The Significance of an Initial Controlling Nutritional Status Score in Predicting the Functional Outcome, Complications, and Mortality in a First-Ever Ischemic Stroke
Abstract
:1. Introduction
2. Methods
2.1. Study Cohort
2.2. Risk Factors and Nutritional Assessment
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Functional Outcomes
3.3. Survival Rate
3.4. Complications
4. Discussion
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Narumi, T.; Arimoto, T.; Funayama, A.; Kadowaki, S.; Otaki, Y.; Nishiyama, S.; Takahashi, H.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. Prognostic importance of objective nutritional indexes in patients with chronic heart failure. J. Cardiol. 2013, 62, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Iseki, Y.; Shibutani, M.; Maeda, K.; Nagahara, H.; Ohtani, H.; Sugano, K.; Ikeya, T.; Muguruma, K.; Tanaka, H.; Toyokawa, T.; et al. Impact of the Preoperative Controlling Nutritional Status (CONUT) Score on the Survival after Curative Surgery for Colorectal Cancer. PLoS ONE 2015, 10, e0132488. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.N.; Kufeldt, J.; Kisser, U.; Hornung, H.-M.; Hoffmann, J.; Andraschko, M.; Werner, J.; Rittler, P. Effects of malnutrition on complication rates, length of hospital stay, and revenue in elective surgical patients in the G-DRG-system. Nutrition 2016, 32, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Ong, K.C.; Chan, Y.H.; Loke, W.C.; Ferguson, M.; Daniels, L. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin. Nutr. 2012, 31, 345–350. [Google Scholar] [CrossRef]
- Foley, N.C.; Salter, K.L.; Robertson, J.; Teasell, R.W.; Woodbury, M.G. Which reported estimate of the prevalence of malnutrition after stroke is valid? Stroke 2009, 40, e66–e74. [Google Scholar] [CrossRef]
- Davis, J.P.; Wong, A.A.; Schluter, P.J.; Henderson, R.D.; O’Sullivan, J.D.; Read, S.J. Impact of premorbid undernutrition on outcome in stroke patients. Stroke 2004, 35, 1930–1934. [Google Scholar] [CrossRef]
- Gariballa, S.E.; Parker, S.G.; Taub, N.; Castleden, M. Nutritional status of hospitalized acute stroke patients. Br. J. Nutr. 1998, 79, 481–487. [Google Scholar] [CrossRef]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- FOOD Trial Collaboration. Poor nutritional status on admission predicts poor outcomes after stroke: Observational data from the FOOD trial. Stroke 2003, 34, 1450–1456. [Google Scholar] [CrossRef]
- Shen, H.-C.; Chen, H.-F.; Peng, L.-N.; Lin, M.-H.; Chen, L.-K.; Liang, C.-K.; Lo, Y.-K.; Hwang, S.-J. Impact of nutritional status on long-term functional outcomes of post-acute stroke patients in Taiwan. Arch. Gerontol. Geriatr. 2011, 53, e149–e152. [Google Scholar] [CrossRef] [PubMed]
- Pellicane, A.J.; Millis, S.R.; Barker, K.D.; Temme, K.E.; Sayyad, A.; Oswald, M.C.; Roth, E.J. The effect of protein and calorie intake on prealbumin, complications, length of stay, and function in the acute rehabilitation inpatient with stroke. NeuroRehabilitation 2013, 33, 367–376. [Google Scholar] [CrossRef] [PubMed]
- De Ulíbarri, J.I.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Liu, C.; Zhu, M.; Yang, X.; Cui, H.; Li, Z.; Wei, J. Controlling Nutritional Status Score as a Predictive Marker of In-hospital Mortality in Older Adult Patients. Front. Nutr. 2021, 8, 738045. [Google Scholar] [CrossRef]
- Toyokawa, G.; Kozuma, Y.; Matsubara, T.; Haratake, N.; Takamori, S.; Akamine, T.; Takada, K.; Katsura, M.; Shimokawa, M.; Shoji, F.; et al. Prognostic impact of controlling nutritional status score in resected lung squamous cell carcinoma. J. Thorac. Dis. 2017, 9, 2942–2951. [Google Scholar] [CrossRef]
- Yoshihisa, A.; Kanno, Y.; Watanabe, S.; Yokokawa, T.; Abe, S.; Miyata, M.; Sato, T.; Suzuki, S.; Oikawa, M.; Kobayashi, A.; et al. Impact of nutritional indices on mortality in patients with heart failure. Open Heart 2018, 5, e000730. [Google Scholar] [CrossRef]
- Fukushima, K.; Ueno, Y.; Kawagishi, N.; Kondo, Y.; Inoue, J.; Kakazu, E.; Ninomiya, M.; Wakui, Y.; Saito, N.; Satomi, S.; et al. The nutritional index ‘CONUT’ is useful for predicting long-term prognosis of patients with end-stage liver diseases. Tohoku J. Exp. Med. 2011, 224, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Sung, S.; Cheng, H.; Hsu, P.; Guo, C.; Yu, W.; Chen, C. Prognostic Nutritional Index and the Risk of Mortality in Patients With Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, e004876. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 207–217. [Google Scholar] [CrossRef]
- Naito, H.; Nezu, T.; Hosomi, N.; Aoki, S.; Kinoshita, N.; Kuga, J.; Shimomura, R.; Araki, M.; Ueno, H.; Ochi, K.; et al. Controlling nutritional status score for predicting 3-mo functional outcome in acute ischemic stroke. Nutrition 2018, 55–56, 1–6. [Google Scholar] [CrossRef]
- Cai, Z.-M.; Wu, Y.-Z.; Chen, H.-M.; Feng, R.-Q.; Liao, C.-W.; Ye, S.-L.; Liu, Z.-P.; Zhang, M.-M.; Zhu, B.-L. Being at risk of malnutrition predicts poor outcomes at 3 months in acute ischemic stroke patients. Eur. J. Clin. Nutr. 2020, 74, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Sohn, M.K.; Lee, J.; Kim, D.Y.; Lee, S.-G.; Shin, Y.-I.; Oh, G.-J.; Lee, Y.-S.; Joo, M.C.; Han, E.Y.; et al. Predictors of functional level and quality of life at 6 months after a first-ever stroke: The KOSCO study. J. Neurol. 2016, 263, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.A.; Oratz, M.; Schreiber, S.S. Albumin metabolism. Gastroenterology 1973, 64, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth. 2000, 85, 599–610. [Google Scholar] [CrossRef]
- Nakagomi, A.; Kohashi, K.; Morisawa, T.; Kosugi, M.; Endoh, I.; Kusama, Y.; Atarashi, H.; Shimizu, W.; Nakagomi, A.; Kohashi, K.; et al. Nutritional Status is Associated with Inflammation and Predicts a Poor Outcome in Patients with Chronic Heart Failure. J. Atheroscler. Thromb. 2016, 23, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.L.; Marotta, C.A. Outcomes validity and reliability of the modified Rankin scale: Implications for stroke clinical trials: A literature review and synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Dodds, T.A.; Martin, D.P.; Stolov, W.C.; Deyo, R.A. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch. Phys. Med. Rehabil. 1993, 74, 531–536. [Google Scholar] [CrossRef]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef]
- Oh, M.S.; Yu, K.-H.; Lee, J.-H.; Jung, S.; Ko, I.-S.; Shin, J.-H.; Cho, S.-J.; Choi, H.-C.; Kim, H.H.; Lee, B.-C. Validity and reliability of a korean version of the national institutes of health stroke scale. J. Clin. Neurol. 2012, 8, 177–183. [Google Scholar] [CrossRef]
- Meyer, S.; Verheyden, G.; Brinkmann, N.; Dejaeger, E.; De Weerdt, W.; Feys, H.; Gantenbein, A.R.; Jenni, W.; Laenen, A.; Lincoln, N.; et al. Functional and motor outcome 5 years after stroke is equivalent to outcome at 2 months: Follow-up of the collaborative evaluation of rehabilitation in stroke across Europe. Stroke 2015, 46, 1613–1619. [Google Scholar] [CrossRef]
- Qin, H.; Wang, A.; Zuo, Y.; Zhang, Y.; Yang, B.; Wei, N.; Zhang, J. Malnutrition could Predict 3-month Functional Prognosis in Mild Stroke Patients: Findings from a Nationwide Stroke Registry. Curr. Neurovasc Res. 2021, 18, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Ciancarelli, I.; Morone, G.; Iosa, M.; Cerasa, A.; Calabrò, R.S.; Iolascon, G.; Gimigliano, F.; Tonin, P.; Tozzi Ciancarelli, M.G. Influence of Oxidative Stress and Inflammation on Nutritional Status and Neural Plasticity: New Perspectives on Post-Stroke Neurorehabilitative Outcome. Nutrients 2022, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yoshimura, Y.; Abe, T. Nutrition in the First Week after Stroke Is Associated with Discharge to Home. Nutrients 2021, 13, 943. [Google Scholar] [CrossRef]
- Otsuki, I.; Himuro, N.; Tatsumi, H.; Mori, M.; Niiya, Y.; Kumeta, Y.; Yamakage, M. Individualized nutritional treatment for acute stroke patients with malnutrition risk improves functional independence measurement: A randomized controlled trial. Geriatr. Gerontol. Int. 2020, 20, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Emery, P.W.; Weekes, C.E. Risk of Malnutrition Is an Independent Predictor of Mortality, Length of Hospital Stay, and Hospitalization Costs in Stroke Patients. J. Stroke Cerebrovasc. Dis. 2016, 25, 799–806. [Google Scholar] [CrossRef]
- Chandra, R.K. Nutrition and the immune system: An introduction. Am. J. Clin. Nutr. 1997, 66, 460s–463s. [Google Scholar] [CrossRef]
- Chandra, R.K. Graying of the immune system. Can nutrient supplements improve immunity in the elderly? JAMA 1997, 277, 1398–1399. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Diet, nutrition, and bone health. J. Nutr. 2007, 137, 2507s–2512s. [Google Scholar] [CrossRef]
- Anand, N.; Chandrasekaran, S.C.; Alam, M.N. The malnutrition inflammation complex the micsing factor in the perio-chronic kidney disease interlink. J. Clin. Diagn. Res. 2013, 7, 763–767. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Kamranpour, N.; Fogelman, A.M.; Navab, M. HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 2007, 72, 1149–1156. [Google Scholar] [CrossRef]
- Greiwe, J.S.; Cheng, B.; Rubin, D.C.; Yarasheski, K.E.; Semenkovich, C.F. Resistance exercis decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB J. 2001, 15, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Steffen, B.T.; Lees, S.J.; Booth, F.W. Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J. Appl. Physiol. 2008, 105, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- De Schutter, A.; Lavie, C.J.; Kachur, S.; Patel, D.A.; Milani, R.V. Body composition and mortality in a large cohort with preserved ejection fraction: Untangling the obesity paradox. Mayo Clin. Proc. 2014, 89, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; Knops, M.; Ebner, N.; Valentova, M.; Sandek, A.; Grittner, U.; Dahinden, P.; Hettwer, S.; Schefold, J.C.; von Haehling, S.; et al. Evaluation of C terminal Agrin Fragment as a marker of muscle wasting in patients after acute stroke during early rehabilitation. J. Cachexia Sarcopenia Muscle 2016, 7, 60–67. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.K.; Jung, S.; Ko, S.B.; Lee, S.H.; Yoon, B.W. Prognostic importance of weight change on short-term functional outcome in acute ischemic stroke. Int. J. Stroke 2015, 10 (Suppl. A100), 62–68. [Google Scholar] [CrossRef]
Variable | CONUT 0–1 (n = 358) | CONUT 2–4 (n = 220) | CONUT 5–12 (n = 62) | p-Value |
---|---|---|---|---|
Age, years | 63.90 ± 13.02 | 66.73 ± 13.83 | 69.23 ± 12.66 | 0.003 |
Male, n (%) | 207 (57.8) | 133 (60.5) | 38 (61.3) | 0.767 |
Body mass index (kg/m2) | 24.46 ± 3.66 | 23.71 ± 3.82 | 21.58 ± 3.11 | <0.001 |
Smoking, n (%) | 106 (29.6) | 41 (18.6) | 10 (16.1) | 0.003 |
Alcohol, n (%) | 162 (45.3) | 82 (37.3) | 28 (45.2) | 0.153 |
Hypertension, n (%) | 231 (64.5) | 146 (66.4) | 45 (72.6) | 0.460 |
Diabetes mellitus, n (%) | 89 (24.9) | 69 (31.4) | 15 (24.2) | 0.202 |
Coronary heart disease, n (%) | 44 (12.3) | 39 (17.7) | 11 (17.7) | 0.155 |
Atrial fibrillation, n (%) | 53 (14.8) | 49 (22.3) | 13 (21.0) | 0.062 |
Hyperlipidemia, n (%) | 49 (13.7) | 26 (11.8) | 6 (9.7) | 0.612 |
Congestive heart failure, n (%) | 8 (2.2) | 7 (3.2) | 4 (6.5) | 0.191 |
Renal disease, n (%) | 3 (0.8) | 12 (5.5) | 2 (3.2) | 0.003 |
Liver disease, n (%) | 7 (2.0) | 5 (2.3) | 3 (4.8) | 0.382 |
Malignant disease, n (%) | 10 (2.8) | 16 (7.3) | 1 (1.6) | 0.019 |
Ischemic stroke subtype, n (%) | 0.053 | |||
Large-artery atherosclerosis | 192 (53.6) | 140 (63.6) | 42 (67.7) | |
Small-artery occlusion | 133 (37.2) | 65 (29.5) | 12 (19.4) | |
Cardioembolism | 15 (4.2) | 8 (3.6) | 5 (8.1) | |
Other determined | 12 (3.4) | 3 (1.4) | 2 (3.2) | |
Undetermined | 6 (1.7) | 4 (1.8) | 1 (1.6) | |
Lesion site, n (%) | 0.296 | |||
Cortical | 100 (27.9) | 77 (35.0) | 21 (33.9) | |
Subcortical | 178 (49.7) | 86 (39.1) | 28 (45.2) | |
Brainstem | 55 (15.4) | 36 (16.4) | 8 (12.9) | |
Multiple | 25 (7.0) | 21 (9.5) | 5 (8.1) | |
Thrombolytic therapy, n (%) | 32 (8.9) | 22 (10.0) | 6 (9.7) | 0.910 |
Endovascular therapy, n (%) | 5 (1.4) | 2 (0.9) | 1 (1.6) | 0.845 |
NIHSS | 2.0 (1.0–5.0) | 3.0 (1.0–7.0) | 4.0 (2.0–7.25) | 0.008 |
Time to admission at hospital, h | 10.87 (2.99–33.90) | 11.82 (2.60–33.91) | 10.64 (1.00–34.23) | 0.588 |
Duration of acute neurological management, days | 6.00 (5.00–9.00) | 8.00 (6.00–12.00) | 10.00 (7.00–20.50) | <0.001 |
Serum albumin, g/L | 4.19 ± 0.32 | 3.98 ± 0.40 | 3.16 ± 0.44 | <0.001 |
Total cholesterol, mg/dL | 200.07 ± 43.32 | 162.69 ± 36.90 | 133.69 ± 42.21 | <0.001 |
Total lymphocyte count, /mm3 | 2325.87 ± 759.19 | 1478.68 ± 758.25 | 931.77 ± 444.98 | <0.001 |
C-reactive protein, mg/L | 8.19 ± 21.25 | 17.43 ± 30.71 | 46.77 ± 57.12 | <0.001 |
CONUT score | 0.46 ± 0.50 | 2.68 ± 0.76 | 6.74 ± 2.01 | <0.001 |
Nutritional Status | CONUT 0–1 | CONUT 2–4 | CONUT 5–12 | p-Value |
---|---|---|---|---|
Mild stroke (n = 385) | ||||
mRS | ||||
CONUT × time interaction | 0.014 | |||
Baseline | 1.68 ± 0.14 | 1.99 ± 0.17 | 1.96 ± 0.31 | 0.148 |
3 months | 0.93 ± 0.13 | 1.16 ± 0.16 | 2.04 ± 0.27 *† | <0.001 |
6 months | 0.73 ± 0.13 | 1.03.± 0.15 | 1.93 ± 0.26 *† | <0.001 |
FIM | ||||
CONUT × time interaction | 0.121 | |||
Baseline | 109.22 ± 2.23 | 104.24 ± 2.81 | 103.45 ± 4.78 | 0.109 |
3 months | 119.94 ± 2.10 | 116.48 ± 2.55 | 105.2 ± 4.13 *† | <0.001 |
6 months | 120.93 ± 2.12 | 117.17 ± 2.60 | 107.69 ± 4.30 * | 0.004 |
FAC | ||||
CONUT × time interaction | 0.037 | |||
Baseline | 3.88 ± 0.13 | 3.59 ± 0.17 | 3.44 ± 0.31 | 0.129 |
3 months | 4.64 ± 0.12 | 4.50 ± 0.14 | 3.52 ± 0.23 *† | <0.001 |
6 months | 4.71 ± 0.11 | 4.50 ± 0.13 | 3.75 ± 0.23 * | <0.001 |
Moderate/severe stroke (n = 187) | ||||
mRS | ||||
CONUT × time interaction | 0.708 | |||
Baseline | 3.15 ± 0.27 | 3.83 ± 0.29 * | 3.54 ± 0.51 | 0.040 |
3 months | 2.16 ± 0.27 | 2.66 ± 0.28 | 2.83 ± 0.50 | 0.105 |
6 months | 1.95 ± 0.26 | 2.43 ± 0.28 | 2.78 ± 0.49 | 0.063 |
FIM | ||||
CONUT × time interaction | 0.132 | |||
Baseline | 75.97 ± 5.38 | 62.88 ± 5.71 * | 66.63 ± 9.74 | 0.038 |
3 months | 96.01 ± 5.34 | 89.71 ± 5.66 | 79.78 ± 9.59 | 0.152 |
6 months | 99.58 ± 5.31 | 89.94 ± 5.63 | 81.95 ± 9.63 | 0.054 |
FAC | ||||
CONUT × time interaction | 0.708 | |||
Baseline | 2.20 ± 0.29 | 1.49 ± 0.30 * | 1.92 ± 0.55 | 0.046 |
3 months | 3.60 ± 0.28 | 3.05 ± 0.30 * | 2.56 ± 0.52 † | 0.038 |
6 months | 3.73 ± 0.28 | 3.22 ± 0.29 | 2.79 ± 0.51 | 0.053 |
Complications | All | CONUT 0–1 | CONUT 2–4 | CONUT 5–12 | p Value |
---|---|---|---|---|---|
Thromboembolic disease | 11 (1.9) | 6 (1.8) | 4 (2.1) | 1 (2.6) | 0.914 |
Pneumonia | 19 (3.3) | 4 (1.2) | 9 (4.7) | 6 (15.8) | <0.001 |
Ventilatory insufficiency | 2 (0.3) | 2 (0.6) | - | - | 0.509 |
Urinary tract infection | 17 (3.0) | 3 (0.9) | 8 (4.2) | 6 (15.8) | <0.001 |
Pressure sore | 3 (0.5) | - | 1 (0.5) | 2 (5.3) | <0.001 |
Fall and injuries | 1 (0.2) | - | - | 1 (2.6) | 0.001 |
Fracture | 1 (0.2) | - | - | 1 (2.6) | 0.001 |
Complex regional pain syndrome | 2 (0.3) | 1 (0.3) | 1 (0.5) | - | 0.849 |
Central post-stroke pain syndrome | 1 (0.2) | 1 (0.3) | - | - | 0.714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Jo, Y.J.; Sohn, M.K.; Lee, J.; Shin, Y.-I.; Oh, G.-J.; Lee, Y.-S.; Joo, M.C.; Lee, S.Y.; Song, M.-K.; et al. The Significance of an Initial Controlling Nutritional Status Score in Predicting the Functional Outcome, Complications, and Mortality in a First-Ever Ischemic Stroke. Nutrients 2024, 16, 3461. https://doi.org/10.3390/nu16203461
Choi H, Jo YJ, Sohn MK, Lee J, Shin Y-I, Oh G-J, Lee Y-S, Joo MC, Lee SY, Song M-K, et al. The Significance of an Initial Controlling Nutritional Status Score in Predicting the Functional Outcome, Complications, and Mortality in a First-Ever Ischemic Stroke. Nutrients. 2024; 16(20):3461. https://doi.org/10.3390/nu16203461
Chicago/Turabian StyleChoi, Hyoseon, Yea Jin Jo, Min Kyun Sohn, Jongmin Lee, Yong-Il Shin, Gyung-Jae Oh, Yang-Soo Lee, Min Cheol Joo, So Young Lee, Min-Keun Song, and et al. 2024. "The Significance of an Initial Controlling Nutritional Status Score in Predicting the Functional Outcome, Complications, and Mortality in a First-Ever Ischemic Stroke" Nutrients 16, no. 20: 3461. https://doi.org/10.3390/nu16203461
APA StyleChoi, H., Jo, Y. J., Sohn, M. K., Lee, J., Shin, Y. -I., Oh, G. -J., Lee, Y. -S., Joo, M. C., Lee, S. Y., Song, M. -K., Han, J., Ahn, J., Lee, Y. -H., Kim, Y. -H., Chang, W. H., & Kim, D. Y. (2024). The Significance of an Initial Controlling Nutritional Status Score in Predicting the Functional Outcome, Complications, and Mortality in a First-Ever Ischemic Stroke. Nutrients, 16(20), 3461. https://doi.org/10.3390/nu16203461