal Resection for Cancer. Anesthesiology 2014, 121, 937–947. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Shiraishi, A.; Tsuji, Y.; Momosaki, R. Oral Management and the Role of Dental Hygienists in Convalescent Rehabilitation. Prog. Rehabil. Med. 2022, 7, 20220019. [Google Scholar] [CrossRef]
- Strasser, B.; Wolters, M.; Weyh, C.; Krüger, K.; Ticinesi, A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021, 13, 2045. [Google Scholar] [CrossRef]
- Lahiri, S.; Kim, H.; Garcia-Perez, I.; Reza, M.M.; Martin, K.A.; Kundu, P.; Cox, L.M.; Selkrig, J.; Posma, J.M.; Zhang, H.; et al. The Gut Microbiota Influences Skeletal Muscle Mass and Function in Mice. Sci. Transl. Med. 2019, 11, eaan5662. [Google Scholar] [CrossRef]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.G.; Holmes, E.; Shanahan, F.; Cotter, P.D.; O’Sullivan, O. The Microbiome of Professional Athletes Differs from That of More Sedentary Subjects in Composition and Particularly at the Functional Metabolic Level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef]
- Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Lucey, A.J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I.B.; Wood-Martin, R.; et al. Exercise and Associated Dietary Extremes Impact on Gut Microbial Diversity. Gut 2014, 63, 1913–1920. [Google Scholar] [CrossRef]
- Estaki, M.; Pither, J.; Baumeister, P.; Little, J.P.; Gill, S.K.; Ghosh, S.; Ahmadi-Vand, Z.; Marsden, K.R.; Gibson, D.L. Cardiorespiratory Fitness as a Predictor of Intestinal Microbial Diversity and Distinct Metagenomic Functions. Microbiome 2016, 4, 42. [Google Scholar] [CrossRef]
- Cawood, A.L.; Walters, E.R.; Smith, T.R.; Sipaul, R.H.; Stratton, R.J. A Review of Nutrition Support Guidelines for Individuals with or Recovering from COVID-19 in the Community. Nutrients 2020, 12, 3230. [Google Scholar] [CrossRef]
- Holdoway, A. Nutritional Management of Patients during and after COVID-19 Illness. Br. J. Community Nurs. 2020, 25, S6–S10. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Rieu, I.; Balage, M.; Sornet, C.; Giraudet, C.; Pujos, E.; Grizard, J.; Mosoni, L.; Dardevet, D. Leucine Supplementation Improves Muscle Protein Synthesis in Elderly Men Independently of Hyperaminoacidaemia. J. Physiol. 2006, 575, 305–315. [Google Scholar] [CrossRef]
- Atherton, P.J.; Smith, K.; Etheridge, T.; Rankin, D.; Rennie, M.J. Distinct Anabolic Signalling Responses to Amino Acids in C2C12 Skeletal Muscle Cells. Amino Acids 2010, 38, 1533–1539. [Google Scholar] [CrossRef]
- Prado, C.M.; Landi, F.; Chew, S.T.H.; Atherton, P.J.; Molinger, J.; Ruck, T.; Gonzalez, M.C. Advances in Muscle Health and Nutrition: A Toolkit for Healthcare Professionals. Clin. Nutr. 2022, 41, 2244–2263. [Google Scholar] [CrossRef] [PubMed]
- Komar, B.; Schwingshackl, L.; Hoffmann, G. Effects of Leucine-Rich Protein Supplements on Anthropometric Parameter and Muscle Strength in the Elderly: A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2015, 19, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.J.; Hossain, T.; Hill, D.S.; Phillips, B.E.; Crossland, H.; Williams, J.; Loughna, P.; Churchward-Venne, T.A.; Breen, L.; Phillips, S.M.; et al. Effects of Leucine and Its Metabolite Β-hydroxy-β-methylbutyrate on Human Skeletal Muscle Protein Metabolism. J. Physiol. 2013, 591, 2911–2923. [Google Scholar] [CrossRef]
- Fitschen, P.J.; Wilson, G.J.; Wilson, J.M.; Wilund, K.R. Efficacy of β-Hydroxy-β-Methylbutyrate Supplementation in Elderly and Clinical Populations. Nutrition 2013, 29, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.P.; Pereira, S.L.; Hays, N.P.; Oliver, J.S.; Edens, N.K.; Evans, C.M.; Wolfe, R.R. Effect of β-Hydroxy-β-Methylbutyrate (HMB) on Lean Body Mass during 10 Days of Bed Rest in Older Adults. Clin. Nutr. 2013, 32, 704–712. [Google Scholar] [CrossRef]
- Deutz, N.E.; Matheson, E.M.; Matarese, L.E.; Luo, M.; Baggs, G.E.; Nelson, J.L.; Hegazi, R.A.; Tappenden, K.A.; Ziegler, T.R. Readmission and Mortality in Malnourished, Older, Hospitalized Adults Treated with a Specialized Oral Nutritional Supplement: A Randomized Clinical Trial. Clin. Nutr. 2016, 35, 18–26. [Google Scholar] [CrossRef]
- Bear, D.E.; Langan, A.; Dimidi, E.; Wandrag, L.; Harridge, S.D.R.; Hart, N.; Connolly, B.; Whelan, K. β-Hydroxy-β-Methylbutyrate and Its Impact on Skeletal Muscle Mass and Physical Function in Clinical Practice: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2019, 109, 1119–1132. [Google Scholar] [CrossRef]
- Ekinci, O.; Yanlk, S.; Terzioǧlu Bebitoǧlu, B.; Yllmaz Akyüz, E.; Dokuyucu, A.; Erdem, Ş. Effect of Calcium β-Hydroxy-β-Methylbutyrate (CaHMB), Vitamin D, and Protein Supplementation on Postoperative Immobilization in Malnourished Older Adult Patients with Hip Fracture: A Randomized Controlled Study. Nutr. Clin. Pract. 2016, 31, 829–835. [Google Scholar] [CrossRef]
- Bouillanne, O.; Curis, E.; Hamon-Vilcot, B.; Nicolis, I.; Chrétien, P.; Schauer, N.; Vincent, J.P.; Cynober, L.; Aussel, C. Impact of Protein Pulse Feeding on Lean Mass in Malnourished and At-Risk Hospitalized Elderly Patients: A Randomized Controlled Trial. Clin. Nutr. 2013, 32, 186–192. [Google Scholar] [CrossRef]
- Pedersen, M.M.; Petersen, J.; Beyer, N.; Larsen, H.G.J.; Jensen, P.S.; Andersen, O.; Bandholm, T. A Randomized Controlled Trial of the Effect of Supervised Progressive Cross-Continuum Strength Training and Protein Supplementation in Older Medical Patients: The STAND-Cph Trial. Trials 2019, 20, 655. [Google Scholar] [CrossRef] [PubMed]
- Saudny-Unterberger, H.; Martin, J.G.; Gray-Donald, K. Impact of Nutritional Support on Functional Status during an Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1997, 156, 794–799. [Google Scholar] [CrossRef]
- Ogasawara, T.; Marui, S.; Miura, E.; Sugiura, M.; Matsuyama, W.; Aoshima, Y.; Kasamatsu, N.; Ogiku, M.; Ikematsu, Y. Effect of Eicosapentaenoic Acid on Prevention of Lean Body Mass Depletion in Patients with Exacerbation of Chronic Obstructive Pulmonary Disease: A Prospective Randomized Controlled Trial. Clin. Nutr. ESPEN 2018, 28, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Files, D.C.; Heinrich, T.; Shields, K.L.; Love, N.J.; Brailer, C.; Bakhru, R.N.; Purcell, L.; Flores, L.; Gibbs, K.; Miller, G.D.; et al. A Randomized Pilot Study of Nitrate Supplementation with Beetroot Juice in Acute Respiratory Failure. Nitric Oxide 2020, 94, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, S.; Kolobov, A.; Bon, T.; Rafilovich, S.; Munro, H.; Tanner, K.; Pearson, T.; Lees, S.J. Whey Protein Supplementation Improves Rehabilitation Outcomes in Hospitalized Geriatric Patients: A Double Blinded, Randomized Controlled Trial. J. Nutr. Gerontol. Geriatr. 2017, 36, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Beelen, J.; De Roos, N.M.; De Groot, L.C.P.G.M. A 12-Week Intervention with Protein-Enriched Foods and Drinks Improved Protein Intake but Not Physical Performance of Older Patients during the First 6 Months after Hospital Release: A Randomised Controlled Trial. Br. J. Nutr. 2017, 117, 1541–1549. [Google Scholar] [CrossRef]
- Gade, J.; Beck, A.M.; Andersen, H.E.; Christensen, B.; Ronholt, F.; Klausen, T.W.; Vinther, A.; Astrup, A. Protein Supplementation Combined with Low-Intensity Resistance Training in Geriatric Medical Patients during and after Hospitalisation: A Randomised, Double-Blind, Multicentre Trial. Br. J. Nutr. 2019, 122, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition Position Stand: Safety and Efficacy of Creatine Supplementation in Exercise, Sport, and Medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Forbes, S.C.; Candow, D.G.; Ostojic, S.M.; Roberts, M.D.; Chilibeck, P.D. Meta-Analysis Examining the Importance of Creatine Ingestion Strategies on Lean Tissue Mass and Strength in Older Adults. Nutrients 2021, 13, 1912. [Google Scholar] [CrossRef]
- Candow, D.G.; Forbes, S.C.; Kirk, B.; Duque, G. Current Evidence and Possible Future Applications of Creatine Supplementation for Older Adults. Nutrients 2021, 13, 745. [Google Scholar] [CrossRef]
- Bird, J.K.; Troesch, B.; Warnke, I.; Calder, P.C. The Effect of Long Chain Omega-3 Polyunsaturated Fatty Acids on Muscle Mass and Function in Sarcopenia: A Scoping Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2021, 46, 73–86. [Google Scholar] [CrossRef]
- Domingues-Faria, C.; Vasson, M.-P.; Goncalves-Mendes, N.; Boirie, Y.; Walrand, S. Skeletal Muscle Regeneration and Impact of Aging and Nutrition. Ageing Res. Rev. 2016, 26, 22–36. [Google Scholar] [CrossRef]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish Oil–Derived N−3 PUFA Therapy Increases Muscle Mass and Function in Healthy Older Adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.A.; Mourtzakis, M.; Chu, Q.S.C.; Baracos, V.E.; Reiman, T.; Mazurak, V.C. Nutritional Intervention with Fish Oil Provides a Benefit over Standard of Care for Weight and Skeletal Muscle Mass in Patients with Nonsmall Cell Lung Cancer Receiving Chemotherapy. Cancer 2011, 117, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Matheson, E.M.; Nelson, J.L.; Baggs, G.E.; Luo, M.; Deutz, N.E. Specialized Oral Nutritional Supplement (ONS) Improves Handgrip Strength in Hospitalized, Malnourished Older Patients with Cardiovascular and Pulmonary Disease: A Randomized Clinical Trial. Clin. Nutr. 2021, 40, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Buford, T.W. (Dis)Trust Your Gut: The Gut Microbiome in Age-Related Inflammation, Health, and Disease. Microbiome 2017, 5, 80. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, K.; Hsu, F.-C.; Davis, A.T.; Kritchevsky, S.B.; Rejeski, W.J.; Kim, S. Biomarkers of Leaky Gut Are Related to Inflammation and Reduced Physical Function in Older Adults with Cardiometabolic Disease and Mobility Limitations. Geroscience 2019, 41, 923–933. [Google Scholar] [CrossRef]
- Lamprecht, M.; Bogner, S.; Schippinger, G.; Steinbauer, K.; Fankhauser, F.; Hallstroem, S.; Schuetz, B.; Greilberger, J.F. Probiotic Supplementation Affects Markers of Intestinal Barrier, Oxidation, and Inflammation in Trained Men; a Randomized, Double-Blinded, Placebo-Controlled Trial. J. Int. Soc. Sports Nutr. 2012, 9, 45. [Google Scholar] [CrossRef]
- Laval, L.; Martin, R.; Natividad, J.; Chain, F.; Miquel, S.; de Maredsous, C.D.; Capronnier, S.; Sokol, H.; Verdu, E.; van Hylckama Vlieg, J.; et al. Lactobacillus rhamnosus CNCM I-3690 and the Commensal Bacterium Faecalibacterium prausnitzii A2-165 Exhibit Similar Protective Effects to Induced Barrier Hyper-Permeability in Mice. Gut Microbes 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Kirkland, R.; Grunewald, Z.I.; Sun, Q.; Wicker, L.; de La Serre, C.B. Beneficial Effects of Non-Encapsulated or Encapsulated Probiotic Supplementation on Microbiota Composition, Intestinal Barrier Functions, Inflammatory Profiles, and Glucose Tolerance in High Fat Fed Rats. Nutrients 2019, 11, 1975. [Google Scholar] [CrossRef]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.B.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut Microbiota Composition Correlates with Diet and Health in the Elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef]
- Lee, M.-C.; Tu, Y.-T.; Lee, C.-C.; Tsai, S.-C.; Hsu, H.-Y.; Tsai, T.-Y.; Liu, T.-H.; Young, S.-L.; Lin, J.-S.; Huang, C.-C. Lactobacillus plantarum TWK10 Improves Muscle Mass and Functional Performance in Frail Older Adults: A Randomized, Double-Blind Clinical Trial. Microorganisms 2021, 9, 1466. [Google Scholar] [CrossRef]
- Lee, C.-C.; Liao, Y.-C.; Lee, M.-C.; Lin, K.-J.; Hsu, H.-Y.; Chiou, S.-Y.; Young, S.-L.; Lin, J.-S.; Huang, C.-C.; Watanabe, K. Lactobacillus plantarum TWK10 Attenuates Aging-Associated Muscle Weakness, Bone Loss, and Cognitive Impairment by Modulating the Gut Microbiome in Mice. Front. Nutr. 2021, 8, 708096. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Wei, L.; Chiu, Y.-S.; Hsu, Y.-J.; Tsai, T.-Y.; Wang, M.-F.; Huang, C.-C. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients 2016, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chang, S.; Chang, H.; Wu, C.; Pan, C.; Chang, C.; Chan, C.; Huang, H. Probiotic Supplementation Attenuates Age-related Sarcopenia via the Gut–Muscle Axis in SAMP8 Mice. J. Cachexia Sarcopenia Muscle 2022, 13, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Buigues, C.; Fernández-Garrido, J.; Pruimboom, L.; Hoogland, A.; Navarro-Martínez, R.; Martínez-Martínez, M.; Verdejo, Y.; Mascarós, M.; Peris, C.; Cauli, O. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial. Int. J. Mol. Sci. 2016, 17, 932. [Google Scholar] [CrossRef]
- Huang, W.-C.; Lee, M.-C.; Lee, C.-C.; Ng, K.-S.; Hsu, Y.-J.; Tsai, T.-Y.; Young, S.-L.; Lin, J.-S.; Huang, C.-C. Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients 2019, 11, 2836. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.; De Melo, C.; Ribeiro, S. Effects of Three-Month Intake of Synbiotic on Inflammation and Body Composition in the Elderly: A Pilot Study. Nutrients 2013, 5, 1276–1286. [Google Scholar] [CrossRef]
- Liu, C.; Cheung, W.; Li, J.; Chow, S.K.; Yu, J.; Wong, S.H.; Ip, M.; Sung, J.J.Y.; Wong, R.M.Y. Understanding the Gut Microbiota and Sarcopenia: A Systematic Review. J. Cachexia Sarcopenia Muscle 2021, 12, 1393–1407. [Google Scholar] [CrossRef]
- Bouillanne, O.; Melchior, J.C.; Faure, C.; Paul, M.; Canouï-Poitrine, F.; Boirie, Y.; Chevenne, D.; Forasassi, C.; Guery, E.; Herbaud, S.; et al. Impact of 3-Week Citrulline Supplementation on Postprandial Protein Metabolism in Malnourished Older Patients: The Ciproage Randomized Controlled Trial. Clin. Nutr. 2019, 38, 564–574. [Google Scholar] [CrossRef]
- Sato, Y.; Yoshimura, Y.; Abe, T.; Nagano, F.; Matsumoto, A. Hospital-Associated Sarcopenia and the Preventive Effect of High Energy Intake along with Intensive Rehabilitation in Patients with Acute Stroke. Nutrition 2023, 116, 2181. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Uchida, K.; Jeong, S.; Yamaga, M. Effects of Nutritional Supplements on Muscle Mass and Activities of Daily Living in Elderly Rehabilitation Patients with Decreased Muscle Mass: A Randomized Controlled Trial. J. Nutr. Health Aging 2016, 20, 185–191. [Google Scholar] [CrossRef]
- Fischer, A.; Spiegl, M.; Altmann, K.; Winkler, A.; Salamon, A.; Themessl-Huber, M.; Mouhieddine, M.; Strasser, E.M.; Schiferer, A.; Paternostro-Sluga, T.; et al. Muscle Mass, Strength and Functional Outcomes in Critically Ill Patients after Cardiothoracic Surgery: Does Neuromuscular Electrical Stimulation Help? The Catastim 2 Randomized Controlled Trial. Crit. Care 2016, 20, 30. [Google Scholar] [CrossRef] [PubMed]
- Dirks, M.L.; Hansen, D.; Van Assche, A.; Dendale, P.; Van Loon, L.J.C. Neuromuscular Electrical Stimulation Prevents Muscle Wasting in Critically Ill Comatose Patients. Clin. Sci. 2015, 128, 357–365. [Google Scholar] [CrossRef] [PubMed]
- López-López, L.; Torres-Sánchez, I.; Rodríguez-Torres, J.; Cabrera-Martos, I.; Ortiz-Rubio, A.; Valenza, M.C. Does Adding an Integrated Physical Therapy and Neuromuscular Electrical Stimulation Therapy to Standard Rehabilitation Improve Functional Outcome in Elderly Patients with Pneumonia? A Randomised Controlled Trial. Clin. Rehabil. 2019, 33, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Weissberger, A.J.; Anastasiadis, A.D.; Sturgess, I.; Martin, F.C.; Smith, M.A.; Sönksen, P.H. Recombinant Human Growth Hormone Treatment in Elderly Patients Undergoing Elective Total Hip Replacement. Clin. Endocrinol. 2003, 58, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Hedström, M.; Sääf, M.; Brosjö, E.; Hurtig, C.; Sjöberg, K.; Wesslau, A.; Dalén, N. Positive Effects of Short-Term Growth Hormone Treatment on Lean Body Mass and BMC after a Hip Fracture: A Double-Blind Placebo-Controlled Pilot Study in 20 Patients. Acta Orthop. Scand. 2004, 75, 394–401. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Wu, P.; Lang, J.; Chen, L.; Chen, C.L. Intervention with Erythropoietin in Sarcopenic Patients with Femoral Intertrochanteric Fracture and Its Potential Effects on Postoperative Rehabilitation. Geriatr. Gerontol. Int. 2019, 20, 150–155. [Google Scholar] [CrossRef]
- Ostrowski, D.; Heinrich, R. Alternative Erythropoietin Receptors in the Nervous System. J. Clin. Med. 2018, 7, 24. [Google Scholar] [CrossRef]
- Cheng, C.W.; Solorio, L.D.; Alsberg, E. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering. Biotechnol. Adv. 2014, 32, 462–484. [Google Scholar] [CrossRef]
- Ogilvie, M.; Yu, X.; Nicolas-Metral, V.; Pulido, S.M.; Liu, C.; Ruegg, U.T.; Noguchi, C.T. Erythropoietin Stimulates Proliferation and Interferes with Differentiation of Myoblasts. J. Biol. Chem. 2000, 275, 39754–39761. [Google Scholar] [CrossRef]
- Lamon, S.; Russell, A.P. The Role and Regulation of Erythropoietin (EPO) and Its Receptor in Skeletal Muscle: How Much Do We Really Know? Front. Physiol. 2013, 4, 176. [Google Scholar] [CrossRef]
- Rotter, R.; Menshykova, M.; Winkler, T.; Matziolis, G.; Stratos, I.; Schoen, M.; Bittorf, T.; Mittlmeier, T.; Vollmar, B. Erythropoietin Improves Functional and Histological Recovery of Traumatized Skeletal Muscle Tissue. J. Orthop. Res. 2008, 26, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Hida, T.; Ishiguro, N.; Shimokata, H.; Sakai, Y.; Matsui, Y.; Takemura, M.; Terabe, Y.; Harada, A. High Prevalence of Sarcopenia and Reduced Leg Muscle Mass in Japanese Patients Immediately after a Hip Fracture. Geriatr. Gerontol. Int. 2013, 13, 413–420. [Google Scholar] [CrossRef] [PubMed]
EWGSOP2 | AWGS | SDOC | ||||
---|---|---|---|---|---|---|
Muscle strength | Grip strength | <27 kg ♂; <16 kg ♀ | Grip strength | <28 kg ♂; <18 kg ♀ | Grip strength | <35.5 kg ♂; <20 kg ♀ |
5-time chair stand test | >15 s | |||||
Muscle mass | ASM | <20 kg ♂; <15 kg ♀ | Not required | |||
ASM/height2 | <7 kg/m2 ♂; <5.5 kg/m2 ♀ | ASM/m2 | <7 kg/m2 ♂; <5.4 kg/m2 ♀ | |||
Muscle performance | Gait speed | ≤0.8 m/s | Gait speed | ≤1 m/s | Gait speed | <0.8 m/s |
SPPB | ≤8 point score | SPPB | ≤9 point score | |||
TUG | ≥20 s | 5-time chair stand test | ≥12 s | |||
400 m walk test | Non-completion or ≥6 min for completion | |||||
Sarcopenia definitions | Low strength + low muscle mass | Low strength OR low performance + low muscle mass | Low strength + low performance | |||
SEVERE: | Low strength + low muscle mass + low performance | SEVERE: | Low strength + low muscle mass + low performance |
Biomarker | Concentrations | Mechanisms |
---|---|---|
MicroRNA | ||
miR-29b | Elevated | Inhibits IGF-1 and PI3K, leading to muscle atrophy |
miR-542 | Elevated | Targets mitochondrial ribosomal proteins (S2, S10, S18C, S25, S26, and S27) inducing stress, leading to decreased expression of proteins encoded by mitochondrial DNA. This reduction is expected to impair mitochondrial function, including energy production. Moreover, it targets inhibitors of the TGF-b signaling pathway, which is known to mediate muscle atrophy, suggesting that it may increase TGF-b signaling |
miR-424 | Elevated | Reduces rRNA and protein synthesis in muscle cells |
miR-181a | Reduced | Is an endogenous regulator of mitochondrial dynamics through concerted regulation of Park2, p62/SQSTM1, and DJ-1 in vitro. Downregulation of miR-181a with age was associated with an accumulation of autophagy-related proteins and abnormal mitochondria. Restoring miR-181a levels in old mice prevented accumulation of p62, DJ-1, and PARK2 and improved mitochondrial quality and muscle function |
miR-1 | Reduced | Helps maintain muscle homeostasis by downregulating Pax3, a transcription factor necessary for muscle progenitor cell activity. This downregulation is essential for initiating the myogenic program, which leads to the formation and differentiation of muscle cells. However, during acute sarcopenia, the dysregulation of miR-1 can impede the proper initiation of the myogenic program. This disruption can result in impaired muscle regeneration and repair, exacerbating muscle atrophy. Additionally, miR-1 is involved in other pathways critical for muscle function, including those related to muscle protein synthesis and degradation. Altered miR-1 expression can therefore lead to an imbalance in these pathways, further contributing to muscle wasting and weakness |
miR-133b | Reduced | Regulates fundamental processes of myogenesis including myoblast differentiation, regeneration, and satellite cell fate determination. Its downregulation appears to promote satellite cell quiescence. |
GDF-15 | Elevated | Member of the transforming growth factor-beta (TGF-β) superfamily and is significantly upregulated in various forms of stress |
FGF21 | Promising role as acute sarcopenia biomarker to be confirmed in future studies | Produced in large quantities in response to muscular stress; reduces oxidative stress damage to skeletal muscle mitochondria; association with chronic sarcopenia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damanti, S.; Senini, E.; De Lorenzo, R.; Merolla, A.; Santoro, S.; Festorazzi, C.; Messina, M.; Vitali, G.; Sciorati, C.; Rovere-Querini, P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024, 16, 3428. https://doi.org/10.3390/nu16203428
Damanti S, Senini E, De Lorenzo R, Merolla A, Santoro S, Festorazzi C, Messina M, Vitali G, Sciorati C, Rovere-Querini P. Acute Sarcopenia: Mechanisms and Management. Nutrients. 2024; 16(20):3428. https://doi.org/10.3390/nu16203428
Chicago/Turabian StyleDamanti, Sarah, Eleonora Senini, Rebecca De Lorenzo, Aurora Merolla, Simona Santoro, Costanza Festorazzi, Marco Messina, Giordano Vitali, Clara Sciorati, and Patrizia Rovere-Querini. 2024. "Acute Sarcopenia: Mechanisms and Management" Nutrients 16, no. 20: 3428. https://doi.org/10.3390/nu16203428
APA StyleDamanti, S., Senini, E., De Lorenzo, R., Merolla, A., Santoro, S., Festorazzi, C., Messina, M., Vitali, G., Sciorati, C., & Rovere-Querini, P. (2024). Acute Sarcopenia: Mechanisms and Management. Nutrients, 16(20), 3428. https://doi.org/10.3390/nu16203428